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Abstract

Computer vision is currently one of the most exciting areas of artificial intelligence research,
largely because it has recently become possible to record, store and process large amounts of
visual data. Impressive results have been obtained by applying discriminative techniques in an
ad hoc fashion to large amounts of data, e.g., using support vector machines for detecting face
patterns in images. However, it is even more exciting that researchers may be on the verge
of introducing computer vision systems that perform realistic scene analysis, decomposing a
video into its constituent objects, lighting conditions, motion patterns, and so on. In our view,
two of the main challenges in computer vision are finding efficient models of the physics of vi-
sual scenes and finding efficient algorithms for inference and learning in these models. Inthis
paper, we advocate the use of graph-based generative probability models and their associated
inference and learning algorithms for computer vision and scene analysis. We review exact
techniques and various approximate, computationally efficient techniques, including iterative
conditional modes, the expectation maximization algorithm, the mean field method, variational
techniques, structured variational techniques, Gibbs sampling, the sum-product algorithm and
“loopy” belief propagation. We describe how each technique can be applied to an illustrative
example of inference and learning in models of multiple, occluding objects, and compare the

performances of the techniques.



1 Introduction

Aristotle conjectured that natural vision is an active process, whereby the eyes are connected to invisible,
touch-sensitive tendrils that reach out and sense the visua scene [22]. Even though Aristotle did not
emphasize the importance of the brain as a computational tool for interpreting the scene, his conjecture
indicates an early appreciation of the importance of exploring and understanding the visual scene, so that
one can eliminate uncertainties about the environment and effectively act upon it. In the 18th century, a
computational approach to sorting out plausible explanations of data was pioneered by Thomas Bayes and
Pierre-Simon Laplace. They showed how probability models of data could be updated to account for new
observations, using Bayes rule. At the time, new techniques for efficiently computing sums and integrals
(in particular, calculus) vastly sped up computations, but the fact that computations were carried out by
hand restricted the size of the models under consideration. The research community would have to wait
two more centuries before applying Bayes rule to problemsin vision.

Using the eye-ball of an ox, René Descartes demonstrated in the 17th century that the eye contains
a 2-dimensional retinal image of the 3-dimensional scene. By the 19th century, the physics of light and
color insofar as vision is concerned were well understood. This led 19th century scientists to question
how and where visual scene analysis takes place in the human nervous system. In the mid-19th century,
there was a controversy about whether vision was “ nativist” — a consequence of the lower nervous system
and the optics of the eye — or “empiricist” — a consequence of learned models created from physical and
visual experiences [7]. Hermann von Helmholtz was one of the first researchers to define and support the
empiricist view. By 1867, Helmholtz had established athesis that vision involves psychological inferences
in the higher nervous system, based on learned models gained from experience. He conjectured that the
brain learns models of how scenes are put together to explain the visual input (what we now call generative
models) and that vision is inverse inference in these models. He went so far as to conjecture that an
individual carries out physical experiments, such as moving an object in front of his eyes, in order to build
a better visual model of the object and its interactions with other objects in the environment.

The introduction of computersin the 20th century enabled researchers to formul ate realistic models of
natural and artificial vision, and perform experiments to evaluate these models. In particular, the use of
Bayes rule and probabilistic inference in probability models of vision became computationally feasible.
The availability of computational power motivated researchers to tackle the problem of how to specify
complex, hierarchical probability models and perform probabilistic inference and learning in these models.

In practice there are two general types of probability model: generative probability models and dis-



criminative probability models. A discriminative model provides away to compute the distribution over a
“target”, such as aclass label, given the input: P(class|image). A generative probability model accounts
for the entire input image, possibly with the use of additional hidden variables that help explain the input.
For example, themodel P(image, foreground, transparency, background, lighting, orientation) may
explain the input image as a composition of a foreground image and a background image using a trans-
parency map, where the foreground image depends on the orientation and lighting of the foreground object
and thetransparency depends only on the orientation of the foreground object. Discriminative modelswork
well in situations where the input can be preprocessed to produce data that fits the statistical assumptions
used to train the model. Generative models are potentially much more useful than discriminative models.
By accounting for all input data, a generative model can help solve one problem (e.g., face detection) by
solving another, related problem (e.g., identifying aforeground obstruction that can explain why only part
of afaceisvisible).

A generative model is a probability model, for which the observed data (e.g., a video sequence) is an
event in the sample space. Thismeansthat if we randomly sample from the probability model, we generate
asample of possible observed data. In contrast to generative models, discriminative models do not provide
away of generating the training data. A generative model is a good fit to the training data, if the training
data has high probability. However, our goal is not to find a generative model that isthe best fit to the data.
(Thisis easy to do by defining the model such that the probability of the datais 1.) Instead, our goal isto
find a generative model that fits the data well and is consistent with our prior knowledge. For example,
in amodel of avideo sequence, we might construct a set of state variables for each time step and require
that the state at time ¢t + 1 be independent of the state at time ¢ — 1, given the state at time ¢ (the Markov
property).

Thispaper hastwo purposes. Firstly, to advocatetheuseof graph-based probability model sfor computer
vision; and secondly, to describe and compare the latest inference and learning algorithms. Throughout
the tutorial paper, we use an illustrative example of amodel that learns to describe how local patchesin an
image can be explained as a composition of foreground and background patches. We give experimental

resultsin Scn. 5.

2 Graphical Models: A Formalismfor Reasoning Under Uncertainty

Graphical models describe the topology (in the sense of dependencies) of the components of a complex

probability model, clarify assumptions about the representation, and |ead to a gorithmsthat make use of the
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topology to increase speed and accuracy. When constructing a complex probability model, we are faced
with the following challenges. Ensuring that the model reflects our prior knowledge; Deriving efficient
algorithmsfor inference and learning; Translating the model to adifferent form; Communicating the model
to other researchers and users. Graphical models (graphical representations of probability models) offer a
way to overcome these challenges in a wide variety of situations. After briefly addressing each of these
issues, wereview 3 kindsof graphical model: Bayesian networks, Markov random fields, and factor graphs.
Here, we briefly review graphical models. For a more extensive treatment, see [30, 35, 44].

Prior knowledge usually includes strong beliefs about the existence of hidden variables and the rel ation-
ships between variablesin the system. This notion of “modularity” isacentral aspect of graphical models.
For example, suppose we are constructing a model of motion fields for both the foreground object and the
background object in a video sequence. In a particular frame, the motion vector associated with a small
foreground patch is related to the corresponding patch in temporally proximal frames and aso to nearby
motion vectorsin theforeground. In contrast, the motion vector isneither directly related to the patchesand
motion vectors in the background, nor directly related to foreground motion vectors from distant patches,
nor directly related to any of the patches and motion vectors from video framesthat are temporally distant.
In agraphical model, the existence of arelationship is depicted by a path that connects the two variables.

Probabilistic inference in a probability model can, in principle, be carried out using Bayes rule. For
example, if U}, is ahidden random variable corresponding to the motion vector of the foreground patch
at position (z, y) in the frame from time ¢, and D is the video sequence, Bayes rule can be written

P(DIU;, = u)P(U;, = u)
> PDIUL, = u)P(UL, = u)

P(U,, = ulD) =

However, for the complex probability models that accurately describe avisual scene, direct application of
Bayes rule leads to an intractable number of computations. In this example, computing P(D|U} , = u)
requires marginalizing over a large number of other variables, including the motion vectors of all other

foreground patches at time ¢, U, ,, (¢/,y') # (x,y), the motion vectors of all foreground patchesin other

e
frames, and the motion vectors of all background patches for all frames.

Graphical models provide aframework for deriving efficient inference and learning algorithms. In the
above example, suppose we have somehow computed current estimates for all of the image patches and
motion vectors and would like to update the motion vector for a small foreground patch. The graphical
model indicateswhich other variablesaredirectly relevant, inthiscasethe corresponding patchintemporally
proximal frames and nearby motion vectorsin theforeground. By examining these variables, we can update

the motion vector without regard to the other variables. Generally, the variables that are directly relevant
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for updating a particular variable form the Markov blanket, which can be determined from the graph.

A Markov blanket for avariable isaset of variables such that when the variable is conditioned on the
Markov blanket, it becomesindependent of all other variables. TheMarkov blanket isauseful concept when
deriving efficient inference algorithms, since it reveals which variables are directly relevant for computing
the distribution over a particular variable. Small Markov blankets are often preferred over large ones,
since the complexity of inferenceis usually exponentially related to the number of variablesin the Markov
blanket.

In acomplex probability model, computational inference and interpretation usually benefit from judi-
ciously groupings of variables and these clusters should take into account dependencies between variables.
Other types of useful transformation include splitting variables, eliminating (integrating over) variables,
and conditioning on variables. By examining the graph, we can often easily identify transformations steps
that will lead to simpler models or models that are better suited to our goals and in particular our choice of
inference algorithm. For example, we may be able to transform a graphical model that contains cyclesto
atree, and thus use an exact, but efficient, inference algorithm.

By examining a picture of the graph, a researcher or user can quickly identify the dependency rela-
tionships between variables in the system and understand how the influence of a variable flows through
the system to change the distributions over other variables. Whereas block diagrams enable us to effi-
ciently communicate how computations and signals flow through a system, graphical models enable usto

efficiently communicate the dependencies between components in a modular system.

2.1 lllustrative Example: A Model of Occluding I mage Patches

The use of probability models in vision applications is, of course, extensive (c.f., [3,5, 26,47, 48] for a
sample of applications). Here, we introduce a model that is simple enough to study in this review paper,
but correctly accountsfor an important effect in vision: occlusion. The model explainsan input image with
pixel intensities z1, . . ., zx, asacomposition of aforeground layer and abackground layer [1]. Each patch
is explained as a composition of aforeground patch with a background patch, and each of these patchesis
selected from alibrary of possible patches (a mixture model).

ThegenerativeprocessisillustratedinFig. 1. Tobeginwith, theclassof theforeground, f € {1,...,J},
israndomly selected from distribution P( f). Then, depending on the class of the foreground, abinary mask
m = (mq,...,mg), m; € {0,1} israndomly chosen. m; = 1 indicatesthat pixel z; isaforeground pixel,

whereasm,; = O indicatesthat pixel z; isabackground pixel. Giventheforeground class, the mask elements



Figure 1: A generative process that explains an image as a composition of the image of a foreground object with
the image of the background, using a transparency map, or mask. The foreground, background and mask are each

selected stochastically from a library.

arechosenindependently: P(m|f) =[], P(m;|f). Next, theclassof thebackground, b € {1,...,.J},is
randomly chosenfrom P(b). Finally, theintensity of the pixelsinthepatch are sel ected independently, given
the mask, the class of the foreground, and the class of the background: P(z|m, f,b) = T[], P(z|ms, f,b).

