
Transformation-Invariant Clustering
Using the EM Algorithm

Brendan J. Frey, Member, IEEE Computer Society, and Nebojsa Jojic, Member, IEEE Computer Society

Abstract—Clustering is a simple, effective way to derive useful representations of data, such as images and videos. Clustering
explains the input as one of several prototypes, plus noise. In situations where each input has been randomly transformed (e.g., by
translation, rotation, and shearing in images and videos), clustering techniques tend to extract cluster centers that account for
variations in the input due to transformations, instead of more interesting and potentially useful structure. For example, if images from a
video sequence of a person walking across a cluttered background are clustered, it would be more useful for the different clusters to
represent different poses and expressions, instead of different positions of the person and different configurations of the background
clutter. We describe a way to add transformation invariance to mixture models, by approximating the nonlinear transformation manifold
by a discrete set of points. We show how the expectation maximization algorithm can be used to jointly learn clusters, while at the
same time inferring the transformation associated with each input. We compare this technique with other methods for filtering noisy
images obtained from a scanning electron microscope, clustering images from videos of faces into different categories of identification
and pose and removing foreground obstructions from video. We also demonstrate that the new technique is quite insensitive to initial
conditions and works better than standard techniques, even when the standard techniques are provided with extra data.

Index Terms—Generative models, transformation, transformation-invariance, clustering, video summary, filtering, EM algorithm,

probability model.
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1 INTRODUCTION

OUR approach to solving problems in computer vision is to
formulate them as problems of probabilistic and

statistical inference in complex, parameterized probability
models. A batch of images or a video sequence is used to learn
a probable set of model parameters. Then, each input image is
interpreted by inferring the distributions over hidden
variables, such as “object class,” “object position,” etc. Also,
the model parameters can be used to summarize the
data—e.g., render prototypical appearances of the objects.
By carefully specifying the structure of the probability models
(i.e., conditional independencies between variables and
parameters) and by inventing efficient inference algorithms,
we hope to solve general classes of computer vision problems.

We present a technique for automatically learning

models of different types of object from unlabeled images

that include background clutter and spatial transforma-

tions, such as translation, rotation and shearing.
For example, Fig. 2a shows several 140� 56 gray-scale

images obtained from a scanning electron microscope. The

electron detectors and the high-speed electrical circuits

randomly translate the images and add noise [14]. Standard

filtering techniques are not appropriate here, since the images

are not aligned. As shown later in this paper, the images

cannot be properly aligned using correlation because of the

high level of noise. Our technique is able to automatically

align the images and estimate the appearance of the aligned
images, using a maximum-likelihood criterion.

Fig. 4a shows several 88� 56 gray-scale head-and-
shoulder images of a person walking outdoors. The video
camera did not track the person’s head perfectly, so the head
appears at different locations in the frame. The images
include variation in the pose of the head, as well as
background clutter—some of which appears in multiple
images. Aligning the images without a model of the person’s
appearance is difficult. Even when the images are treated as a
video sequence, standard blob-tracking methods do not work
well due to the presence of coherent background clutter (such
as the tree and the gate). Our technique is able to auto-
matically align the images, despite sensor noise and back-
ground clutter, and robustly learn a mixture of pose-based
appearance maps.

We propose a general purpose statistical method that can
jointly normalize for transformations that occur in the
training data, and learn a maximum-likelihood density
model of the normalized data [9], [10]. The technique can be
applied to video sequences, but does not require that the
images be temporally ordered. Improvements in perfor-
mance can be achieved by introducing temporal dependen-
cies, as described in [19], [12].

One approach to predicting the transformation in an
input image is to provide a training set of images plus their
transformations to a supervised learning algorithm, such as
classification and regression trees, multilayer perceptrons,
Gaussian process regression, support vector classifiers,
nearest-neighborhood methods (which may operate in
linear subspaces spanned by eigen-vectors [25], [22]) and
adaptive-metric nearest-neighbor methods [21].

The very different approach we take here is to use unlabeled
data to train a probability density model of the data (or
generative model). The goal of generative modeling is to learn a
probability model that gives high probability to patterns that
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are typical in the training data. Since input/output pairs are
not explicitly provided during training, learning algorithms
of this sort are called unsupervised or self-supervised.

Clustering techniques can be viewed as maximum-like-
lihood parameter estimation of a mixture model, where the
density in the input space is given by a sum of unimodal
densities, each of which corresponds to a cluster. By
restricting mixture models in various ways, maximum like-
lihood estimation corresponds to standard nonprobabilistic
algorithms. For example, if the densities in the mixture are
Gaussians and the covariance matrices of the Gaussians are
set to �I, �! 0, maximum-likelihood estimation simplifies to
k-means clustering.

One important advantage of the probabilistic versions of
clustering is that the probability model explicitly contains
random variables that account for different types of noise. For
example, suppose the training data consists of pictures of
different views of a centered object, with noisy background
clutter. If the variance in light intensity for the pixels
containing background clutter is larger than the variance
for the pixels containing parts of the object,k-means clustering
will capture different configurations of the background
clutter, instead of the object. In contrast, a mixture of
Gaussians can separate the background clutter from the
object and explain the clutter as noise.

Unsupervised learning is useful for summarizing data
(e.g., learning two representative head-and-shoulder shots
from the images in Fig. 4a), filtering data (e.g., denoising the
images in Fig. 2a), estimating density models used for data
compression, and as a preprocessing step for supervised
methods (e.g., removing the shearing from images of hand-
written digits before training a classifier in a supervised
fashion).

By thinking of unsupervised learning as maximum-
likelihood estimation of a density model of the data, we can
incorporate extra knowledge about the problem. One way
to do this is to include extra latent variables (unobserved
variables) in the model. The model we present extends the
mixture of Gaussians to include “transformation” as a latent
variable. The model can be trained in a maximum-like-
lihood fashion.

In the next section, we describe computationally efficient
approaches to modeling transformations. Then, in Section 3,
we describe how large transformations in the input can be
accounted for by incorporating a discrete “transformation
variable” into a Gaussian mixture model, producing a
“transformation-invariant mixture of Gaussians” (TMG).

In Section 3.3, we describe how TMG can be fit to a training
set using the expectation maximization (EM) algorithm. The
learning algorithm uses the current appearance estimate to
automatically remove the transformations from the training
cases before adjusting the model parameters.

We demonstrate the general usefulness of learning
transformation-invariant models through a series of experi-
ments in Section 4. We show that our method is quite
insensitive to initial conditions. We alsoshow thatour method
learns faster and obtains lower errors than standard mixture
modeling,evenwhenthe latter isgivenextra trainingdata.We
conclude with some remarks about the general usefulness of
TMG for clustering and how it relates to other approaches.

Implementation details are important for these models,
since a correct implementation can lead, e.g., to a speed-up

by a factor of 8� 1013 for translation-invariant clustering of
320� 240 images. In Appendix B, we give the details
needed for fast implementations.

In the companion paper entitled “Transformation-Invar-
iant Factor Analysis Using the EM Algorithm,” we describe
how linear subspace modeling (akin to PCA) can be
performed in a way that is invariant to transformations in
the input.

2 APPROXIMATING THE TRANSFORMATION

MANIFOLD

To make data models invariant to a known type of
transformation in the input, we would like to make all
transformed versions of a particular input “equivalent.”
Suppose anN-element input undergoesa transformation with
1 degree of freedom—for example, an N-pixel gray-scale
image undergoes translation in the x-direction, with wrap-
around. Imagine what happens to the point in the
N-dimensional pixel intensity space while the object is
translated. Due to pixel mixing, a very small amount of
subpixel translation will move the point only slightly, so
translation will trace a continuous one-dimensional curve in
thespaceofpixel intensities.As illustrated inFig.1a,extensive
levels of translation will produce a highly nonlinear curve,
although the curve can be approximated by a straight line
locally. (For example, as a small white dot on a black
background is translated, it will activate and then deactivate
pixels in sequence.) If K types of continuous transformation
are applied, the manifold will beK-dimensional.

Linear approximations of the transformation manifold
have been used to significantly improve the performance of
supervised classifiers such as nearest neighbors and multi-
layer perceptrons [23]. Linear generative models (factor
analysis, mixtures of factor analysis) have also been modified
using linear approximations of the transformation manifold
to build in some degree of invariance to transformations [16].

In general, the linear approximation is accurate for small
transformations, but is inaccurate for large transformations.
In some cases, a multiresolution version of the linear
approximation can be used [26], but this approach relies on
assumptions about the size of the objects in the images.

For significant levels of transformation, the nonlinear
manifold can be better modeled using a discrete approxima-
tion. For example, the curve in Fig. 1a can be represented by a
set of points (filled discs). In this approach, a discrete set of
possible transformations is specified beforehand and para-
meters are learned so that the model is invariant to the set of
transformations. This approach has been used in the
supervised framework to design “convolutional neural net-
works” that are trained using labeled data [20]. We show how
this approach can be used for unsupervised learning.

3 TRANSFORMATION-INVARIANT CLUSTERING

In this section, we show how to incorporate the discrete
approximation described above into generative models for
clustering. For now, we assume the model parameters (e.g.,
cluster centers) are known—in the next section, we show how
to estimate them in an unsupervised fashion.
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Conditioning on the discrete variables, all of the models
presented here are jointly Gaussian, so inference is compu-
tationally efficient. Although many expressions may look
complicated, they are “straightforward” linear algebra.

See Appendix A for derivations of linear algebra for
Gaussian forms that are used throughout this paper.

We represent the discrete set of possible transformations
by a set of sparse transformation matrices, T . Each matrix T 2
T in this set is a sparse N �M matrix that operates on an
M-vector of untransformed (latent) image pixel intensities to
produce an N-vector of transformed, observed image pixel
intensities. Although the transformation matrix representation is
used to derive the inference and learning algorithms, the
transformation matrices need not be explicitly computed or stored
in practice.

The algorithms we present in this paper properly handle
transformations that are not uniquely reversible. For
example, it is often useful for the observed image to be a
window into a larger latent image. In this case, M > N and
the transformation matrices clearly do not have inverses.

Many useful types of transformation can be represented by
sparse transformation matrices. For example, rotation and
blurring can be represented by matrices that have a small
number of nonzero elements per row (e.g., at most six for
rotations). Alternatively, these transformations can be ap-
proximated by permutation matrices.

Integer-pixel translations of an image can be represented
by transformation matrices that have a single nonzero entry
in each row. If M ¼ N , each matrix is a permutation matrix.
For example, integer pixel translations with wrap-around in a
2� 3 observed image and a 2� 3 latent image are represented
by six, 6� 6 permutation matrices. Assuming the image is
read into vector form in raster-scan order, the set of
transformation matrices T is

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0BBBBBBBB@

1CCCCCCCCA
;

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0

0BBBBBBBB@

1CCCCCCCCA
;

0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0BBBBBBBB@

1CCCCCCCCA
;

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0BBBBBBBB@

1CCCCCCCCA
;

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0BBBBBBBB@

1CCCCCCCCA
;

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0BBBBBBBB@

1CCCCCCCCA
:

Generally, for an N-pixel latent image and an N-pixel
observed image with wrap-around, N transformation
matrices are needed to represent all horizontal and vertical
translations. For a 320� 240 image, N ¼ 76; 800, and there
are 76; 800, 76; 800� 76; 800 transformation matrices. As
mentioned above, these transformation matrices need not be
explicitly computed or stored in practice.

In fact, the fast Fourier transform technique described in
Appendix B can be used to make the algorithms run very fast.
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Fig. 1. (a) An N-element input vector is represented by a point (unfilled disc) in an N-dimensional space. When the input undergoes a continuous
transformation with 1 degree of freedom, a 1-dimensional manifold is traced. For transformation-invariant data modeling, we want all inputs on this
manifold to be equivalent in some sense. Locally, the curve is linear, but high levels of transformation may produce a highly nonlinear curve. We
approximate the manifold by discrete points (filled discs) that are obtained by multiplying the originalN-vector by a sparse transformation matrix T, from
a set of matrices T . (b) Parameters of a transformed Gaussian. A handcrafted model illustrates how a discrete transformation variable is incorporated
into a Gaussian model. The mean appearance vector �� and diagonal covariance matrix � for the latent image vector z are shown as raster-scanned
images. In the case of the variances, black corresponds to low variance, whereas white corresponds to high variance. Whereas � models Gaussian
noise that is added to the latent image before the transformation is applied, 	 models Gaussian noise that is added after the transformation is applied, to
obtain the observed image x. (c) Generating from a transformed Gaussian. Values of z, T, and x, sampled from the transformed Gaussian model.



Given the nontransformed latent image z and the trans-
formation T 2 T , we assume the density of the observed
image x is

pðxjT; zÞ ¼ N ðx; Tz;	Þ;

where 	 is a diagonal matrix of sensor noise variances. NðÞ
is the Gaussian density function:

Nðy; m;SÞ ¼ j2�Sjÿ1=2 exp
�
ÿ 1

2
ðyÿmÞ>Sÿ1ðyÿmÞ

�
;

where m and S are the mean and covariance of y, and “>”
indicates matrix transpose.

It is sometimes advantageous to set the diagonal matrix
of sensor noise variances to zero, 	 ¼ 0, as described below.

We assume the choice of transformation is independent
of the latent image, so

pðx; zjTÞ ¼ pðxjT; zÞpðzjTÞ ¼ N ðx; Tz;	ÞpðzÞ: ð1Þ

The density of the latent image pðzÞ can take on various
forms as described in the following sections.

We denote the probability of transformation T by para-
meter �T. Indexing the parameter � by a matrix is a notational
convenience—in practice, we associate an integer index with
each transformation matrix, so that the ‘th parameter �‘ is the
probability of the ‘th transformation matrix. The joint

distribution over the latent image z, the transformation T

and the observed image x is

pðx;T; zÞ ¼ N ðx; Tz;	ÞpðzÞ�T: ð2Þ

In the following two sections, we show how the density

of the latent image, pðzÞ, can be modeled using a Gaussian

and a mixture of Gaussians. In the companion paper

“Transformation-Invariant Factor Analysis Using the EM

Algorithm,” we show how pðzÞ can be modeled using a

factor analyzer and a mixture of factor analyzers.

3.1 The Transformed Gaussian

To model noisy transformed images of just one appearance,
we choose pðzÞ to be a Gaussian distribution on the pixel
intensities:

pðzÞ ¼ N ðz;��;�Þ; ð3Þ

where �� is the mean of the Gaussian and � is the covariance

matrix. We usually take � to be diagonal to reduce the

number of parameters that need to be estimated. From (1),

the distribution on the observed pixels and the latent pixels

given the transformation is

pðx; zjTÞ ¼ N ðx; Tz;	ÞN ðz;��;�Þ: ð4Þ
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Fig. 2. (a) Some examples from a set of 230, 140� 56 images obtained by a scanning electron microscope. The electron detectors and high-speed
electrical circuits introduce random translations and noise. (b) The means found after four runs of 50 iterations of EM in a TMG with one cluster, where in
each run the initial parameters are selected using a different random seed. The set of transformations is all 7,840 translations with wrap-around. (c) The
average of the four mean images shown in (b). (d) The straight average of the 230 training images. (e) The average of the 230 images after each image is
aligned to the first one using a greedy correlation measure.



The two parameters � and 	 represent two very

different types of noise. The noise modeled by � is added

before the transformation is applied, whereas the noise

modeled by 	 is added after the transformation is applied.

So, whereas � models pretransformation noise such as

background clutter and noisy parts of an object (e.g.,

blinking eyes), 	 models post-transformation noise such

as fixed occlusions, window reflections and sensor noise.
Fig. 1b shows hand-crafted parameters of a transformed

Gaussian that models a face appearing at different positions

in the frame. �� is shown in raster-scan format. � is diagonal

and the figure shows the diagonal elements of � in raster-

scan format, with large variances painted bright and small

variances painted dark. The variance map indicates that the

head region is modeled accurately by ��, whereas the

surrounding region is not. Fig. 1c shows one configuration

of the variables in the model, drawn from the above joint

distribution. First, z is drawn by adding independent

Gaussian noise to ��, with variances given by �. Next, a

transformation T is drawn with probability �T. Finally,

transformation T is applied to z and independent Gaussian

noise with variances 	 (0 in this case) is added to the pixels to

produce x.