Thejoint distribution is given by the following product of distributions:

Pzm, f,b) = (HP milf) )(ﬁ P(zlmi, £,0)). @

In fact, the above product of factors can be broken down further, by noting that if m; = 0 the classis
given by thevariable b, andif m; = 1 theclassisgiven by thevariable f. So, wecanwrite P(z;|m;, f,b) =
PJ (2| f)™ P(2]b)~™:, where P/ (z;| f) is the distribution over the ith pixel intensity for class f under
the foreground model, and P°(z;|b) isthe same for the background model. These distributions account for
the dependence of the pixel intensity on the mixture index, as well as independent observation noise. The

joint distribution can thus be written:

P(z,m, f,b) = (HP m;| f) >(HPf zZil )™ )(Hpb zi|b)t m) ©)]

Note that this factorization reduces the number of argumentsin some of the factors.

For representational and computational efficiency, it isoften useful to specify amodel using parametric
distributions. We can parameterize P/ (z;| f) and P°(z;|b) by assuming z; is Gaussian given its class. The
foreground and background models can have separate sets of means and variances, but here we assume

they share parameters: Let yux; and ¢; be the mean and variance of theith pixel for class k. So, aparticular
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mean patch may act as a foreground patch in one instance, and a background patch in another instance.
If it is desirable that the foreground and background models have separate sets of means and variances,
the class variables f and b can be constrained, e.g., sothat f € {1,...,n},be {n+1,...,n+ k}, and
1., - .. in. @ethen foreground meansand pi,, (1., . . ., fins k. arethe k background means.

Denote the probability of class k by 7, and let the probability that m; = 1 given that the foreground
classis f, be ay;. Since the probability that m; = 0is1 — ay;, we have P(m;|f) = o (1 — i)'~

Using these parametric forms, the joint distribution is

K
P(z,m, f,b) = mymy <H Qi (L= ap) ™™ N (25 pugi, )™ N (25 v, 1/}1”‘)1_7”")- (4)

=1
where NV (z; u, ) isthe normal density function on z with mean x and variance .

In the remainder of this review paper, the above patch model is used as an example when describing
graphical models, inference algorithms and learning algorithms. Although this model is quite ssmple and
perhaps not in need of the most advanced techniques, it is complex enough to be useful for shedding light
on the advantages and disadvantages of each type of graphical model, inference algorithm and learning
algorithm. In addition, one of the appeals of generative modelsisin their modularity - our simple model
can be extended in various ways to apply to more complex situations. For example, in our past research,
we have shown how transformations can be added to the mixture models[14,27,29], and how an occlusion
model such as the one above can be combined with transformation models to model layers of appearance

inavideo [28].

2.2 Bayesian Network for the Patch M odel

A Bayesian network [44] for variables sq, . . ., sy isadirected acyclic graph on the set of variables, along
with one conditional probability function for each variable given its parents, P(s;|s4,), where A; isthe set
of indices of s;’s parents. The joint distribution is given by the product of all the conditional probability
functions: P(s) = ]‘[f\i L P(si]sa,). A directed acyclic graph is a directed graph that does not contain any
directed cycles.

Fig. 2a shows the Bayesian network for the joint distribution given in (2) with K = 3 pixels. In this
Bayesian network, b and f don’t have any parents, because the distributionsfor b and f are not conditioned
on any other variablesin (2), By group the mask variables together and the pixels together, we obtain the
Bayesian network shown in Fig. 2b. Although this graph is simpler thanthe graphin Fig. 2a, itisalso less

explicit about conditional independencies.
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Figure 2: (a) A Bayesian network for the patch model, where f is the index of the foreground patch, b is the index
of the background patch, m; is a binary mask variable that specifies whether pixel z; is from the foreground patch
(m; = 1) or the background patch (m; = 0). (b) A simpler, but less explicit, Bayesian network is obtained by grouping
the mask variables together and the pixels together. (c) A Markov random field (MRF) for the patch model. (d)
An MRF corresponding to the Bayesian network in (b). (e) A factor graph for the patch model. (f) A factor graph

corresponding to the Bayesian network in (b).

2.3 Markov Random Fidld for the Patch M odéel

A Markov RandomField (MRF) [32] for variables s, . . . , sy iSan undirected graph on the set of variables,
along with one potential function for each maximal clique, gi(sc, ), where C, is the set of indices of the
variables in the kth maximal clique. The joint distribution is given by the product of all the potential
functions, divided by anormalizing constant, Z, called the partition function: P(s) = + Hszl gr(sc, ). A
cligueisafully connected subgraph, and amaximal cliqueisaclique that cannot be made larger while still
being aclique. For brevity, we often refer to maximum cliques as cliques, e.g., the potentials on maximal
cliques are usually called clique potentials.

The above factorization of thejoint distribution issimilar to the factorization for the Bayesian network,
where each conditional probability function can be viewed as a clique potential. However, thereis an im-
portant difference: Because the conditional probability functions are individually normalized with respect
to the child, the product of conditional probabilitiesis automatically normalized, so 7 = 1.

An MREF for the patch model is shown in Fig. 2c and the version where the mask variables are grouped
and the pixels are grouped is shown in Fig. 2d.



2.4 Factor Graph for the Patch Model

Factor graphs [11, 30, 34] subsume Bayesian networks and MRFs. Any Bayesian network can be easily
converted to afactor graph, without loss of information. Any MRF can be easily converted to afactor graph,
without loss of information. Further, there exists models that have independence relationships that cannot
be expressed in a Bayesian network or an MRF, but that can be expressed in a factor graph [13]. Also,
belief propagation takes on asimple formin factor graphs, so that inference in both Bayesian networks and
MRFs can be smplified to asingle, unified inference algorithm.

A factor graph for variables sy, ..., sy and local functions ¢;(sy), ..., gx(sc, ), is abipartite graph
on the set of variables and a set of nodes corresponding to the functions, where each function node g, is
connected to the variables in its argument s¢,. The joint distribution is given by the product of all the
functions: P(s) = %H,ﬁil gr(sc,). Z = 1if the factor graph is a directed graph, as described below;
otherwise Z ensuresthe distributionisnormalized. Notethat thelocal functions may be positive potentials,
asin MRFs, or conditional probability functions, asin Bayesian networks.

Fig. 2e shows afactor graph for the patch model and Fig. 2f shows afactor graph for the version where
the mask variables are grouped together and the pixels are grouped together.

3 Parameterized M odels and Bayesian Learning

So far, we have studied graphical models as representations of structured probability models for computer
vision. We now turnto the general problem of how to learn these model sfrom training data. For the purpose
of learning, it is often convenient to express the conditional distributions or potentialsin a graphical model
as parameterized functions. Choosing the forms of the parameterized functions usually restricts the model
class, but often makes computations easier.

For example, Scn. 2.1 shows how we can parameterize the conditional probability functionsin the patch

model. Recall that the joint distribution is

K
P(z,m, f,b) = mymy <H A (1= ) TN (25 g, V) ™ N (235 o, Tbbi)l_mi)'
i=1

where the parameters arethe 7’'s, o’s, p’sand ¢’'s.



3.1 ParametersasVariables

It isfrequently the case that the model parameters are not known exactly, but that we have prior knowledge
and experimental resultsthat provide evidence asto plausible values of the model parameters. Interpreting
the parameters as random variables, we can include them in the conditional distributions or potentials
that specify the graphical model, and encode our prior knowledge in the form of a distribution over the
parameters.

Including the parameters as variables in the path model, we obtain the following conditional distribu-
tions: P(b|m) = m, P(f|m) = mp, P(my|f, 1y .., gi) = a’};i(l—aﬁ)l*mi, PI(zil f, psy - - phgis Vi, - - -
= N (zi; iy ¥ 1i)y PP(2ilby piniy oy iy Vris - - i) = N (245 i, i) We obtain a simpler model (but
one that is less specific about independencies) by clustering the mask variables, the pixels, the mask pa-
rameters, and the pixel means and variances. The resulting conditional distributions are P(b|w) = m,
P(flx) = mp, P(mlf,a) = TTiZ, o (1= o)™, Plm, b, 0, p,00) = TTimy N (235 i, i)™
N (235 i, i) ™

Since we are interpreting the parameters as random variables, we must specify adistribution for them.
Generally, the distribution over parameters can be quite complex, but ssmplifying assumptions can be
made for the sake of computational expediency. It is often assumed that the various parameter sets are
independent, e.q., P(m, o, p, 1, ) = P(m)P(a) P(p) P(1). Here, we assume that the mixing proportions,
mask probabilities, means and variances are independent of each other.

Thejoint distribution over variables and parametersis
P(z,m, f,b,m, a, p, ) = P(blm) P(f|m)P(m|f,a)P(zlm, f, b, p, ) P(m) P(c) P() P ().

The Bayesian network for this parameterized model is shown in Fig. 3a.

3.2 Introducing Training Data

A set of training data can be used to infer plausible configurations of the model parameters. We imagine
that there is a setting of the parameters that produced the training data. However, since we only see the
training data, there will be many settings of the parameters that are good matches to the training data, so
the best we can do is compute a distribution over the parameters.

Denote the hidden variables by h and the visible variables by v. The hidden variables can be divided
into the parameters, denoted by A?, and one set of hidden variables A", for each of the training cases

t=1,...,7.90,h=(h?, RV ... n™). Similarly, thereis one set of visible variables for each training
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Figure 3: (a) The parameter sets 7, «, 1 and + can be included in the Bayesian network as random variables. (b)
For a training set with T i.i.d. cases, these parameters are shared across all training cases. (c) If the training cases
are time-series data (e.g. a video sequence), we may create one parameter set for each time instance, but require

the parameters to change slowly over time.

case: v = (v, ..., v™). Assuming the training cases are independent and identically drawn (i.i.d.), the

distribution over all visible variables and hidden variables (including parameters) can be written

P t)|h0

:ﬂ

P(h,

t:1

In this expression, P(h?) iscalled the parameter prior and [],_, P(h®),v®|h?) is called the likelihood. In
the following two sections, we describe forms of the parameter prior that lead to computationally efficient
inference and learning algorithms.

In the patch model described above, we have h? = (u, 1, p, o, ©f, 7°, ), RO = (f® ® m®), and
v = 2 The Bayesian network for 7" i.i.d. training casesis shown in Fig. 3b.

When the training cases consist of time-series data (such as a video sequence), the parameters often
can be thought of as variables that change slowly over time. Fig. 3c shows the above model, where there
is adifferent set of parameters for each training case, but where we assume the parameters are coupled
acrosstime. Using ® to denote the training case at timet = 1, ..., T, the following distributions couple
the parameters acrosstime: P(7®|7z(=1), P(a®|a*=1), P(u t)|,u =), P(yp®]p1), The uncertainty

in these distributions specifies how quickly the parameters can change over time.
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3.3 Uniform Parameter Priors

When the parameter prior is complex, inference and learning usually become more difficult. Often, it
is possible to derive efficient inference and learning algorithms, if we assume that the parameter prior is
uniform, i.e., P(h%) = const. Inthis case, the joint distribution over parameters and variables is given by
P(h,v) o [T—; P(h®,v®|h?). The dependence of the parameters on the datais determined solely by the
likelihood, which often has a tractable form.

The use of auniform parameter prior isjustified when the amount of training dataislarge. Inthiscase,
the prior tendsto havelittle effect on the model, except to exclude regions of parameter spacethat have zero
density under the prior. The logarithm of the distribution over all visible variables and hidden variablesis
log P(h,v) = log P(h?) + 3.1 log P(h®), v®|h?). Asthe number of training cases goes to infinity, the
first term becomes insignificant, except in regions of parameter space where P(h?) = 0. If we assumethat
P(h%) > 0foral hY, the effect of the prior can beignored. Thisjustifies the use of any non-zero prior and
in particular the uniform prior, P(h?) = const. Even when the training data is limited, a uniform prior is
often used to simplify inference and learning.

Assuming a uniform prior for al parameters in the patch model, the joint distribution over variables

and parametersis

P(N? 1/}7 7T7 a’ f(1)7 b(1)7 m(1)7 A} f(T)7 b(T)7 m(T)7 Z(l)7 AR z(T))
T K (t) (t) (t) (t)
x H(Wf(tmb(” (H O‘;Z)z‘(l - O‘f(”i)l_mi N(Z@'(t)§ M@ ¢f(t)i)mi N(Zi(t)S Uy ¢b(t>i)l_mi >>
t=1 i=1

8
Note that when using uniform priors, parameter constraints, such as Z;’zl m; = 1, must be taken into

account during inference and learning.

3.4 Conjugate Parameter Priors

The conjugate prior isaform of prior that offersthe same computational advantage asthe uniform prior, but
allows specification of stronger prior knowledge. Theideaisto choose aprior that hasthe sameform asthe
likelihood. This conjugate prior can be thought of as alikelihood term associated with fake, user-specified
data. The result, as with the uniform prior, is that the joint distribution over parameters and variables is
given by the likelihood alone.
Supposeh M) .. h@andvM) . O isthefakedata. Wesetthepriorto P(h?) oc[,__,; P(h®,v®|h?).

Combining this prior with the likelihood, we obtain the joint distribution over parameters and variables:
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P(h,v) o« []}__,; P(h®,v®|n?). Computationaly, inference and learning in this model is equivalent to
inference and learning using a uniform prior, but with extra, fake data.

In addition to specifying faketraining cases, it isal so useful to specify how many timeseach one occurs.
Let w® be the number of times the tth training case occurs. For each real training case (1 < t < T), we
havew® = 1. The contribution of thetth caseto thelikelihoodis P(h(®), v®|h?)»"“ . Thejoint distribution
isP(h,v) o< [T__,; P(A®, v®|h?)»" | Thevalues of the weights usually have very littleinfluence on the
computational efficiency of inference and learning, but provide control over the impact of the fake data. In
fact, we can set each w (or, weight) to any real number, including fractional numbers.

In the patch model, we might imagine that before seeing any training data, we observe atotal of A;
examplesfrom patch classj = 1, ..., J. It follows that the likelihood of the fake data for parameter 7; is

7;. The conjugate prior for 7y, ..., 7, isthus

H;,:1 7Tj/\j if Z;']:I m =1,

0 otherwise.

P(my,...,m5)

Thisisthe Dirichlet distribution, so P(m,...,m,) iscaled aDirichlet prior.

The conjugate prior for the mean of a Gaussian distribution is a Gaussian distribution, because the
random variable and its mean appear symmetrically in the density function for a Gaussian.

The conjugate prior for the inverse variance 5 of a Gaussian distribution is a Gamma distribution. To
see this, imagine fake data consisting of \ examples where the squared difference between the random
variableanditsmeanisd. Thelikelihood for thisfake dataisproportional to 3*/2e~(*9/28  Setting the prior
for 3 to be proportional to thislikelihood, we see that the conjugate prior for 5 isthe Gamma distribution,
with mean 1/6 + 2/Ad and variance 2(1/6 + 2/AJ)/Ad. Notethat for large weight, A — oo, the mean of
the inverse variance is 1/4, the inverse of the fake squared difference between the random variable and its

mean. Also, the prior variance on the inverse variance decreases as the weight increases.

4 Algorithmsfor Inference and Learning

Once a generative model describing the image rendering process has been specified, vision consists of
inverse inference in the generative model. Exact inference is often intractable, so we turn to approximate
algorithms that try to find distributions that are close to the correct posterior distribution. This is accom-
plished by minimizing pseudo-distances on distributions, called “free energies’. Itisinteresting that in the

1800's, Helmholtz was one of thefirst researchersto proposethat visionisinverseinferencein agenerative
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model, and that nature seeks correct probability distributions in physical systems by minimizing what is
now called the Helmholtz free energy. Although thereisno record that Helmholtz saw that the brain might
perform vision by minimizing afree energy, one can’'t help but wonder if he pondered this.

In a parameterized model, given the training data, vision consists of inferring the parameters used to
describe the entire training set, aswell asthe variables that explain each training case. 1n the model shown
in Fig. 3b, for training images =V, ..., 2(™), vision consists of inferring the set of model patches and
variance maps, 1, v, the mixing proportions of the model patches 7, the set of binary mask probabilities
for every foreground class, «, and, for every training case, the class of the foreground patch, f, the class of
the background patch, b, and the binary mask used to combine these patches, m.

Aspresented in thistutorial paper, parameters and variables are both considered to be random variables.
Onedifference between parameters and variablesisthat the parameters are constant acrossall training cases
fori.i.d. data, or change slowly acrosstime in time-series data, such asvideos. Thisdifferenceleadsto the
terminology whereby we refer to inference of model parameters as machinelearning, or just learning. Itis
often important to treat parameters and variables differently during inference. Whereas each variable plays
arolein asingle training case, the parameters are shared across many training cases. So, the parameters
are impacted by more evidence than variables and are often pinned down more tightly by the data. This
observation becomes rel evant when we study approximate inference techniques that obtain point estimates
of the parameters, such as the expectation maximization algorithm [6].

We now turn to the general problem of inferring the values of unobserved (hidden) variables, given
the values of the observed (visible) variables. As above, denote the hidden variables by £ and the visible
variables by v. The hidden variables can usually be divided into the parameters, denoted by /¢, and one set
of hidden variables h*), for each of thetrainingcasest = 1,...,T. So, h = (h?, AV ... R(T)). Similarly,
there is one set of visible variables for each training case: v = (vV), ..., v™). Assuming the training

cases arei.i.d., thedistribution over all hidden and visible variables can be written

P(h,v) = P(h?) (HP NI ) (10)

In the patch model, we have hf = (u, ¢, 7, ), h® = (f® 60 m®), and v® = 2O,
Exact inference consists of computing estimates or making decisions based on the posterior distribution
over al hidden variables (including the parameters), P(h|v). From Bayesrule,
P(h,v)
fh P(h,v)’

where we use the notation [, to include summing over discrete hidden variables. The denominator serves

P(hlv) =
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to normalize the distribution over h. For various types of inference and various inference algorithms, we
need only afunction that is proportional to the posterior distribution. In these cases P(h, v) suffices, since
w.r.t. h,

P(h|v) o< P(h,v).

Note that in the case of a graphical model, P(h,v) is equal to the either the product of the conditional
distributions, or the product of the potential functions, divided by the partition function.
Exact inference in the patch model with known parameters

When the model parameters are known, the distribution over the foreground class, background class,
and mask variablesis proportional to the joint distribution from (4):

K

P(m, £,b]2) oc mymy (T et (U= ) =™ Nz i thgs)™ N (s s )~

=1
f and b each take on J values and there are K binary mask variables, so the total number of configurations
of f,bandm is J?2%. For moderate model sizes, even if we can compute the posterior, we cannot store
the posterior probability of every configuration.
However, from the Bayesian network in Fig. 2, we see that m; is independent of m;, j # 1, given f, b

and z; (the Markov blanket of m;). Thus, we represent the posterior distribution as follows:

K
=1

Inthisform, the posterior can be stored using order /2 numbersfor P( f, b|z) and for each configuration of f
and b, order K numbersfor the probabilities P(m;|f,b,z),i = 1,..., K, giving atotal storage requirement
of order K J? numbers.

P(f,b|z) can be computed as follows:

P(f,blz) o< P(f,b,2) = Z Zmebz
— Ty H(Z (afz L= apa) TN (2 g, 5a) ™ N (235 Nbiﬂvbbz‘)l_mi))

=TT H(afiN(Zi; LrisVri) + (1 — ap) N (2 sz’vwbi))'
i—1

For each value of f and b, this can be computed using order K multiply-adds. Once it is computed for all
J? combinations of f and b, the result is normalized to give P(f, b|z). The total number of multiply-adds
needed to compute P(f,b|z) isorder K J2.
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For each m;, P(m;|f,b, z) can be rewritten thus:

P(m;|f,b,2) = P(m;|f,b,z;) o< P(my|f,b,z)P(z|f,b) = P(zi,m| f,b)
= P(mi’f, b)P(zi’miafvb) = P(mi\f)P(Zi\mi,f,b)-

Substituting the definitions of these conditional distributions, we have
P(mil f,b,2) oc &/ (1 = i) ™™ N (235 pugi, ra) ™ N (235 i, i) ™

Foreachi = 1,..., K and each configuration of f and b, this can be computed and normalized using a
small number of multiply-adds. The total number of multiply-adds needed to compute P(m;|f,b, z) for
al i isorder K J2.

Using the above technique, when given the model parameters, the exact posterior over f, b and m can
be computed in order K .J? multiply-adds and stored using order K .J* numbers.
Exact inference of variables and parameters in the patch model

Assuming a uniform parameter prior, the joint distribution over parameters and variables in the patch

model of Fig. 3bisgivenin (8). The posterior distribution is proportional to thisjoint distribution:

P(/’L7¢7 ﬂ‘? a? f(1)7 b(1)7m(1)7 ct f(T)7 b(T)7m(T)|Z(1)7 et Z(T))

0 @

T K
m —m{® m -m
x H(Wﬂtﬂfb(t) (H (1 — ap) T N(Zz'(t);uf(t)iawf(t)i) CN G, o o)™ ))
t=1 =1
(16)

This posterior can be thought of as a very large mixture model. There are J?7 257 discrete configurations
of the class variables and the mask variables and for each configuration, there is a distribution over the
real-valued parameters. In each mixture component, the class probabilities are Dirichlet-distributed and
the mask probabilities are Beta-distributed. The pixel means and variances are coupled in the posterior,
but given the variances, the means are normally distributed and given the means, the inverse variances are
Gammea-distributed.

Even for this quite simple example, the exact posterior is intractable, because the number of posterior
mixture components is exponential in the number of training cases, and the posterior distribution over
the pixel means and variances are coupled. In the remainder of this paper, we describe a variety of
approximate inference techniques and discuss advantages and disadvantages of each approach. Before

discussing approximations, we discuss practical ways of interpreting the results of inference.
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4.1 Approximate | nference as Minimizing Helmholtzian Free Energies

Usually, the above techniques cannot be applied directly to P(h|v), because this distribution cannot be
computed in atractable manner. So, we must turn to various approximations.