3.2 The Transformed Mixture of Gaussians (TMG)

In this section, we show how a cluster index variable can be

added to the transformed Gaussian model described above,

to obtain a transformed mixture of Gaussians (TMG) [9]. In

contrast to the transformed Gaussian, which models a single

cluster, TMG models multiple clusters. The transformed

Gaussian is obtained when the number of clusters in the TMG

is set to 1.
Cluster c has mean ��c and covariance matrix �c. We

usually take �c to be diagonal to reduce the number of

parameters that need to be estimated. In the companion

article, “Transformation-Invariant Factor Analysis Using the

EM Algorithm,” we describe how a nondiagonal covariance

matrix can be modeled using a relatively small number of

parameters.
The generative process begins with a random choice for

the cluster index c and the transformation T. Next, a latent

image z is obtained by adding zero-mean Gaussian noise to

��c, with covariance �c. Transformation T is applied to z

and zero-mean Gaussian noise with covariance 	 is added

to obtain the observed image, x.
The distribution over the observed and latent images

given the cluster index and transformation is

pðx; zjT; cÞ ¼ pðxjT; zÞpðzjcÞ ¼ N ðx; Tz;	ÞN ðz;��c;�cÞ;

and the joint distribution is

pðx; z;T; cÞ ¼ pðx; zjT; cÞpðT; cÞ
¼ N ðx; Tz;	ÞN ðz;��c;�cÞ�T;c;

ð5Þ

where the parameter �T;c is the probability of cluster c and

transformation T.
The cluster-transformation likelihood pðxjT; cÞ for each

discrete combination of cluster index and transformation

matrix is computed from pðx; zjT; cÞ by integrating over z:

pðxjT; cÞ ¼
Z

z

jdzj pðx; zjT; cÞ

¼
Z

z

jdzj N ðxjTz;	ÞN ðz;��c;�cÞ;

where jdzj ¼
QM

m¼1 dzm is a differential volume of the space
IRM in which z lies. The solution to this integral and other
useful Gaussian forms are derived in Appendix A. The
solution is

pðxjT; cÞ ¼ N x; T��c;T�cT
> þ	

ÿ �
; ð6Þ

where “>” indicates matrix transpose. Each transformation T
and cluster c has a corresponding mean image T��c and
covariance matrix T�cT

> þ	. Notice that the latent noise
variances, �c are transformed in the frame of the observed
image.

The probability of the input pðxÞ is computed from

pðxÞ ¼
XC
c¼1

X
T2T
N x; T��c;T�cT

> þ	
ÿ �

�T;c:

Appendix B describes ways to compute the above quantities
efficiently.

We now describe how to perform various probabilistic
inferences in the TMG. Given the transformation and cluster
index, the remaining variables are Gaussian, so the inferences
consist of computing conditional means and covariances. See
Appendix B for details about how to compute these
expectations efficiently.

3.2.1 Inferring the Cluster Index and Transformation

Using the cluster-transformation likelihood and input prob-
ability computed as shown above, the posterior probability
over each configuration of the cluster index and transforma-
tion is computed as follows: P ðT; cjxÞ ¼ pðxjT; cÞ�T;c=pðxÞ.
The most probable cluster index and transformation can be
selected to assign the input to a cluster and normalize the
input.

From P ðT; cjxÞ, the marginal probabilities of the trans-
formations and cluster indices are easily computed:
P ðTjxÞ ¼

PC
c¼1 P ðT; cjxÞ, P ðcjxÞ ¼

P
T2T P ðT; cjxÞ. Also,

the class-conditional probability of transformation T can
be computed from P ðTjc;xÞ ¼ P ðT; cjxÞ=P ðcjxÞ.

To normalize the input, the maximum a posteriori
transformation T� ¼ argmaxTP ðTjxÞ can be selected and
the inverse transformation can be applied to the input:
x� ¼ T�ÿ1x. If T�ÿ1 does not exist (e.g., the latent image is
larger than the observed image or the transformation erases
pixels from the latent image), a pseudoinverse can be used. In
fact, as described below, the probability model provides a
more principled alternative that does not require the use of a
pseudoinverse. Also, the density of the latent image pðzÞ can
be used to regularize the input, i.e., remove some types of
noise from the input.

3.2.2 Inferring the Latent Image

The above approach to normalizing the input simply reverses
the maximum a posteriori transformation, leaving noise
preserved in the normalized image. Since the latent image z

does not contain post-transformation noise such as sensor
noise and fixed occlusions, the posterior over z can be used to
normalize the input and remove post-transformation noise.
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An efficient way to write the posterior over all hidden
variables, pðz;T; cjxÞ, is

pðz;T; cjxÞ ¼ P ðT; cjxÞpðzjT; c;xÞ: ð7Þ

P ðT; cjxÞ is computed as shown above and since x and z are
jointly Gaussian under pðx; zjT; cÞ, z is Gaussian under
pðzjT; c;xÞ. From the forms derived in Appendix A, we find
that the covariance of z given T, c, and x is

COV½zjT; c;x� ¼ �ÿ1
c þT>	ÿ1T

ÿ �ÿ1
:

The inverse covariances add, but the post-transformation
inverse covariance 	ÿ1 must be appropriately transformed
first.

The mean of z given T, c and x is

E½zjT; c;x� ¼ COV½zjT; c;x� �ÿ1
c ��c þT>	ÿ1x

ÿ �
;

which is the weighted sum of the cluster center and the
transformed input, where the weights are the inverse
covariance matrices from above. In regions where the post-
transformation noise 	 is large relative to the pretransforma-
tion noise �c, the cluster center ��c is used to “fill in” the latent
image. In regions where the post-transformation noise 	 is
small relative to the pretransformation noise �c, the observed
data x determines the latent image.

For cluster c, the mean of the latent image is computed
by averaging over the transformations:

E½zjc;x� ¼
X
T2T

P ðTjc;xÞE½zjT; c;x�;

where P ðTjc;xÞ and E½zjT; c;x� are computed as shown
above.

Since pðzjT; c;xÞ is Gaussian, the posterior over z is a
mixture ofC � jT jGaussians. If a point estimate of z is needed
(e.g., to show a picture), obvious alternatives are the mode of
the distribution and the expected value of z. Computing the
mode of a mixture of Gaussians is not trivial, but a fast
approximation is to pick the Gaussian that has the highest
posterior probability and output its mean. That is, the
transformation T� and cluster index c� that are most probable
under pðT; cjxÞ are selected and the corresponding mean
E½zjT�; c�;x� is used as the point estimate.

However, if P ðT; cjxÞ is broad (which occurs, e.g., early
on in learning when the parameters are not well-deter-
mined), the mode is not a good estimate, because it has high
variance. The expected value of z is a better estimate

E½zjx� ¼
XC
c¼1

P ðcjxÞE½zjc;x�;

which is a weighted sum of the posterior mean for each
class. This is a normalized version of the input, with post-
transformation noise removed.

3.2.3 Inferring the Pretransformation Noise

The pretransformation noise for cluster c accounts for the
difference between z and ��c. As described above, for an
input x, there is uncertainty about the value of z. However,
we can compute the mean-squared deviation of the noise,
E½diagððzÿ ��cÞðzÿ ��cÞ

>Þjc;x�. The mean-squared deviation
is computed by averaging over the mean-squared deviation
for each transformation

E½diag ðzÿ ��cÞðzÿ ��cÞ
>

� �
jc;x�

¼
X
T2T

P ðTjc;xÞE½diag ðzÿ ��cÞðzÿ ��cÞ
>

� �
jc;T;x�:

The mean-squared deviation for each transformation is
given by the squared difference between the mean of z and
��c, plus the variance of z

E½diag ðzÿ ��cÞðzÿ ��cÞ
>

� �
jc;T;x�

¼ diag ðE½zjT; c;x� ÿ ��cÞðE½zjT; c;x� ÿ ��cÞ
>

� �
þ diagðCOV½zjT; c;x�Þ:

During learning, the mean-squared deviation of the
pretransformation noise is used to re-estimate the diagonal
pretransformation noise covariance matrix, �c.