Many approximate inference techniques can be viewed as minimizing a cost function called “free
energy”, which measures the accuracy of an approximate probability distribution. These include iterative
conditional modes|[ 2], the expectation maximization (EM) algorithm[6,41], meanfield methods[45,46,52],
variational techniques[10,11,20,21,24,31,41], structured variational techniques[17,25,31,42,43], Gibbs
sampling [40], the sum-product algorithm (ak.a. loopy belief propagation) [51] and the expectation
propagation algorithm [38].

Theideaisto approximate the true posterior distribution P(h|v) by asimpler distribution Q(h), which
is then used for making decisions, computing estimates, summarizing the data, etc. Here, approximate
inference consists of searching for the distribution (k) that is closest to P(h|v). A natural choice for

a measure of similarity between the two distributions is the relative entropy (a.k.a. Kullback-Leibler

Mszéme%%ﬁy

This is a divergence, not a distance, because it is not symmetric — in general, swapping ¢ and P will
give adifferent value for D(Q, P). However, D(Q, P) is similar to adistance in that D (@, P) > 0, and

divergence) [4]:

D(Q,P) = 0 if and only if the approximating distribution exactly matches the true posterior, Q(h) =
P(h|v).

Approximateinferencetechniquescan bederived by examining waysof searchingfor Q(4), tominimize
D(Q, P). Infact, directly computing D(Q, P) is usualy intractable, because it depends on P(h|v). If
we aready have atractable form for P(h|v) to insert into the expression for D(Q, P), we probably don’t
have a need for approximate inference. Fortunately, D(Q, P) can be modified in away that does not alter
the structure of the search space of Q(%), but makes computations tractable. If we subtract log P(v) from

D(Q, P), we obtain

F(Q,P) = D(Q, P) - mm>
/@ ) AQ@W@HW
B )
‘LQ“”%PmMPw

- /£c9<h>log_;§ﬁfi>. (18)
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Notice that log P(v) does not depend on ()(h), so subtracting log P(v) will not influence the search for
Q(h). For Bayesian networks and directed factor graphs, we do have a tractable expression for P(h,v),
namely the product of conditional distributions.

F(Q, P) is called the Helmholtz free energy or the Gibbs free energy, or just the free energy. If we
interpret — log P(h, v) asthe energy function of aphysical system and () asadistribution over the state
of the system, then the expression for F(Q, P) isidentical to the expression for the Helmholtz or Gibbs
free energy defined in physics textbooks. In this case minimizing the free energy corresponds to finding
the equilibrium distribution of the physical system (the Boltzmann distribution).

Another way to derive the free energy is by using Jensen’s inequality [4] to bound the log-probability
of the visible variables. Jensen’s inequality states that a concave function of a convex combination of
pointsin avector spaceis greater than or equal to the convex combination of the concave function applied
to the points. The log-probability of the visible variables islog P(v) = log( [, P(h,v)). By introducing
an arbitrary distribution Q (%) (which provides a set of convex weights), we obtain a convex combination

inside the log() function, which can be bounded:
log P(v) = log (/ P(h,v))
h

:10g</Q(h)P(h v)

> [amos(Tst) = ~rie.) (19

We see that the free energy is an upper bound on the negative log-probability of the visible variables:
F(Q,P) > —log P(v). This can aso be seen by noting that D (@, P) > 0in (18).

Free energy for i.i.d. training cases
From (10), for atraining set of 7'i.i.d. training caseswith hidden variablesh = (h?, b ... r(T)) and
visible variablesv = (v, ... v™)), we have P(h,v) = P(h?) [[_; P(h®"),v®|h?). The free energy is

F(Q,P) = /@ )log Q(h /@ )log P(h, v)

/Q )1log Q(h / Q(h%) log P(h?) — Z/ Y h%1og P(RY, v |n?). (20)

() ,ho

The decomposition of F' into asum of one term for each training case simplifies learning.
Exact inference revisited
The idea of approximate inference is to search for Q(h) in a space of models that are simpler than

the true posterior P(h|v). It isinstructive to not assume Q(h) is simplified and derive the minimizer of
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F(Q, P). Theonly constraint we put on Q)(h) isthat it is normalized: ", Q(h) = 1. To account for this

constraint, we form a Lagrangian from F'(Q, P) with Lagrange multiplier A\ and optimize F'(Q, P) w.r.t.
Q(h):
OF(Q,P)+ A [,Q(h)
9Q(h)

Setting this derivative to 0 and solving for A, we find

=log Q(h) + 1 —log P(h,v) + A.

P(h,v)
fh P(h,v)

So, minimizing the free energy without any simplifying assumptions on @)(h) produces exact inference.

Q(h) = — P(hlv).

The minimum free energy is
min F(Q, P) = /P(h]v) logM = —log P(v).
Q@ h P(h,v)

The minimum free energy is equal to the negative log-probability of the data. This minimum is achieved
when Q(h) = P(h|v).
Revisiting exact inference in the patch model

In the patch model, if we allow the approximating distribution Q( f, b, m) to be unconstrained, we find
that the minimum free energy is obtained when

K

=1
Of course, nothing is gained computationally by using this Q-distribution. In the following sections, we

see how the use of various approximate formsfor Q( f, b, m) lead to tremendous speed-ups.

4.2 Point Inferencefor Discrete Variables and Continuous Variables

Many standard techniques search for a single configuration / of the hidden variables. In particular, re-
searchers often formul ate problems as searching over configurations of hidden variables, so asto minimize
acost, or energy function.

For discrete hidden variabl es, we can understand thisprocedureasminimizing (Q, P) for adegenerate

Q-distribution. Using Iverson’s equality-indicator function, we define

. 1 ifh=nh

0 otherwise.
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In this case, the free energy in (18) simplifiesto

[h =]
P(h,v)

F(Q,P)=> [h=h]log = —log P(h,v).

h

So, minimizing F'(Q, P) corresponds to searching for values of h that maximize P(fz, v). At the global
minimum, F(Q, P) is equal to the global minimum of —log P(h, v).
For continuous hidden variables, the Q-distribution for apoint estimateisaDirac deltafunction centered

at the estimate:
Q(h) = 6(h — h),

which is an infinite spike of density at /. d(h — h) hasthe following properties: [, 6(h — h)f(h) = f(h),
and [, 6(h — E) = 1. Thefree energy in (18) ssmplifiesto

F(Q,P) = /hé(h — h)log igéh_vf;) — —log P(h,v) — Hj,

where H; is the entropy of the Dirac delta. This entropy does not depend on h, SO minimizi ng F(Q, P)
corresponds to searching for values of & that maximize P(h, v).

Unfortunately, the entropy of the Dirac deltagoesto negativeinfinity!, H; — —oo. So, eventheoptimal
value of £ resultsin F(Q, P) — oo, which is clearly not equal to the global minimum of —log P(h, v).
The fact that F'(QQ, P) — oo isan indication of the theoretical absurdity of making point inferences for
continuous variables. The probability that a continuous variable has any one value is zero, so inferring a
single value is probabilistic nonsense. Even so, point inference of continuous variables can lead to useful
results. In this paper, we review two popular technigues that use point inferences. lterative condition

modes, and the expectation maximization a gorithm.

4.3 |Iterative Conditional Modes (ICM)

The main advantage of thistechniqueisthat it isusually very easy to implement. Its main disadvantageis
that it does not take into account uncertainties in the values of hidden variables, when inferring the values
of other hidden variables. This causes ICM to find poor local minima.

Thealgorithm worksby searching for aconfiguration of / that maximizes P(h|v). Thesimplest version

of ICM proceeds as follows.

1To seerthis, let §(z) havethevalue 1 /¢ intheinterval 0 < = < e and let ¢ — 0. The entropy islog e, which goesto —oo as

e — 0.
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Initialization. Set the all hidden variables i to random values, or to values obtained

heuristically or from a simple model.

ICM Step. Select oneof thehidden variables, h;. Holding all other variables constant,
set h,; toits MAP value:

h; <= argmax,, P(h;|h \ h;,v) = argmax,, P(h,v),
where h \ h; isthe set of al hidden variables other than h;.

Repeat for afixed number of iterationsor until convergence.

Since al hidden variables but /; are kept constant, only the variables in the Markov blanket of h; are
relevant to this update. Denote the variables in the Markov blanket of &, by h.. Denote the product of all
conditiona distributions or potentials that depend on h; by f(h;, k) — note that this product will depend

only on h; and the variables in its Markov blanket, /.. Then, the above update simplifiesto
hi < argmaxhif(hi7 h;>7

where R’ is kept constant. If h; is discrete, this procedure is straightforward. If h; is continuous and exact
optimization of h; isnot possible, its current value can be used as the initial point for a search algorithm,
such as a Newton method or a gradient-based method [8].

A problem with ICM isthat at each step, after choosing avalue for h;, information about other values
of h; isdiscarded. Imagine a case where f(h;, h,) has amost the same value for two different values of
h;. 1CM will pick one value for h;, discarding information about the fact that the other value for h; is
essentially equally good.

This problem can be partly avoided by optimizing entire subsets of & instead of single elementsof /. At
each step of ICM, atractable subgraph of the graphical model is selected, and all variablesin the subgraph
are updated to maximize P(h,v). Often, this can be done efficiently using the Viterbi algorithm, or its
generalized version (c.f. [34]).

The free energy for ICM isthe free energy described above, for general point inferences.

ICM in a mixture model: k-means clustering
Probably, the most famous example of ICM is k-means clustering. The hidden variables are the cluster

centers and the class label for every training case. The algorithm iterates between assigning each training
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case to the closest cluster center, and setting each cluster center equal to the average of the training cases
assigned to it.
ICM in the patch model

Evenwhenthemodel parametersinthe patch model areknown, thecomputational cost of exact inference
can be rather high. When the number of clusters J is large (say, 200), examining all J? configurations
of the foreground class and the background class is computationally burdensome. For ICM in the patch

model, the Q-distribution for the entire training set is

- (1;[ §(mp — ﬁk)) <1};[ O (b — ﬂki)) (1;[ O (Ywi — @/)m)) (1];[ 0 (i — Cﬁn‘))
(H[bm:g(t)})(n _ joy )(HH m® = ) )

t
Substituting this Q-distribution and the P-distribution in (8) into the expression for the free energy in (20),

we obtain the following:
F = — Zlog T jw +log Ty +
— i ngt) log df(t)i +(1- mgt)) log(1 — olf(t)i)
+sz(t)( — ;) /st(t)i +10g(2ﬂ/3f<t>i)/2>
+ZZ ( O — i) 20500, + log(2ﬂ1ﬁg<t)i)/2) - H

Thelast term, H, isthe entropy of the ¢-functions and is constant w.r.t. the optimization. Intuitively, this
cost measures the mismatch between the input image and the image obtained by combining the foreground
and background patches, using the mask.

In order to minimize the free energy with respect to all variables and parameters, we can iteratively
solvefor each variable keeping othersfixed, until convergence. This can be donein any order, but since the
model parameters depend on values of all hidden variables, we first optimize for all hidden variables, and
then optimize for model parameters. Furthermore, since for every observation, the class variables depend
on al pixels, when updating the hidden variables, we first visit the mask values for al pixels and then the
class variables.

After all parameters and variables are set to random values, the updates proceed as follows (the

notation is dropped for convenience):
e Fort=1,....T
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{ f(t) < argmax ) [Wf(t) Hi:m(t>:1 /\/(ZZ-(t); Hop@)gs @/Jf(t)i)]
{ b® « argmax [ﬂ'b(t) [0, N (zi(t); ()5 Q/mei)}

Lt apo N (25 g Vi) > (1= o) N (47 iy Yaos)

0 otherwise

{Fori=1,....K: m{" «

e Forj=1,....J

{ 1 (ZnlfO =]+ i, = j))/2T

eForj=1,...,J,fori=1,... K

{ aji e (SO = jlm™) /(L O = 4)
{ i e (SO =5 orb® = 520 /(S [0 = 5 or b® = j))
{ i (SO = jorb® = 5)(21” — p)?) /(S [fO = j or b® = j))

Here, the Iverson notation is used where [True] = 1 and [False] = 0.

4.4 The Expectation-M aximization Algorithm

As discussed above, one problem with ICM is that it does not account for uncertainty in the values of
hidden variables. The EM algorithm accounts for uncertainty in some variables, while performing ICM-
like updates for the other variables. In particular, for parameters k2’ and remaining variables h™™ ... h(T),
EM obtains point estimates for 2’ and computes the exact posterior over the other variables, given h?. The
Q-digtribution is

Q(h) = 8(h? — KHQ(AWY, ... AT

Recall that for i.i.d. data, P(h,v) = P(h)(TT,_, P(h®,v®|h?)). Given h?, the variables associated with

different training cases are independent. So, we can use the following factorized form for Q:

Q(h) =6(h* =) [[ @™

In exact EM, no restrictions are placed on the distributions, Q(h®).

Substituting the expressions for P(h, v) and Q(h) into (18), we obtain the following free energy:

h(t))
F(Q,P) = —log P(hY) Q)1 L
(Q, P) =~ log +Z( )ng<h<t>,v<t>|he>>
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EM isan iterative algorithm that alternates between minimizing F'(Q, P) with respect to the set of distri-
butions Q(hM), ..., Q(h™)) inthe E step, and minimizing F(Q, P) with respect to A’ in the M step.
When updating the distribution over the hidden variables for training case ¢, the only constraint on
Q(hW) isthat [, Q(h") = 1. As described earlier, we account for this constraint by including a
Lagrange multiplier. Setting the derivative of F (@, P) to zero and solving for Q(h®), we obtain the
solution, Q(hW) = P(h®|u® hY). Taking the derivative of F(Q, P) w.rt. h?, we obtain
T

OF(Q,P) 0 20 0
22 = ———log P(h%) — h®
oh? oh? o8 P(I') ;( h() o )(9h

(RO, v O],

For M parameters, thisisaset of M equations. These two solutions give the EM algorithm:

Initialization. Set the estimates of the parameters, h?, to random values, or to values

obtained from a simple model.
E Step. Minimize F/(Q, P) w.r.t. by setting
QA1) « P(hD o, 1),
for each training case, given the parameters ¢ and the data v(?

M Step. Minimize F(Q, P) w.rt. the model parameters h? by solving

0 7 - t t
0= 32( [ Q) tog P 00i)) —0. (30

—1 h(t)

For M parameters, thisisasystem of M equations. Often, the prior on the parameters
is assumed to be uniform, P(h?) = const, in which case the first term in the above

expression vanishes.

Repeat for afixed number of iterationsor until convergence.

In Scn. 4.1, we showed that when Q(h) = P(hlv), F(Q,P) = —log P(v). So, the EM algorithm
alternates between obtaining a tight lower bound on log P(v) and then maximizing this bound w.r.t. the
model parameters. This means that with each iteration, the log-probability of the data, log P(v), must
increase or stay the same.

EM in the patch model
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As with ICM we approximate the distribution over the parameters using Q(h?) = d(h? — h?). As
described above, in the E step we set Q(b, f,m) < P(b, f,m|z) for each training case. Because the m;’s
are independent given f and b, this (Q-distribution can be expressed as

Q(b, f,m) = Q(b, f) HQ(mAb, £).

This is the distribution used in the M step to minimize the free energy w.r.t. the model parameters,
h? = {ou, i, Yr, T} -

In the E step, the values in the probability tables Q(b, f) and Q(m;|b, f) are determined so as to
minimize the free energy subject to the normalization constraints >, Q(b, f) = Land Q(m; = 1[b, f) =

1 —Q(m; = 0]b, f), leading to the following updates of the variational distributions for a single training
case:

apN(zis fpi, Vi)

= 10b, ’
Q(m b, f) apiN (zi; iy Vi) + (1= api) N (235 i, i)

Q(b, f) < cmymy exp{—Z(Q(mi = 1|b, f)<(zi — psi)” n 10%27”%) N

: 20y 2
(1= Q(m; = 11b, f)) ((Zi ;wibi)Q + 2 Zgwwbi» }

where ¢ is computed to normalize the distribution. We also compute the following distributions, which
areneeded inthe M step: Q(b) < >_,Q(b, f), Q(f) < 22, Q(D, f), Q(mi =1,b) « >, Q(m; =
b, HQE, ), Qlmi =1, ) + X, Q(m; = 1[b, HQ(, f).

The derivatives of the free energy w.r.t. the model parameters in (36) give the following parameter

updates, where ¢t indexes the training cases:

m= (YUY = k) + YUY = k))/21),

>, QmY =1, 0 = k)
TS QU =)

S, (Q(mgt) =1,fO =Fk) + Q(mgt) =0,b®

Do (Q(mﬁt) =1, f0 =k +Q(m" =0,p) = k))
S QY =1, £0 = k) + Qml” = 0,60 = )) (21" — i)
S (Qnl =1, 50 = k) + Q(m” = 0,60 = k)

Il
Ny
~—r
N——
N
&
N

Hii <

Vi
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The above updates can be iterated in a variety of ways. For example, each iteration may consist of
repeatedly updating the variational distributions until convergence and then updating the parameters. Or,
each iteration may consist of updating each variational distribution once, and then updating the parameters.
There are many possibilities and the update order is best at avoiding local minima depends on the problem.

This variety of ways of minimizing the free energy leads to a generalization of EM.

45 Generalized EM

The above derivation of the EM algorithm makes obvious several generalizations, all of which attempt to
decrease F(Q, P) [41]. If F(Q, P) isacomplex function of the parameters 47, it may not be possible to
exactly solvefor the h? that minimizes F'(Q, P) intheM step. Instead, kY can be modified so asto decrease
F(Q, P), eg., by taking a step downhill in the gradient of £(Q, P). Or, if h? contains many parameters,
it may bethat F(Q, P) can be optimized with respect to one parameter while holding the others constant.
Although doing this does not solve the system of equations, it does decrease F'(Q, P).

Another generalization of EM arises when the posterior distribution over the hidden variables is too
complex to perform the exact update Q(h(®) < P(h®|v®, h?) that minimizes F(Q, P) in the E step.
Instead, the distribution Q(2®)) from the previous E step can be modified to decrease F'(Q, P). In fact,
ICM is a special case of EM where in the E step, F(Q, P) is decreased by finding the value of 2(®)) that
minimizes F(Q, P) subject to Q(h®") = §(h® — h®),

4.6 Variational Techniquesand the Mean Field M ethod

A problem with ICM isthat it does not account for uncertainty in any variables. Each variable is updated
using the current guesses for its neighbors. Clearly, a neighbor that is untrustworthy should count for
less when updating a variable. If exact EM can be applied, then at least the exact posterior distribution is
used for a subset of the variables. However, exact EM is often not possible because the exact posterior is
intractable. Also, exact EM does not account for uncertainty in the parameters.

Variational techniquesassumethat ¢)(h) comesfrom afamily of probability distributions parameterized

by ¢: Q(h; ¢). Substituting this expression into (18), we obtain the variational free energy:

F(Q.P) = /h Q(h; 6) log % (43)

Note that F' depends on the variational parameters, ¢. Here, inference proceeds by minimizing F'(Q, P)

with respect to the variational parameters. The term variational refers to the process of minimizing the
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functional F'(Q, P) with respect to the function Q(h; ¢). For notational simplicity, we often use Q(h) to
refer to the parameterized distribution, Q(h; ¢).

The proximity of F(Q, P) to its minimum possible value, — log P(v), will depend on the family of
distributions parameterized by ¢. In practice, thisfamily isusually chosen so that a closed form expression
for F'(Q, P) can be obtained and optimized. The “starting point” when deriving variational techniquesis
the product form (a.k.a. fully-factorized, or mean-field) QQ-distribution. If i consistsof M hidden variables
h = (hy,...,hyr), the product form Q distribution is

Q(h) = HQ(h», (44)

where there is one variational parameter or one set of variational parameters that specifies the marginal
Q(h;) for each hidden variable h;.

The advantage of the product form approximation is most readily seen when P(h, v) is described by
a Bayesian network. Suppose that the kth conditional probability function is a function of variables h¢,
and vp, . Some conditional distributions may depend on hidden variables only, in which case D, is empty.
Other conditional distributions may depend on visible variables only, in which case C, is empty. Let

fx(he,,vp,) bethe kth conditional probability function. Then,
U) = ka(hck7ka)' (45)
k

Substituting (45) and (44) into (43), we obtain

:Z(/hiQ(hi)logQ(hiD Z(/h <HQ >1ogfkhck,vnk))

Cr i€l
Thehigh-dimensional integral over al hidden variablessimplifiesinto asumover the conditional probability
functions, of low-dimensional integralsover small collections of hidden variables. Thefirst termisthe sum
of the negative entropies of the Q-distributions for individual hidden variables. For many scalar random
variables (e.g., Bernoulli, Gaussian, etc.) the entropy can be written in closed form quite easily.

The second term is the sum of the expected log-conditional distributions, where for each conditional
distribution, the expectation is taken with respect to the product of the @-distributions for the hidden
variables. For appropriate forms of the conditional distributions, this term can also be written in closed
form.

For example, suppose P(hy|hs) = exp(—log(2m0?)/2 — (hy — ahs)?/20?) (i.€., hy is Gaussian with

mean ahs), and Q(h;) and Q(hs) are Gaussian with means ¢1; and ¢»; and variances ¢,5 and ¢22. Then,
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the entropy termsfor h; and hy are — log(2mep12) /2 and — log(2megpss) /2. The expected |og-conditional
distribution is — log(2m02)/2 — (¢p11 — apa1)? /202 — ¢12/202 — a®Pae /202, These expressions are easily-
computed functions of the variational parameters. Their derivatives (needed for minimizing F(Q, P)) can
also be computed quite easily.

In general, variational inference consists of searching for the value of ¢ that minimizes F'(Q, P). For
convex problems, this optimizationiseasy. Usualy, F/(Q), P) isnot convex in () and iterative optimization

isrequired:

Initialization. Set the variational parameters ¢ to random values, or to values

obtained from a simpler model.