3.2.4 Inferring the Transformed Latent Image

It is very useful to be able to remove post-transformation noise
from input data, without also normalizing for transforma-
tions. For example, in video, we may want to remove a
foreground obstruction that occurs at a fixed position relative
to the camera (see Section 4.6). Removal of post-transforma-
tion noise is accomplished by averaging the expected
value of the transformed latent image for each class:
E½Tzjx� ¼

PC
c¼1 P ðcjxÞE½Tzjc;x�. P ðcjxÞ is computed as

shown above and E½Tzjc;x� ¼
P

T2T P ðTjc;xÞTE½zjT; c;x�,
where P ðTjc;xÞ and E½zjT; c;x� are computed as shown
above.

3.2.5 Inferring the Post-Transformation Noise
Post-transformation noise accounts for the difference be-
tween the transformed latent image, Tz, and the input x. For
an input x, there is uncertainty about the values of the cluster
index c, the latent image z and the transformation T. The
mean-squared deviation between the observed image and the
model’s reconstruction of the observed image without post-
transformation noise is given by averaging over the class-
conditional deviations:

E½diag ðxÿTzÞðxÿTzÞ>
� �

jx�

¼
XC
c¼1

P ðcjxÞE½diag ðxÿTzÞðxÿTzÞ>
� �

jc;x�:

The class-conditional deviation is given by averaging over
the transformations:

E½diag ðxÿTzÞðxÿTzÞ>
� �

jc;x�

¼
X
T2T

P Tjc;xÞE½diagððxÿTzÞðxÿTzÞ>
� �

jT; c;x�:

It is straightforward to show that the mean-squared
deviation for transformation T and cluster c is

E½diag ðxÿTzÞðxÿTzÞ>
� �

jT; c;x�

¼ diag ðxÿTE½zjT; c;x�ÞðxÿTE½zjT; c;x�Þ>
� �
þ diag TCOV½zjT; c;x�T>

ÿ �
:

The mean-squared deviation of the post-transformation
noise can be used to identify regions of the image that are
accounted for by post-transformation noise. Also, during
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learning, it is used to re-estimate the diagonal post-
transformation noise covariance matrix 	.

3.3 Learning Using the EM Algorithm

We now present an EM algorithm [5] for the transformed
mixture of Gaussians (TMG) that starts with randomly
initialized parameters and then performs maximum-like-
lihood parameter estimation. (Here, “likelihood” refers to
the parameters, not the hidden variables as in the previous
section.) EM for the transformed Gaussian is obtained
simply by setting the number of clusters in the TMG to 1.

The only input to the algorithm is the training
set xð1Þ; . . . ;xðJÞ, the set of possible transformations T ,
and the number of clusters C. MATLAB software is
available at http://www.psi.toronto.edu.

Experiments indicate that the algorithm does not require
careful initialization of the parameters and we usually
initialize the parameters to random values. However, as with
a standard mixture of Gaussians, it is a good idea to initialize
the parameters taking into account the scale of the data. For
example, if the pixel intensities in the training set have mean�
and variance �2, the elements of ��c can be set to � plus
Gaussian noise with variance�2, and the diagonal elements of
� and 	 can be set to 5�2, to ensure the data has a reasonable
likelihood initially. We usually set the mixing proportions
�T;c to be uniform.

After initialization, the EM algorithm proceeds by alter-
nating between an E-step and an M-step for a fixed number of
iterations (e.g., 30), or until convergence is detected auto-
matically by monitoring the probability of the data.

In the E-step, the model parameters are assumed to be
correct, and for each input image, probabilistic inference is
used to fill in the values of the unobserved variables—the
latent image z, the image cluster index c, and the transforma-
tion T. While passing through the training set, the algorithm
accumulates sufficient statistics for computing the para-
meters that maximize the joint probability of the observed
variables and the filled-in variables. In the M-step, the
sufficient statistics accumulated in the E-step are used to
compute a new set of parameters.

In fact, for each input image, the E-step fills in the
unobserved variables with a distribution over plausible
configurations (the posterior distribution), not just indivi-
dual configurations. This is an important aspect of the
EM algorithm. Initially, the parameters are a very poor
representation of the data (we initialized them randomly) so,
any single configuration of the unobserved variables (e.g., the
most probable configuration under the posterior) will very
likely be the wrong configuration.

Readers who are familiar with the EM algorithm for a
standard mixture of Gaussians should keep in mind that the
EM algorithm for the TMG is similar to a constrained,
reparameterized version of the EM algorithm for a standard
mixture of Gaussians. A notable difference is that the noise is
separated into post-transformation noise 	 and pretransfor-
mation noise �.

The hidden variables in the TMG are c, T, and z. Assuming
the distribution used for filling in the hidden variables for
training case xðjÞ is qðc;T; zjxðjÞÞ, the system of equations for
the parameter updates are obtained from

XJ
j¼1

XC
c¼1

X
T2T

Z
z

jdzj q c;T; zjxðjÞ
� � @

@�
ln p xðjÞ; z;T; c
� �

¼ 0;

where � is one of �T;c, ��c, �c, and 	, and there is one

equation for each parameter.
Each equation is solved by taking the appropriate

derivative using the formula for pðxðjÞ; z;T; cÞ given in (5)

and then numerically averaging over the hidden variables

with respect to qð�Þ. Exact EM is obtained by setting

qðc;T; zjxðjÞÞ ¼ pðc;T; zjxðjÞÞ, where pðc;T; zjxÞ is the poster-

ior distribution (7) computed using the model parameters

from the previous iteration.
Solving for �T;c (using a Lagrange multiplier to ensure

that
PC

c¼1

P
T2T �T;c ¼ 1), we obtain the parameter update

�T;c  
1

J

XJ
j¼1

P T; cjxðjÞ
� �

;

where P ðT; cjxÞ is computed as shown in Section 3.2.1. So,
the prior probability of transformation T and cluster c is set
equal to the average of the posterior probability.

Usually, there is not enough data to accurately estimate
the distribution over transformations. In this case, the
distribution over transformations can be assumed to be
uniform and the above update is replaced by

�T;c  
1

jT j
1

J

XJ
j¼1

P cjxðjÞ
� �

;

where jT j is the number of transformations, and P ðcjxÞ is
computed as shown in Section 3.2.1. Alternatively, �T;c can
be regularized using prior knowledge about which trans-
formations should have similar probabilities.

The update for the mean of cluster c is given by the average
value of the posterior mean of the latent image (the normal-
ized version of the input, with post-transformation noise
removed)

��c  
1

J

XJ
j¼1

E zjc;xðjÞ
h i

:

The posterior mean of the latent image for cluster c,

E½zjc;x�, is computed as shown in Section 3.2.2.
The update for the covariance of the pretransformation

noise for cluster c is given by the average of the mean-squared
deviation between the latent image and the cluster center

�c  
1

J

XJ
j¼1

E diag ðzÿ ��cÞðzÿ ��cÞ
>

� �
jc;xðjÞ

h i
:

The mean-squared deviation E½diagððzÿ ��cÞðzÿ ��cÞ
>Þjc;x�

is computed as shown in Section 3.2.3. In the above
expression, the value of ��c from the previous iteration can
be used or the most recently updated value of ��c can be used.

The update for the covariance of the post-transformation

noise is given by the average of the mean-squared deviation

between the input and the transformed latent image

	 1

J

XJ
j¼1

XC
c¼1

E diag ðxðjÞ ÿTzÞðxðjÞ ÿTzÞ>
� �

jc;xðjÞ
h i

:
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The mean-squared deviationE½diagððxÿTzÞðxÿTzÞ>Þjc;x�
is computed as shown in Section 3.2.5.

In order to avoid overfitting the noise variances, it is
often useful to set the diagonal elements of �c and 	 that
are below some � equal to �. For data with pixel intensities
between 0 and 1, we set � ¼ 0:0001.

4 EXPERIMENTAL RESULTS ON TMG

We report results that demonstrate the usefulness of the
transformed mixture of Gaussians (TMG) and provide
evidence that TMG overcomes deficiencies in standard
mixture modeling when the data is transformed. In
particular, we find that for data sets that contain transforma-
tions of a known type, TMG does not require careful selection
of initial training conditions, TMG is faster and produces
better density models than standard mixture modeling, TMG
is faster and produces better density models even when
standard mixture modeling is provided with more training
data, and TMG is able to identify pretransformation noise
and post-transformation noise, whereas standard mixture
models do not distinguish these noise sources. To focus on
these issues, we restrict this section to problems where the
data is a set of images and the set of transformations is all
possible translations in the image (with wrap-around).