Optimization Step. Decrease F'(Q, P) by adjusting the parameter vector ¢, or a
subset of ¢.

Repeat for afixed number of iterationsor until conver gence.

The above variational technique accounts for uncertainty in both the hidden variables and the hidden
model parameters. Often, variational techniques are used to approximate the distribution over the hidden
variablesin the E step of the EM agorithm, but point estimates are used for the model parameters. In such
variational EM algorithms, the Q-distribution is

T
Q(h) HQ h®; ).
t=1

Notethat thereisone set of variational parametersfor each training case. Inthiscase, we havethefollowing

generalized EM steps:
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Initialization. Set thevariational parametersoV . . . ., (™) and the model parameters

h? to random values, or to values obtained from a simpler model.

Generalized E Step. Starting from the variational parameters from the previous

iteration, modify ¢V, ..., ¢T) so asto decrease F.

Generalized M Step. Starting from the model parameters from the previous

iteration, modify h? s0 asto decrease F.

Repeat for afixed number of iterationsor until conver gence.

Variational inference and learning in the patch model

Thefully-factorized Q-distribution over the hidden variablesfor asingle data samplein the patch model

Q(m, f.b) = HQmZ

Defining ¢; = Q(m; = 1), we have Q(m, f,b) = Q(b)Q(f) 15, ¢™(1 — ¢;)" ™. Substituting this

Q-distribution into the free energy for asingle observed data sample in the patch model, we obtain
b
F =300 g XY + 37 (1) log &L
b Ty 7 Uy
+Z(Qi log g + (1 — g;) log(1 — ¢; ) Z(% ZQ Jlogag) + (1 —q:) () Q(f) log(1 — aﬁ))>
i f
(zi — pgi)?* | log 2wty
+;;@<f>qi( )

(Zi - ,uln')2 log 2y
+;;@<b><1—ql>( i SR,
Setting the derivatives of ' to zero, we obtain the following updates for the Q-distributions (the variational

E step):

Q(b) + m exp{— Z((l - (L)((zz Q_wzbi)Q + log 227wbi>) }7

Q(f) « 7y exp{Z(qi log oy + (1 — ;) log(1 — aﬁ)> — Z q@<( — pyi)? N log 27r¢fi> }7

204 2
ver/(is

ren{San( g ) - (gt )
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Following the update, each distribution is normalized. These updates can be computed in order K'.J time,
which is a K-fold speed-up over the exact inference used for exact EM. Once the variational parameters
are computed for all observed images, the total free energy F = >, F'®) is optimized with respect to he
model parameters to obtain the variational M step

o= (DQUY = k) + > QY = k))/m),

> QUY =k)Q(m;” =1)
25 QUM = k) ’

5 (QUY = QMY = 1) + QY = K)Q(m! o>)z<>

2 (QF0 = QY = 1) + QO = QMM =0))

© QU = BRI = 1)+ Q1 = k)Q(m(-t) = o>) (2" = )
¥, QUM = k)Qm” =1) + Q) = k)Q(m” = 0) |

These updates are very similar to the updates for exact EM, except that the exact posterior distributions are

Qi <

Hii <

Ypi

replaced by their factorized surrogates.

4.7 Structured Variational Techniques

The product-form (mean-field) approximation does not describe the joint probabilities of hidden variables.
For example, if the posterior has two distinct modes, the variational technique for the product-form ap-
proximation will find only one mode. With adifferent initialization, the technique may find another mode,
but the exact form of the dependence is not reveal ed.

In structured variational techniques, the Q-distribution is itself specified by a graphical model, such
that F'(Q), P) can still be optimized. Fig. 4a shows the original Bayesian network for the patch model
and Fig. 4b shows the Bayesian network for the fully-factorized (mean field) Q-distribution. From this
network, we have Q(m, f,b) = Q(f)Q(b) [T, Q(m;), which gives the variational inference and learning
technique described above. Fig. 4c shows a more complex Q-distribution, which leads to a variational
technique described in detail in the following section.

Previously, we saw that the exact posterior can bewritten P(mn, f,b|z) = P(f,b|2) [T, P(mi|f, b, 2).
It follows that a Q-distribution of the form, Q(m, f,b) = Q(f)Q(b|f) T, Q(m|f,b), is capable of
representing the posterior distribution exactly. The graph for this Q-distribution is shown in Fig. 4d.
Generally, increasing the number of dependencies in the @-distribution leads to more exact inference

algorithms, but also increases the computational demands of variational inference. As shown above, the
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Figure 4. Starting with the graph structure of the original patch model (a), variational techniques ranging from the
fully factorized approximation to exact inference can be derived. (b) shows the Bayesian network for the factorized
(mean field) @-distribution. Note that for inference, z is observed, so it is not included in the graphical model for
the Q-distribution. (c) shows the network for a Q-distribution that infers the dependence of the mask variables on
the foreground class. (d) shows the network for a @-distribution that is capable of exact inference. Each level of
structure increases the computational demands of inference, but it turns out that approximation (c) is almost as

computationally efficient as approximation (b), but accounts for more dependencies in the posterior.

fully-factorized approximation in Fig. 4b leads to an inference algorithm that takes order K J time per
iteration. In contrast, the exact Q-distribution in Fig. 4d takes order K .J? numbers to represent, so clearly
the inference algorithm will take at least order K .J? time.

Although increasing the complexity of the Q-distribution usually leads to slower inference algorithms,
by carefully choosing the structure, it isoften possibleto obtain more accurate inference al gorithmswithout
any significant increasein computation. For example, asshown below, the structured variational distribution
inFig. 4c leadsto an inference a gorithm that is more exact than the fully-factorized (mean field) variational
technique, but takes the same order of time, K J.

Structured variational inference in the patch model

The Q-distribution corresponding to the network in Fig. 4cisQ(m, f,b) = Q(b)Q(f) Hfil Q(my|f).

Defining qr; = Q(m; = 1|f), we have Q(m, f,b) = QD)Q(f) [T/, ¢f (1 — qp:)' ™. Substituting this
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Q-distribution into the free energy for the patch model, we obtain

P= 3 os % S ios 3T a0 (e 1o 2
) f ? 7
i log 27 ¢;
+ZZQ sz< lﬁ/:) + g2¢f)

+ Z<<2f: QN = 4)) Xb: Q(b)<(2i z_wibiy 2 22wbi)>'

Setting the derivatives of F' to zero, we obtain the following updates for the Q-distributions:

o0 < el - ((S o FQM@J?%@€%»L
> Zq ( 2¢Hzfz , log 2;%)
_ _ - sz) log 27T Py

Z (1 =5 (ZQ < 2 2 >>}

qri < 1/(1 + L= % eXp{ << : Q_wl;f) log 2W¢ﬁ) ZQ ( ;¢Zbi)2 + log 227”%) })

Qi

Q(f) = mpexp{ - Z(qﬁ log 215+ (1~ g5 ) log 1

With some care, these updates can be computed in order K.J time, which is a K-fold speed-up over
exact inference. Although the dependences of f and m;, i = 1,..., K on b are not accounted form, the
dependence of m; on f is accounted for by the ¢;’s. The parameter updates in the M step have a similar

form asfor exact EM, except that the exact posterior is replaced by the above, structured Q-distribution.

4.8 The Sum-Product Algorithm (Belief Propagation)

The sum-product algorithm (a.k.a. belief propagation, probability propagation) performs approximate
probabilistic inference (the generalized E step) by passing messages along the edges of the graphical
model [19, 44]. The message arriving at a variable is a probability distribution (or a function that is
proportional to aprobability distribution), that representsthe inference for the variable, as given by the part
of the graph that the message came from. Pearl [44] showed that the algorithm is exact if the graph isa
tree. If the graph contains loops, the algorithm is not exact and can even diverge. However, the use of the
sum-product algorithm in graphs with cycles (“loopy belief propagation”) recently became popular when
it was discovered that this algorithm can be used to decode error-correcting codes such as turbo-codes and
low-density parity check codes close to Shannon’s information-theoretic limit [16, 18, 36, 37, 50].

The sum-product algorithm can be thought of as a variational technique. Recall that in contrast to

product-form variational techniques, structured variational techniques account for more of the direct de-
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pendencies (edges) in the original graphical model, by finding @-distributions over digoint substructures
(sub-graphs). However, one problem with structured variational techniques is that dependencies induced
by the edgesthat connect the sub-graphs are accounted for quite weakly through the variational parameters
in the Q-distributions for the sub-graphs. In contrast, the sum-product algorithm uses a set of sub-graphs
that cover al edgesin the original graph and accounts for every direct dependence approximately, using
one or more -distributions [51].

The sum-product algorithm can be applied in both directed and undirected models, so we describe the
algorithm in factor graphs, which subsume Bayesian networks and MRFs. When it comes to probabilistic
inference in a factor graph, the observed variables, v, can be deleted from the graph. For every potential
that depends on one or more visible variables, the observed values of those variables can be thought of
as constants in the potential function. The modified factor graph is a graphical model for only the hidden
variables, h. Let the factorization be

P(h7v) - Hfj<hcj)7

where h¢, isthe set of variables in the jth local function. (For an MRF, there is a normalizing constant
1/Z, but since this constant does not depend on £, it can be disregarded for the purpose of probabilistic
inference.)

The message sent along an edge in afactor graph isafunction of the neighboring variable. For discrete
variables, the messages can be stored as vectors; for continuous variables, parametric forms are desirable,
but discretization and Monte Carlo approximations can be used. Initially all messagesare set to be uniform,

such that the sum over the elements equals 1. Then, the messages and marginals are updated as follows.
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Sending M essages From Variable Nodes. The message sent out on an edge con-
nected to a variable is given by the product of the incoming message on the other
edges connected to the variable.

Sending M essages From Function Nodes. The message sent out on an edge con-
nected to a function is obtained by taking the product of the incoming messages on
the other edges and the function itself, and summing over al variables that should not
appear in the outgoing message. Recall that each message is a function only of its
neighboring variable.

Fusion Rule. To compute the current estimate of the posterior marginal distribution
over a variable h;, take the product of the incoming messages and normalize. To
compute the current estimate of the posterior marginal distribution over the variables
h¢; inalocal function, takethe product of thelocal function with all messagesarriving
from outside the local function, and normalize.

Repeat for a fixed number of iterationsor until convergence.

For numerical stability, it is a good idea to normalize each message, e.g., so the sum of its elements
equals 1.

If thegraph isatree, once messages have been flowed from every nodeto every other node, the estimates
of the posterior marginals are exact. So, if the graph has E edges, exact inference is accomplished by
propagating 2 E messages, as follows. Select one node as the root and arrange the nodes in layers beneath
theroot. Propagate messages from the leaves to the root (£ messages) and then propagate messages from
the root to the leaves (another £ messages). This procedure ensures that messages have been flowed from
every node to every other node.

If the graph is not a tree, the sum-product algorithm (“loopy belief propagation”) is not exact, but
computes approximate posterior marginals. When the sum-product algorithm converges, it tends to pro-
duce good results. It can be shown that when the “max-product” variant of the sum-product algorithm
converges, it converges to local maxima of the exact posterior distribution [49]. When applying loopy
belief propagation, messages can be passed in an iterative fashion for a fixed number of iterations, until
convergence is detected, or until divergence is detected.

The Bethe free energy is only an approximation to £'. Minimizing the Bethe free energy sometimes

does not minimize F', so the sum-product algorithm can diverge (producing absurd results). However, it
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Figure 5: (a) The factor graph for the patch model with K pixels, after the observations (z1, ..., zx) are absorbed

into function nodes, g;(f, b, m;) = P(z;|lms, f,b)P(m;|f). (b) The sum-product algorithm (belief propagation) passes
messages along each edge of the graph. This graph fragment shows the different types of messages propagated in

the patch model.

has been shown to produce excellent results for some problems. In particular, it has been shown to give
the best known algorithms for decoding error-correcting codes[16, 18, 37] and for phase-unwrapping in 2-
dimensional images[15, 33]. Initial resultslook very promising for applications in computer vision [9, 12]
aswell as other areas of artificial intelligence research [39].
The sum-product algorithm (belief propagation) in the patch model

For apatch model with K pixels, weassumethemodel parametersare known, and show how to compute
approximationsto P( f|z), P(b|z) and P(m;|z),i = 1, ..., K. Asdiscussed above, exact inferencerequires
examining every possible combination of f and b, which takes order J* time. In contrast, loopy belief
propagation takes order J time, assuming the number of iterations needed for convergence is constant.
Generally, the computational gain from using loopy belief propagation is exponential in the number of
variables that combine to explain the data.

After the pixels, z1, . . ., zx, are observed, we obtain the factor graph shown in Fig. 5a. The pixels are

deleted from the graph and for each pixel 7, thereis one local function g;, where

9i(f,0,m;) = P(zilm, f,0)P(mi| f) = N (2 pgi, 7)™ N (235 i, Ppi) '™ 0 (1= apg) 7

This factor graph has cycles, so belief propagation will not be exact. Note that for each mask variable,
P(m;|f) has been included in g;, which reduces the number of cycles and may improve the accuracy of
inference.

Fig. 5b shows how we have |abel ed the messages along the edges of the factor graph. During message
passing, some messages will aways be the same. In particular, a message leaving a singly-connected
function node will always be equal to the function. So, the messages leaving the nodes corresponding to
P(a)and P(b) areequal to P(a) and P(b), asshownin Fig. 5b. Also, amessage |eaving asingly-connected
variable node will always be equal to the constant 1. So, the messages leaving the mask variables, m; are
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1. Initially, all other messages are set to the value 1.

Before updating messagesin the graph, we must specify in what order the messages should be updated.
This choice will influence how quickly the algorithm converges, and for graphs with cycles can influence
whether or not it converges at al. Messages can be passed until convergence, or for afixed amount of time.
Here, we define one iteration to consist of passing messages from the g’sto f, from f to the ¢'s, from the
g'sto b, from b tothe ¢'s, and from the ¢’sto the m’s. Each iteration ensures that each variable propagates
its influence to every other variable. Since the graph has cycles, this procedure should be repeated.

From the above recipe for belief propagation, we see that the message sent from g¢; to f should be
updated as follows:

M) <30S i, bma) -1 pbb).

Notethat since the resulting messageisafunction of f alone, b and m,; must be summed over. Substituting

gi(f, b, m;) from above and assuming that p?(b) is normalized, this update can be simplified:
M) apN (i i ) + (1= ap) > Nz i i) (D)
b

The last step in computing this message isto normalizeit: A (f) < A (f)/(32; M ().
The message sent from f to g; is given by the product of the other incoming messages.
pl(f) + PO TTA D), (57)
j#i
and then normalized: p! (f) < ! (f)/(3; P (f).
The message sent from g; tobisgiven by X2(b) < 3=, 37, gi(f.b,my) - 1- p{ (f), which simplifiesto

Ne®) e (DN i togis r)agiol (1)) + N (s s ) (D (1 = )] ().
f f

Note that the terms in large parentheses don’t depend on b, So they need to be computed only once when
updating this message. Again, before proceeding, the message is normalized: \.(b) <— A2(b)/ (5=, A2(b)).
The message sent from b to g; is given by
ph(b) = PO) [T X (0),
J#

and then normalized: p?(b) < p2(b)/ (>, P2(D).
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Finally, the message sent from g; to m; is updated asfollows: A" (m;) < >_ >, gi(f, b, m;) - ol (f)-
p2(b), which simplifiesto

A1) = Y N (i i Vgl (F),
f

NP (0) 4 (0N Gt s, )h()) (D1 = ag)ol (1)
b !

Normalization is performed by setting A" (m;) <= A (m;)/(A*(0) + A7*(1)).
At any point during message-passing, the fusion rule can be used to estimate the posterior marginal

distribution for any unobserved variable. The resulting estimates are

) P(HTTLM ()
P(flz) = P(flz) = z ’
(fl2) (f]2) S, PAOTL AN (f)
. _ PO)TT; A0
P(blz) ~ P(b]z) = >, P(O) TT; A2(b)

Often, we compute these during each iteration. In fact, computing the posterior marginals is often useful
as an intermediate step for more efficiently computing other messages. For example, pzf (f) can be updated
using p! (f) < P(f|z)/ M (f), followed by normalization. For K pixels, P(f|z) is computed in order K
time and then all p/ messages are computed in order K time. If the update in (57) is used, computing all
p! messages takes order K2 time.

The E step in ageneraized EM agorithm may consist of updating some of these messages, al of them

once, all of them to convergence, or by following various other message-passing schedules.

4.9 Gibbssampling

Another way to approximate an intractable distribution is to represent it as a collection of samples. For
example, whenever thereisaneed for computing expectations of afunction under aprobability distribution,
such an expectation can be approximated as an average function value computed over the samples from
the distribution. Sampling techniques are numerous and frequently used, but due to space constraints we
describe only one technique, Gibbs sampling. For an overview of sampling techniques see [40].
Thepremiseof Gibbssamplingisthat whiletheposterior over thehiddenvariables, P(hy, ha, ..., hi|v),
isnot tractable for computing expectations and direct sampling, the conditional distributionsfor individual

variables, P(h;|h \ h;,v), where h \ h; isthe set of all hidden variables other than h;, are tractable. By
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iteratively sampling the conditional distributions,

P Py S RS R ),

WY~ P(ho Y RSV RS ),

B o P(hg Y RS R v, ete, (60)
we obtain the samples {A{™ A", ... n{™} which in the limit asn — oo, follow the true distribution
P(hq, ..., hk|v). Thus, the expectations under the exact posterior can be approximated by averaging over

these samples.
In contrast to the variational techni ques described above and the sum-product algorithm, Gibbs sampling
accountsfor uncertainty through the use of samples of hidden variables. When updating variable h;, Gibbs

sampling can be viewed as using a variational distribution,

Qhu,... hic) = Q) [T 6(hy — BS™).
J#i

At each step, Q(h;) is computed so as to minimize the free energy using the above Q-distribution. The
result isQ(h;) = P(h;|h \ h;,v). Then, thisdistribution is represented using samples and in fact, asingle
sampleisusually used.

In this context ICM can be viewed as technique that picks h; so asto maximize Q)(h;), whereas Gibbs
sampling draws h; from the distribution Q(h;). As evident from the experiments discussed later, ICM is
often inferior to using a mean-field variational posterior, which captures the uncertainty in each hidden
variable, rather than only focusing on the mode. In aninteresting experiment, we show that in order to keep
the computational advantages of the ICM technique, which avoids averaging over different configurations
of a hidden variable, and yet incorporate some of the uncertainty in the posterior, it is possible to run a
grossly simplified version of a Gibbs sampler, where only a single sample of each hidden variable is used
to re-estimate the model parameters. However, as opposed to ICM, this sample is not the mode of the
distribution, but just a sample that follows the distribution )(;) described above. Thistechnique, that we
named iterative conditional samples (ICS) is computationally of the same complexity as ICM and shares
amost all stepswith ICM, except for sampling, rather than maximizing. Yet, it performs much better than
ICM, asit seemsto suffer less from the local minima problem.

Gibbs sampling in the patch model

For the patch model, generalized EM works by first randomly selecting the parameters and the hidden

variables, and then iterating the following steps.
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e Fort=1,...,T

{ Forn=1,..., N (N isthe number of steps of Gibbs sampling)

* Compute Q(f®) that minimizes the free energy, sample f®™ from Q(f®) and set
Q(fY) = o(f® — fm)

* Compute Q (b)) that minimizesthe new free energy (that dependson f(*™), take asample
and set Q(b") « §(b® — ptm)

* Do the same for the pixel mask variablesin m to obtain a sample m (™

e Adjust the model parameters {1, 1, a} so asto minimize the free energy,
F= =53 log P(=0, ), fltn) e,
t n

Notethat the parameter updateswill besimilar totheonesfor ICM, except that the single configuration

of the hidden variablesis replaced by the sample of configurations.

Often, the Gibbs sampler isallowed to “burnin”, i.e., find equilibrium. This corresponds to discarding the

samples obtained early on, when updating the parameters.

5 Discussion of Inference and L earning Algorithms

We explored the following algorithms for learning the parameters of the patch model described in Scn. 2.1
exact EM; variational EM with a fully-factorized posterior; iterative conditional modes (ICM); aform of
Gibbs sampling that we call iterative conditional samples (ICS); and the sum-product algorithm (loopy
belief propagation). Each technique can be tweaked in avariety of ways to improve performance, but our
goadl isto provide the reader with a “peek under the hood” of each inference engine, so as to convey a
qualitative sense of the similarities and differences between the techniques. In all cases, each inference
variable or parameter isinitialized to arandom number drawn uniformly from the range of the variable or
parameter.

Thetraining datais described and illustrated in Fig. 6. Techniquesthat we tested are at best guaranteed
to convergeto alocal minimum of the free energy, and they do not necessarily find the global maximum of
thelog likelihood of the data, which is upper-bounded by the negative free energy. One of the typical local
minimums of the free energy is a set of clustersin which some of the true classes in the data are repeated

while the others are merged into blurry clusters. To avoid thistype of alocal minimum, we use 14 clusters
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Figure 6: A subset of the 300 training images used to train the model from Scn. 2.1. Each image was created by

randomly selecting one of 7 different background images and one of 5 different foreground objects from the Yale face
database, combining them into a 2-layer image, and adding normal noise with std. dev. of 2% of the dynamic range.
Each foreground object always appears in the same location in the image, but different foreground objects appear

in different places so that each pixel in the background is seen in several training images.

in the model, 2 more than the total number of different foreground and background objects. Note that if
too many clusters are used, the model tends to overfit and learn specific combinations of foreground and
background.