In all cases (unless otherwise noted), before training, the
image means �� are initialized to the mean of the data plus
Gaussian noise with standard deviation 0.1 (the pixel
intensities are in the range ½0; 1Þ). The variances are initialized
to the value 5. The class probabilities are initialized to be
uniform and the transformation probabilities are constrained
to be equal and independent of the class.

4.1 Filtering Images from a Scanning Electron
Microscope

Due to high variance in electron emission rate and modula-
tion of this variance by the imaged material [14], images
produced by scanning electron microscopes can be highly
distorted. Fig. 2a shows some examples from a set of 230,
140� 56 images recorded in sequence from an electron
microscope.

To learn a normalized appearance of the sample, we
trained a transformation-invariant Gaussian (1-cluster
TMG) on the 230 images using 50 iterations of EM. This
took 10 minutes on a 1GHz PIII computer. The set of
transformations consists of all 140 � 56 translations, with
wrap-around. In fact, this set of transformations does not
perfectly match the physical process, since each microscope
image is formed by a linear combination of deformed
images. Also, the deformations may be slightly nonuniform.

Fig. 2b shows the means found by each of four runs of EM,
where the runs differ only in the seed used to randomly
initialize the parameters. To make these means easier to view,
after learning, each mean image was translated by the most
probable transformation in the training data. Clearly, the
algorithm is not very sensitive to initial conditions. The
average of the means from the four runs is shown in Fig. 2c,
and it is only slightly clearer than any one of the means.

We compare the result of TMG with two other approaches:
straight averaging and averaging after greedy alignment.
Averaging the images in a straightforward fashion, produces
the mean image shown in Fig. 2d. The image produced by
TMG (Fig. 2c) shows several details that are obfuscated in the

straight average (Fig. 2d). The number of parameters in the
TMG is equal to the number of parameters in the straight
average, plus 1. So, it is very likely that these details are
present in the true sample and are not due to overfitting.

We also compare the mean of TMG with the average image
obtained after each image in the set is aligned to the first
image by maximizing correlation. Fig. 2e shows the average
image obtained in this fashion. Although this image is clearer
than the straight average, TMG produces a mean that is
significantly sharper. We tried several versions of the greedy
alignment method, including methods based on Euclidean
distance, mean-normalized correlation, variance-normalized
correlation, and combined mean and variance-normalized
correlation. All greedy methods produced images similar to
the one shown in Fig. 2e.

4.2 Quantitative Comparison of TMG versus
Mixtures of Gaussians

Often, interpreting the model parameters is not too important
but we want to train density models for anomaly detection
and pattern classification. If P ðiÞ is the prior probability of
class i and pðxjiÞ is a density model of the input x for class i, a
new input can be classified by picking the most probable class
in the posterior, P ðijxÞ ¼

ÿ
P ðiÞpðxjiÞ

�
=
ÿP

i0 P ði0Þpðxji0Þ
�
. In

this case, our main interest is in obtaining good density
models.

Here, we compare the classification error rate obtained
using a single transformed Gaussian for each class with the
error rate obtained using a standard mixture model for each
class. To address the question of whether increasing the
number of Gaussians in a standard mixture model can make
it competitive with a single transformed Gaussian, we
examine mixture models with varying numbers of Gaus-
sians. Generally, more training data leads to better density
models, so we plot the error rates as a function of the number
of training cases.

Our goal here is to determine whether including transfor-
mation as a hidden variable performs better than using a large
mixture model. So, we use synthetic data, where, within each
class, the only sources of variability are translations and
noise. It turns out that the standard mixture model requires a
large number of training cases to be competitive (in error rate)
with the transformed Gaussian. This is another reason we use
synthetic data, since we are able to generate as many training
examples as needed.

Fig. 3a shows some examples of the data. Within each of
the four classes, the pattern appears at one of 25 positions.
Separately from the training data, we generated 1,000 test
cases.

For training set sizes ranging from four cases (one from
each class) to 2,000 cases, we generated training data, trained
each of the four transformed Gaussian models using
50 iterations of EM, and measured the test error rate as a
function of the number of training cases. For small training
sets, the selection of a training set introduces variability in the
error rate, so we repeated the above procedure five times and
computed the average of the five curves.

The above training and testing procedure was repeated for
Gaussian mixture models with 1, 2, 5, 10, 20, 30, and
40 Gaussians. Since each pattern can occur in one of
25 positions, a 25-Gaussian mixture model can obtain the
minimum Bayes error rate. We include results on models
with up to 40 Gaussians to allow for local minima.
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Fig. 3b shows the average error rate as a function of the

number of training cases for the transformed Gaussian model

and the mixture models of various sizes. For a given amount

of training data, the transformed Gaussian clearly performs

better than all sizes of mixture model. The mixture model

classifiers require large amounts of data to properly

determine which parts of the image are structure and which

parts of the image are noise. In contrast, the transformed

Gaussian is able to align the patterns and determine the

highly noisy regions of the image.

4.3 Why Not Train a Mixture of Gaussians on
Transformed Data?

When training data is limited, one way to obtain a density

model that allows for transformations in the input is to

apply transformations to each of the original training cases,

producing a new, extended training set. A standard density

model (e.g., a mixture of Gaussians) can then be estimated
from the extended training set.

For 9� 9 images like the ones shown in Fig. 3a, each
original training case is translated to each of 81 positions, with
wrap-around, producing a new training set that is 81 times
larger than the original training set. If wrap-around is not
used, care must be taken to appropriately pad portions of the
image that are not accounted for by the original image.

While transforming the training data is an appealingly
simple approach, it suffers from three significant deficiencies.
First, the techniques described in Appendix B can be used to
make the EM algorithm in the TMG run faster than standard
mixture modeling on an extended training set. Second, post-
transformation noise (noise that is in a fixed position relative
to the camera) gets transformed along with the object when
creating the extended training set. So, post-transformation
noise cannot be distinguished from pretransformation noise
(whose position is transformed with the object), worsening
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Fig. 3. (a) Examples of 9� 9 images from each of four classes of synthetic data. (b) Average error rate versus number of training cases when Bayes
rule is used to classify patterns using class-conditional density models, including TMG with one cluster (labeled “TMG”), and standard Gaussian
mixture models (labeled “MDG”) with 1, 2, 5, 10, 20, 30, and 40 Gaussians. (c) Average error rate versus time (log scale) required to train the density
models.



the quality of the density model (see Section 4.6). Third,
training a large mixture model on the extended data set will
produce cluster centers of the same pattern at different
positions. Higher-level processing (by human or by machine)
is much easier if the centers are grouped into equivalence
classes. Whereas TMG does this automatically, standard
mixture modeling on an extended training set does not.

We demonstrate the first deficiency of standard mixture
modeling from above, using the same experimental set-up as
in the previous section. In fact, we allow the standard mixture
model to “cheat”: Instead of simply translating each original
training case to 81 different positions, we extend the training
set to 81 times its original size by generating new images. This
procedure makes learning easier for the standard mixture
model, because instead of translating the noise along with the
pattern 81 times, new noise is generated, so the model can
more easily distinguish noisy regions from patterned regions.

As above, we try various sizes of training set and
evaluate the average classification error rate of the different
models. Fig. 4c shows the average error rate as a function of
the time needed to train the four density models used for
classification. For the same error rate, TMG is 2 to 3 orders of
magnitude faster than standard mixture modeling.

4.4 Clustering Images of Faces in Severe Noise

Fig. 4a shows images of size 88� 56 pixels from a 200-frame
video that cuts back and forth between each of two people

walking across a cluttered background. We report results
for a 4-cluster TMG, where the set of transformations is all
4,928 possible translations with wrap-around.

After 20 iterations of EM (which took five minutes on a
1 GHz PIII machine running MATLAB) the cluster means
clearly show the two subjects and suppress the background
clutter, as shown in Fig. 4b. Each mean image is automatically
centered for easy viewing, by translating the image by the
most probable transformation across the data. Two versions
of each person are found: for one person, two slightly different
lighting conditions are found; for the other person, a version
with the jacket and a version without the jacket are found.

Fig. 4c shows the means after 20 iterations of EM in a
standard mixture of four Gaussians. These means are
significantly blurrier than the means found by the TMG.

Even when the images are obfuscated by severe snow,
TMG is able to learn means that are quite clear. Figs. 4d, 4e,
and 4f show the results for the exact same experimental
setup as above, except for a modification of the training
data, as shown in Fig. 4d.

4.5 Experimental Evidence of Robustness

In the above problem, clustering is made easier by the fact that
the two patterns (faces) look quite different. In this section, we
study the problem of clustering different facial poses of the
same person, and examine the robustness of the algorithm to
initial conditions and the number of clusters. Fig. 5a shows
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Fig. 4. (a) Images of size 88� 56 pixels from a 200-frame video that cuts back and forth between each of two people walking across a cluttered
background. (b) Cluster means after 20 iterations of EM in a 4-cluster TMG where the set of transformations is all 4,928 translations with wrap-around.
(Execution time: five minutes on a 1 GHz PIII.) Each mean image is automatically centered for easy viewing, by translating the image by the most
probable transformation across the data. (c) Cluster means after 20 iterations of EM in a standard mixture of four Gaussians. (d) The video sequence was
modified to include artificial snow falling in front of the scene. (e) Cluster means found by TMG. (f) Cluster means found by a standard mixture of
Gaussians.



examples from an unordered training set of 400 images
containing the same person, but with different poses. Here,
there is more similarity in appearance between the different
classes, so separating the classes is more difficult.

To show the EM algorithm in the TMG model is not too
sensitive to initial conditions, we report results on clustering
the images using eight different sizes of TMG and, in each
case, four different random initializations of the model
parameters.

In all training runs, we used 30 iterations of EM. The pixel
intensities are in the range ½0; 1Þ, so to ensure that initially the
data has reasonable likelihood, we initialized all noise
variances to 5 (anything over 1 would have produced similar
results). We initialized the means of the latent image to the
mean of the training data, plus Gaussian noise with standard
deviation 0.1. Initializing the means in this way ensures they
are in the vicinity of the data. The class probabilities were
initialized to uniform values and the transformation prob-
abilities were set to uniform values and not learned.

Fig. 5b shows the means after learning. They have been
translated by the most probable transformation in the data,
which tends to center the faces, making them easier to
examine. We observe that TMG finds very similar solutions
for the same size of model. We even observe the solutions are
similar from one model size to the next. Comparing one
model size to the next, it is possible to see that particular
blurry cluster centers are refined into two more detailed
cluster centers.

For this data, we see that there appears to be two types of
solution—one that accounts for the bright rectangle-shaped
blob and one that does not. In fact, by examining the
learned mixing proportions, it is possible to detect that the
prototype with the rectangle is unlikely since its mixing
proportion is always significantly lower than the mixing
proportions for the other prototypes.

4.6 Learning to Separate Pretransformation Noise
from Post-Transformation Noise

We give results that demonstrate the importance of having
two very different noise models for pretransformation noise
and post-transformation noise.

Fig. 6a shows a training set of 30, 88� 56 images. The
data contain an artificial obstruction at a fixed position
relative to the camera, placed in front of images from a
video of a person walking across a cluttered background.

After training a TMG, probabilistic inference can be used
to remove the fixed obstruction from the input images, as
described in Section 3.2.4. For each training case shown in
Fig. 6a, E½Tzjx� is computed and shown in Fig. 6b. The
obstruction has been successfully removed in most cases.

The reason that TMG can remove the fixed obstruction
while preserving the background clutter is that TMG
accounts for pretransformation noise and post-transforma-
tion noise separately. To clarify this issue, we examine the
model parameters found by straight averaging, TMG with
one noise model, and the TMG model used to obtain the
results in Fig. 6b.

Fig. 6c shows the pixel means and variances of the
training images as intensity maps. Obviously, the mean of
the data includes the obstruction since the mean of the data
does not account for translations.

Fig. 6d shows the mean and variance map found by a
1-cluster TMG that does not distinguish between pre- and
post-transformation noise. In this TMG, we set 	 ¼ 0, which

forces the model to use the pretransformation noise model �
to model both pre and post-transformation noise. Since the
TMG cannot account for the obstruction as post-transforma-
tion noise, the model learns the appearance of the obstruction.

For this data, pretransformation noise is needed to model
the background noise, since the allowed locations of
background noise translate with the position of the head.
Post-transformation noise is needed to account for the fixed
obstruction since the position of the obstruction is fixed
relative to the frame.

Fig. 6e shows the mean ��, pretransformation variance �
and post-transformation variance 	 after 30 iterations of
EM in a 1-cluster TMG, where 	 is not forced to be 0. The
post-transformation noise accounts for the obstruction,
allowing the mean to properly model the details of the face.

5 SUMMARY

In many learning applications, we know beforehand that the
data includes transformations of an easily specified nature. If
a density model is learned directly from the data, the model
must account for both the transformations in the data and the
more interesting and potentially useful structure.

We introduce a way to make standard density models for
clustering invariant to local and global transformations in the
input. Global transformations are generally nonlinear, so we
approximate the manifold of transformed data using a
discrete set of points. The resulting latent variable model
(the transformed mixture of Gaussians—TMG) contains
continuous and discrete variables. However, given the
discrete variables, the distribution over the continuous
variables is jointly Gaussian, so inference and estimation
(via the expectation maximization algorithm) can be per-
formed efficiently.

The algorithm is able to jointly normalize input data for
transformations (e.g., translation, shearing, rotation, and
scale in images) and cluster the normalized data.

Although discretizing the manifold of transformed data is
only an approximation, the approximation avoids the
problem of how to perform inference and learning with
continuous variables that combine nonlinearly. Approximate
inference of continuous variables can be approached in
different ways, including Monte Carlo techniques (c.f. [18])
and variational techniques (c.f. [7]). Tenenbaum and Freeman
[24] examine models, called “bilinear models,” where each
hidden variable is a linear function of the data, given the other
hidden variables. The authors derive an inference algorithm
that iterates between the hidden variables. However, global
transformations are generally very nonlinear, so the above
approximations tend to be either slow or too inexact.
Although discretizing the latent variable space seems crude
in light of these more sophisticated approximations, the
resulting model is simple and inference is surprisingly fast.

In contrast to methods that explain how one observed
image differs from another observed image (c.f. [3]), our
algorithms explain how the observed image differs from a
model of the normalized image. This allows our techniques
to properly warp two images to the model, even if the two
images are warped versions of nonoverlapping subimages
of the model. For example, one observed image could be the
left half of a smile, while another observed image could be
the right half of a smile. Even though these two images are
not warped versions of each other, our algorithms can warp
them to the latent density model of the normalize image.
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Often, data is best described as the result of multiple,
interacting causes,asopposedtoasingle,globalcause, suchas
translation. The most principled way to model multiple
causes is to derive approximate inference and learning
algorithms in complex probability models [17], [15], [4], [13],
[8], [1], [6], [2], [27]. While this approach holds potential for
solving complex problems, in many cases, what is needed is
an efficient way to remove transformations of a known type
from the data. This is what TMG does.

We report extensive experimental results and find that
for data sets that contain transformations of a known type,

TMG does not require careful selection of initial training
conditions; TMG is faster and produces better density
models than standard mixture modeling; TMG is faster and
produces better density models even when standard
mixture modeling is provided with more training data;
and TMG is able to identify pretransformation noise and
post-transformation noise, whereas standard mixture mod-
els do not distinguish these noise sources.

The algorithms can be applied in a variety of domains
(e.g., images, audio signals), but we illustrate the algorithms
on a variety of difficult tasks in computer vision. For
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Fig. 5. (a) Examples of 88� 56 images from a 400-frame video sequence, showing one person with different poses in front of a cluttered background.
(b) To show that the TMG is quite insensitive to initialization and behaves well as the number of clusters is increased, we trained 32 TMG models on
the set of images. Each group of pictures shows the means found after 30 iterations of EM. The number of clusters in the TMG models range from
C ¼ 1 to C ¼ 8 and for each size of model, the parameters were randomly initialized using four different seeds. Each mean image is automatically
centered for easy viewing, by translating the image by the most probable transformation across the data.



example, the transformation-invariant mixture of Gaussians
is able to learn different facial poses from a set of outdoor
images showing a person walking across a cluttered
background with varying lighting conditions. We focus on
translational transformations in this paper, but other types
of transformation can be used, such as rotation, scale, out-
of-plane rotation, and warping in images.