Each learning algorithm is applied on the training data starting with five different random initializations
and the solution with the best total log likelihood is kept. As part of initialization, the pixelsin the class
means are independently set to random intensitiesin [0, 1), the pixels variances are set to 1, and the mask
prior for each pixel is set to 0.5. All classes are allowed to be used in both foreground and background
layers.2 In order to avoid numerical problems, the model variances as well as the prior and posterior
probabilities on discrete variables f, b, m; were not allowed to drop below 10~6.

Thelearned parameters after convergence are shown in Fig. 7 and the computational costs and speed of

convergence associated with the algorithms are shown in Fig. 8. Although the computational requirements

2Separating the foreground and background classes in the model speeds up the training, but introduces more local minima.
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Figure 7: Comparison of the learned parameters of the model in Section 2.1 using various learning techniques. For
all techniques we show the prior on the mask ay, mean uy, and variance ;. for each class k, where black indicates
a variance of 0. For exact and variational EM, we also show the total posterior probability that each class is used in
modeling the foreground (/) and background (%) v/ = %57, Q(f® = k), v} = £ 3, Q(d® = k). These indicate
when an approximate technige may end up accounting for too much data (high posterior probability). Note that there
is no reason for the same class index for two techniques to correspond to the same object (i.e., the same row of

pictures for different techniques don’t correspond).

varied by almost 2 orders of magnitude, most techniques eventually managed to find all classes of appear-
ance. The greediest technique, ICM, failed to find all classes®. The ability to disambiguate foreground and
background classes is indicated by the estimated mask priors « (see aso the example in Fig. 10), as well
asthe total posterior probability of a class being used as a background (+*), and foreground (v/).

Exact EM for the most part correctly infers which of the classes are used as foreground or background.
The only error it made is evident in the first two learned classes, which are sometimes swapped to model
the combination of the background and foreground layers, shown in the last example from the training
set in Fig. 6. This particular combination (total of 12 images in the dataset) is modeled with class 2 in

Showever, for adifferent parameterization of the model, the ICM technique could work better. For example, if areal-valued
mask were used instead of a binary mask, the ICM technique would be estimating a real-valued mask making it closer to the
mean-field technique described in this paper.
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Figure 8: Free energy as a function of computation time, for exact EM, variational EM, ICM and the sum-product

algorithm.

the background and class 1 in the foreground. Thisis a consequence of using 14, rather than the required
12 classes. Without class 2 which is a repeated version of class 6, class 6 would be correctly used as
a foreground class for these examples. The other redundancy is class 13, which ended up with a prior
probability of zero, indicating it is not used by the model.

Onthe other hand, the variational technique does not disambiguate foreground from background classes
asis evident from the computed total posterior probabilities of using a classin each layer v/, . For the
classes that exact EM always inferred as background classes, the variational technique learned masks
priors that allow cutting holes in various places in order to place the classes in the foreground and show
the faces behind them. The mask priors for these classes show outlines of faces and have values that are
between zero and one indicating that the corresponding pixels are not consistently used when the classis
picked to be in the foreground. Such mask values reduce the overall likelihood of the data, and increase
the variational free energy, as the mask distribution P(m;|f) = o' (1 — ay;)'~™ has the highest value
when a; iseither 0 or 1, and m; hasthe same value. Because of this, the variational free energy is always
somewhat above the negative likelihood of the datafor any given parameters(seeFig. 9a). Similar behavior
is evident in the results of other approximate learning techniques that effectively decouple the posterior
over the foreground and background classes, such as loopy belief propagation (last column of Fig. 7), and
the structured variational technique (results not shown to conserve space).

One concern that is often raised about minimizing the free energy, which bounds the negative log-
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Figure 9: How good are the free energy approximations to the negative log-likelihood? In (a) we compare the
variational free energy, the point estimate of the free energy and the negative log likelihood during variational EM. In
(b) we compare the same two approximations and the negative log likelihood during exact EM. To further illustrate the
advantage of modeling uncertainty in the posterior, in (c), we compare ICM that approximates each factored piece
of the posterior with its mode, and in (d), we compare a form of Gibbs sampling (what we call iterative conditional

samples, ICS), which instead of the mode, picks a random sample from the distribution.

likelihood, isthat if the approximation to the posterior istoo weak (e.g., fully-factorized), the bound may
be too lose to be useful for optimization. However, as discussed earlier and in [23], in theory, minimizing
the free energy will tend to select models where the approximation to the posterior is more exact. Here,

we see this effect experimentally in the plotsin Fig. 9. In Fig. 9awe show the free energy estimated using
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the variational method during 30 iterations of learning. In this case, a single iteration corresonds to the
shortest sequence of stepsthat update all variational parameters (Q(b), Q(f), Q(m;) for each training case)
and all model parameters. In the same plot, we show the negative of the true log-likelihood computed for
the model parameters after each iteration.

We also show the point estimate of the free energy, which is evaluated at the modes of the variational
posterior. Since the parameters are updated using the variational technique, the variational bound is the
only one of the curves that theoretically has to be monotonic. While the negative of the log-likelihood is
consistently better than the other estimates, the bound does appear to be relatively tight most of the time.
Notethat early oninlearning, the point estimate givesapoor bound, but after learning isessentially finished,
the point estimate gives a good bound. The fact that ICM performs poorly for learning, but performs well
for inference after learning using a better technique, indicates the importance of accounting for uncertainty
early on in the learning process.

If the same energies are plotted for the parameters after each iteration of exact EM, the curves converge
by the 5th iteration (Fig. 9b). The variational free energy in this plot is computed using the factorized
posterior Q(f)Q(b) [[ Q(m;|f,b) fitted by minimizing the KL distanceto the exact posterior P(f, b, m|z),
while the point estimate is computed by further discarding everything but the peaks in the variational
posterior. While the posterior is still broad due to the high variances in the early iterations, the variational
posterior leads to a better approximation of the free energy than the point estimate. However, the point
estimate, catches up quickly as the EM algorithm converges and the true posterior becomes peaked itself.

In contrast, if the parameters are updated using the ICM technique (Fig. 9¢), which uses point estimates
from the beginning of the learning to reestimate parameters in each iteration, the model parameters never
get close to the solution obtained by exact and variational EM. Also, the free energy stays substantially
higher than the energy to which the variational technique converges. In fact, even the log-likelihood of
the data computed using exact posterior for the parameters learned by ICM is still much worse than the
optimum.

These plots are meant to illustrate that whilefairly severe approximations of the posterior often provide
atight bound near the local optimum of the log likelihood, it is the behavior of the learning algorithm in
the early iterations that determines how close will an approximate technique get to a true local optimum
of the likelihood. In the early iterations, to give the model a chance to get to a good local optimum, the
model parameters are typically initialized to model broad distributions, allowing the learning techniques
to explore more broadly the space of possibilities through relatively flat posteriors (e.g., in our case we

initialize the variances to be equal to one, corresponding to a standard deviation of 100% of the dynamic
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range of the image). If the approximate posterior makes greedy decisions early in the learning process, it
is often difficult to correct the errorsin later iterations. The ICM technique, while very fast, is the most
greedy of al thetechniques. Evenif the model isinitialized with high variances, the |ICM technique makes
greedy decisionsfor the configuration of the hidden variablesfrom the beginning and can never make much
progress.

Importantly, computational efficiency does not necessarily demand extreme greediness. To illustrate
this, in Fig. 9d, we show the free energy when the ICM technique is modified to take some uncertainty
into account by performing a Gibbs sampling step for each variable, instead of picking the most probable
value. This does not increase the computation cost. While doing this may seem counterintuitive, since by
sampling we make a suboptimal decision in terms of improving the free energy, the resulting algorithm
ends up with much better values of the free energy. Thelog-likelihood of the datais considerably better as
well. Taking asample sometimes makesthe free energy worse during the learning, but allowsthe algorithm
to account for uncertainty early on in learning, when the distributions for individual variables are broad.
Note, however, that this single-step Gibbs sampling technique does not achieve the same low free energy
as exact EM and variational EM.

The effect of approximate probabilistic inference on the progress of the learning algorithm, deserves
further illustration. In Fig. 10, we show how the model parameters change through several iterations of
the sum-product algorithm learning technique. In the same figure we illustrate the inference over hidden
variables (foreground class f, background class b and the mask m) for two cases (samples) from thetraining
set. After the very first iteration, while finding good guesses for the classes that took part in the formation
process, the foreground and background are incorrectly inverted in the posterior for the first sample, and
this situation persists even after convergence. However, by applying an additional two iterations of EM
learning, the inferred posterior leaves the local minimum, not only in the first training sample, but aso
in the rest of the training data, as indicated by the erasure of holes in the estimated mask prior for the
background classes. The same improvement can be observed for the variational technique. In fact, adding
exact asmall number of EM iterations to improve the results of variational learning can be seen as a part
of the same framework of optimizing the variational free energy, except that not only the parameters of the
variational posterior, but also its form can be varied to increase the bound in each step.

When the nature of the local minima to which alearning technique is susceptible is well understood,
it is often possible to change either the model or the form of the approximation to the posterior, to avoid
these minima without too much extra computation. In the patch model, the problem is the background-

foreground inversion, which can be avoided by simply testing the inversion hypothesis and switching the
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Model parameters after each iteration (mask prior o , mean appearance u and variance Y for each class k) Posterior for
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Figure 10: An illustration of learning using loopy belief propagation (the sum-product algorithm). For each iteration,
we show: (a) model parameters, including mask priors, mean and variance parameters for each class, and (b)
inferred distribution over the mask and the most likely foreground and background class for two of the 300 training
images. Although the algorithm (Scn. 4.8) converges quickly, it cannot escape a local minimum caused by an overly-
greedy decision made in the very first iteration, in which the foreground object is placed into the background layer
for the first illustrated training case. An additional 2 iterations of exact EM (Scn. 4.4), which uses the exact posterior
Q(f,b)Q(m|f,b), allows the inference process to flip the foreground and background where needed, and escape the

local minimum.

inferred background and foreground classesto check if thislowersthe free energy, rather than exploring all
possible combinations of classesin the exact posterior. An elegant way of doing thiswithin the variational

framework isto add an additional switch variable to the model, which in the generative process can switch
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the two classes. Then, the mean field posterior would have a component that model s the uncertainty about
foreground-background inversion. While this would render the variational learning two times slower, it

would still be much faster than the exact EM.

6 FutureDirections

In our view, the most interesting and potentially high-impact areas of current research include introducing
effective representations and models of visual data; inventing new inference and learning algorithms,
that can efficiently infer combinatorial explanations of visual scenes; developing real-time, or near-real-
time, modular software systems that enable researchers and developers to evaluate the effectiveness of
combinations of inference and learning agorithms for solving vision tasks; advancing techniques for
combining information from multiple sources, including multiple cameras, multiple spectral components,
multiple features, and other modalities, such asaudio, textual and tactileinformation; developing inference
algorithms for active vision, that effectively account for uncertainties in the sensory inputs and the model
of the scene, when making decisions about investigating the environment. In our view, a core requirement
in al of these directions of research is that uncertainty should be properly accounted for, both in the
representations of problems and in adapting to new data. Large-scale, hierarchical probability models and
efficient inference and learning algorithms will play alarge role in the successful implementation of these

systems.
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