By measuring the data on an appropriate coordinate
system, many types of transformation can be represented as
shifts in the coordinate system. In these cases, the FFT can be
used to tremendously speed up inference and estimation. For
example, our current 1GHZ PIII MATLAB implementation of
TMGcanperformtheEstepandMstepfor twoclustersandall

possible integer-pixel x-y translations in a 320� 240 image, at
15 frames per second.

In the case of time-series data, the transformations at the
neighboring time steps influence which transformations are
likely in the current time step. In [19], [12], we show how the
techniques presented here can be extended to time series.

The number of computations needed for exact inference
scales exponentially with the dimensionality of the
transformation manifold. If there are n1 transformations
of the first type, n2 transformations of the second type, etc.,
exact inference and learning takes order

Q
i ni time. In [11],

we show how a variational technique can be used to
decouple the inference of each type of transformation,
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Fig. 6. (a) An artificial obstruction at a fixed position relative to the camera is placed in front of 30 images from a video of a person walking across a
cluttered background. The region containing background noise shifts relative to the camera (depending on the position of the head), whereas the
obstruction occurs at at fixed position relative to the camera. (b) After the parameters of the 1-cluster TMG are estimated, probabilistic inference is
used to compute E½Tzjx� for each input x, as described in Section 3.2.4. The resulting images have post-transformation noise removed (compare
with the images in (a)). (c) The mean image (first picture) and variance map (second picture) estimated directly from the training set. White indicates
high variance, black indicates a variance of 0. (d) The mean �� (first picture) and pretransformation noise variance � (second picture) after
30 iterations of EM in a 1-cluster TMG, where we fix 	 ¼ 0. � models both the background clutter and the fixed distraction. (e) The mean �� (first
picture), pretransformation noise variance � (second picture) and post-transformation noise variance 	 (third picture) after 30 iterations of EM in a
1-cluster TMG. � models the background clutter, whereas 	 models the fixed distraction.



producing an inference and learning method that takes
order

P
i niniþ1 time.

MATLAB scripts for transformation-invariant clustering
and component analysis are available on our Web page at
http://www.psi.toronto.edu.

In the companion article, “Transformation-Invariant
Factor Analysis Using the EM Algorithm,” we show how
factor analysis (generative modeling akin to PCA) can be
performed in a way that is invariant to transformations in the
input.

We believe the algorithms presented here will prove to
be generally useful for applications that require transforma-
tion-invariant clustering.

APPENDIX A

LINEAR ALGEBRA FOR GAUSSIAN FORMS

The following formulas are used repeatedly throughout
the paper. Suppose the distribution over two jointly
Gaussian vector variables x and z is given in the form,
pðx; zÞ ¼ pðxjzÞpðzÞ, where

pðxjzÞ ¼ N ðx; Gz;	Þ; pðzÞ ¼ N ðz;��;�Þ: ð8Þ

�� and � are the mean and covariance of z. G is a matrix that
determines the mean of x given z. 	 is the covariance of x
given z. Since x and z are jointly Gaussian, all conditional
and marginal distributions are Gaussian.

A.1 The Conditional pðzjxÞ
Since pðzjxÞ ¼ pðx; zÞ=pðxÞ and pðxÞ is not a function of z,
the mean and covariance of the conditional distribution
pðzjxÞ can be determined by rewriting the exponent of
pðx; zÞ as a completed square in z. Leaving out a factor of
ÿ1=2, the exponent is

ðxÿGzÞ>	ÿ1ðxÿGzÞ þ ðzÿ ��Þ>�ÿ1ðzÿ ��Þ
¼ x>	ÿ1xÿ 2x>	ÿ1Gzþ z>G>	ÿ1Gz

þ z>�ÿ1zÿ 2��>�ÿ1zþ ��>�ÿ1��

¼ x>	ÿ1xþ z> G>	ÿ1Gþ�ÿ1
ÿ �

zÿ 2 x>	ÿ1Gþ ��>�ÿ1
ÿ �

zþ ��>�ÿ1��:

ð9Þ

Defining the symmetric matrix and vector,


 ¼ G>	ÿ1Gþ�ÿ1
ÿ �ÿ1

; �� ¼ 
 G>	ÿ1xþ�ÿ1��
ÿ �

;

ð10Þ

and substituting these into the exponent, we can rewrite
the exponent as the following completed square in
z: x>	ÿ1xþ ðzÿ ��Þ>
ÿ1ðzÿ ��Þ ÿ ��>
ÿ1�� þ ��>�ÿ1��. From
this expression, we see that �� and 
 are the mean and
covariance of z given x. From (10), the mean of z given x is a
weighted sum of the mean of z under the “prior” pðzÞ and the
mean of z as given by the “likelihood” pðxjzÞ.

A.2 The Marginal pðxÞ
The mean and covariance of the marginal for x are most
readily determined by simplifying expectations of x. From

pðxjzÞ given above, x ¼ Gzþ ��, where �� is a Gaussian

random variable with mean zero and covariance 	, and z is
a Gaussian random variable with mean �� and covariance �.

Using E½�� to denote an expectation, the mean of x is

E½x� ¼ E½Gzþ ��� ¼ GE½z� þ E½��� ¼ G��. The covariance of
x, E½ðxÿG��ÞðxÿG��Þ>�, simplifies to

GE ðzÿ ��Þðzÿ ��Þ>
h i

G> þ 2E ��ðzÿ ��Þ>
h i

G> þ E ����>
� �

:

Since z and �� are independent,

E ��ðzÿ ��Þ>
h i

¼ E½���E ðzÿ ��Þ>
h i

¼ 0:

Also, E½ðzÿ ��Þðzÿ ��Þ>� ¼ � and E½����>� ¼ 	, so the covar-
iance of x is G�G> þ	.

APPENDIX B

DETAILS FOR FAST IMPLEMENTATIONS

In this appendix, we describe details needed for efficient
implementations of the inference and learning algorithms
for TMG. To reduce the number of variables that occur in
statements about complexity, we assume that M is of order
N , that is, that the size of the latent variable z is of the same
order as the size of the observed input x. We also assume
that the number of clusters is 1, but the techniques can be
applied when there is more than one cluster, since
conditioning on the cluster index reduces to the same
computations as when there is only one cluster.

If the transformation matrices are dense, the probabilistic
inferences in Section 3 take order jT jN3 time. For example,
computing pðxjTÞ for a single T, requires computing the
determinant of T�T> þ	. Since this is an N �N matrix,
computing its determinant takes order N3 time.

B.1 TMG in Order jT jN Time Using Sparse T

Many types of transformation (e.g., translations, rotations,
shearing, and moderate scaling) can be represented using
sparse transformation matrices. For example, integer-pixel
translations are represented using matrices that have a single
nonzero element (1) in each row. Integer-pixel translations
with wrap-around are represented using permutation ma-
trices. The inferences needed for TMG make use of computa-
tions such as multiplying transformation matrices with
diagonal covariance matrices and taking inverses of such
products, for each transformation. Using sparse matrix
algebra, inference can be performed in order jT jN time.

In TMG (see Section 3), most operations are spent
computing pðxjT; cÞ for every T, the posterior mean of the
latent image E½zjx�, the mean-squared pretransformation
noise E½diagððzÿ ��Þðzÿ ��Þ>Þjx�, and the mean-squared post-
transformation noise E½diagððxÿTzÞðxÿTzÞ>Þjx�.

Computing pðxjTÞ requires computing the determinant
of T�T> þ	 and a Mahalanobis distance of the form
ðxÿT��Þ>ðT�T> þ	Þÿ1ðxÿT��Þ. Since T is sparse and �
is diagonal, for each transformation, T�T> þ	, its
determinant, its inverse, and the above Mahalanobis
distance can be computed in order N time. (In fact, if T
has only one nonzero entry in each row such as for integer-
pixel translations, T�T> þ	 is diagonal.) So, computing
pðxjTÞ for all T takes order jT jN time.

Computing E½zjx� requires computing the covariance of

z under pðzjT;xÞ for all T. The covariance is ð�ÿ1 þ
T>	ÿ1TÞÿ1 and since � and 	 are diagonal and T is sparse,

this covariance matrix can be computed in order N time.

E½zjx� is given by averaging the product of this sparse
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covariance matrix with ð�ÿ1��þT>	ÿ1xÞ, over all T.

Computing T>	ÿ1x and �ÿ1�� takes order N time and

multiplying by the sparse covariance matrix also takes order

N time. So, computing E½zjx� takes order jT jN time.
As shown in Sections 3.2.3 and 3.2.5, E½diagððzÿ ��Þðzÿ

��Þ>Þjx� and E½diagððxÿTzÞðxÿTzÞ>Þjx� are obtained by

taking element-wise sums and products of vectors (note that

for vectors u and v, diagðuv>Þ is just the element-wise

product of u and v), by computing the diagonal of the

posterior covariance matrix COV½zjT;x�, by taking products

of T with vectors and sparse matrices, and by summing

over T. Any one term in the sum takes order N time because

the matrices are sparse and the sum takes order jT j time. So,

the mean-squared deviations can be computed in order

jT jN time.

B.2 TMG in Order jT j lnN Time Using the FFT

Often, the input x is measured on a discrete coordinate
system where the set of transformations is all possible
discrete shifts, with wrap-around. In this case, probabilistic
inference and learning in the TMG can be significantly
sped up by using the fast Fourier transform (FFT), if we
assume that the post-transformation noise is constant, i.e.,
	 ¼  I. For example, our current 1GHz PIII MATLAB
implementation of TMG can perform the E step and M step
for two clusters and all possible integer-pixel x-y transla-
tions in a 320� 240 image, at 15 frames per second.

For images measured on a 2D rectangular grid, an
x-y translation corresponds to a shift in the coordinate
system. For images measured on a 2D radial grid, a scale
and a rotation corresponds to a radial shift and an angular
shift in the coordinate system [11]. To account for
translations, scales, and rotations, a computationally effi-
cient, but approximate, variational technique can be used to
decouple inference into two sets of 2D inferences [11].

Three observations lead to jT j lnN time complexity.
First, when 	 ¼  I, pre and post-transformation noise are
not distinguishable, so T will drop from the covariance
matrices in the expressions for inference. Also, the posterior
covariance matrices are diagonal, since integer-pixel trans-
lations preserve the independence of pixel noise. Second,
for integer-pixel shifts, the posterior probabilities of the
transformations are given by convolving the input image
with the mean of the latent image and the expectations of
the latent image and squared noise are given by convolving
the posterior probabilities with shifted versions of the input.
Third, the FFT can be used to compute a convolution in
order jT j lnN time (a well-known fact).

We now describe techniques for computing the follow-
ing inferences for TMG (see Section 3) in jT j lnN time:
P ðxjTÞ for all T, E½zjx�, E½diagððzÿ ��Þðzÿ ��Þ>Þjx� and
E½diagððxÿTzÞðxÿTzÞ>Þjx�. These are the inferences that
are needed to perform the M step of the EM algorithm.

First, we switch to a notation that simplifies the expression
for atransformation that isashift in the inputcoordinates.Let i
beanintegervector in thediscretecoordinatesystemonwhich
the data is measured. For example, if x contains the pixel
intensities in a two-dimensional n� n image (N ¼ n2),
i 2 fði1; i2Þ : i1 ¼ 1; . . . ; n; i2 ¼ 1; . . . ; ng. Let xðiÞ be the ele-
ment in the observed image corresponding to the pixel at
coordinate i and let zðiÞ and �ðiÞ be defined the same way, for

the latent image and the cluster mean. Let �ðiÞ be the element
on the diagonal of� corresponding to the pixel at coordinate i.

Using this notation, a transformation corresponding to a
shift can be represented by an integer vector T in the same
discrete coordinate system. So, the observed value xðiÞ, is
determined by the latent value zðiþTÞ, where “þ” is taken
modulus the boundary of the coordinate system. For an n� n
image (jT j ¼ n2), iþT ¼ ði1 þ T1 mod n; i2 þ T2 mod nÞ.

The transformation likelihood from Section 3 can be
written

pðxjTÞ¼
Y

i

1

ð2�ð�ðiþTÞ þ  ÞÞ1=2
exp ÿðxðiÞ ÿ �ðiþTÞÞ2

2ð�ðiþTÞ þ  Þ

 !
:

Taking the logarithm and expanding the square, we obtain

ln pðxjTÞ ¼ ÿ 1

2

X
i

lnð2�ð�ðiþTÞ þ  ÞÞ

ÿ 1

2

X
i

xðiÞ2
�

1

ð�ðiþTÞ þ  Þ

�
þ
X

i

xðiÞ
�

�ðiþTÞ
�ðiþTÞ þ  

�
ÿ 1

2

X
i

�
�ðiþTÞ2

ð�ðiþTÞ þ  Þ

�
:

The first and last sums in the above expression do not
depend on T, so they can be computed in order N time. The
second and third sums in the above expression have the
form of a convolution

fðTÞ ¼
X

i

gðiÞhðiþTÞ:

Computing the convolution directly for all T takes order
jT jN time, just like in the previous section. However, the
FFT can be used to compute the convolution in order
jT j lnN time, as follows.

The two-dimensional FFTs Gð!!Þ and Hð!!Þ of g and h are
computed in order jT j lnN time. Then, the FFT F ð!!Þ of f is
computed in order jT j time by taking the element-wise
product, F ð!!Þ ¼ Gð!!Þ�Hð!!Þ, where “�” denotes complex
conjugate. Note that the complex conjugate is needed, since T
is added in the argument, not subtracted. Finally, fðTÞ for all T
is obtained by computing the inverse FFT of F ð!!Þ in order
jT j lnN time.

Since 	 ¼  I and T>T ¼ I, the expected value of the
latent image given T derived in Section simplifies to

E½zjT;x� ¼ �ÿ1 þ	ÿ1
ÿ �ÿ1

�ÿ1��þ	ÿ1T>x
ÿ �

:

So, the expected value of the latent image simplifies to

E½zjx� ¼
X
T2T

P ðTjxÞE½zjT;x�

¼ �ÿ1 þ	ÿ1
ÿ �ÿ1

�
�ÿ1��þ	ÿ1

X
T2T

P ðTjxÞT>x
�
:

Using the notation described above, we have

E½zðiÞjx� ¼

�ðiÞÿ1 þ  ÿ1
� �ÿ1�

�ðiÞÿ1�ðiÞ þ  ÿ1
X

T

P ðTjxÞxðiÿTÞ
�
:

The term containing the sum over T dominates the
computation of E½zðiÞjx� for all i. However, this term can

FREY AND JOJIC: TRANSFORMATION-INVARIANT CLUSTERING USING THE EM ALGORITHM 15



be computed for all i in order jT j lnN time using FFTs as

described above (except, the complex conjugate is not taken

in this case, since T is subtracted from i).
Combining expressions in Section 3.1 and using 	 ¼  I

and T>T, the expected value of the pretransformation noise

can be written

E diag ðzÿ ��Þðzÿ ��Þ>
� �

jx
h i
¼
X
T2T

P ðTjxÞdiagððE½zjT;x� ÿ ��Þ

E½zjT;x� ÿ ��Þ>
� �

þ �ÿ1 þ	ÿ1
ÿ �ÿ1

:

Substituting the above expression for E½zjT;x�, simplifying,

and using the new notation, we have

E ðzðiÞ ÿ �ðiÞÞ2jx
h i

¼ �ðiÞÿ1 þ  ÿ1
� �ÿ1

�ðiÞÿ1 þ  ÿ1
� �ÿ1

 ÿ2
X

T

P ðTjxÞ xðiÿTÞ ÿ �ðiÞð Þ2þ1

 !
:

The computationally intensive term is the sum over T,

which can be expanded into convolutions and computed in

order jT j lnN time.
By following a similar derivation as above, the computa-

tion of E½diagððxÿTzÞðxÿTzÞ>Þjx� can be performed in

jT j lnN time.
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