
Draft of May 10, 2004

Distance Transforms of Sampled Functions

Pedro F. Felzenszwalb and Daniel P. Huttenlocher
{pff,dph}@cs.cornell.edu

Department of Computer Science
Cornell University
Ithaca, NY 14853

1 Introduction

Distance transforms are an important tool in computer vision, image pro-
cessing and pattern recognition. A distance transform of a binary image
specifies the distance from each pixel to the nearest non-zero pixel. Distance
transforms play a central role in the comparison of binary images, particu-
larly for images resulting from local feature detection techniques such as edge
or corner detection. For example, both the Chamfer [3] and Hausdorff [8]
matching approaches use distance transforms for comparing binary images.
Distance transforms have also been used to compute the medial axis of a
digital shape [1].

In this paper we consider a generalization of distance transforms to ar-
bitrary functions on a grid rather than binary-valued ones (i.e., arbitrary
images rather than binary images). There is a simple intuition underlying
this generalization. Rather than a binary feature map that specifies the pres-
ence or absence of a feature at each pixel, it can be useful to have a map
that specifies a cost for a feature at each pixel. One can think of a binary
edge map as a restricted case, where the costs are restricted to be 0 (at edge
pixels) or infinite (at non-edge pixels). For the more general feature maps it
is again useful to compute a type of distance transform.

Let G be a regular grid and f :G→R a function on the grid. We define
the distance transform of f to be

Df (p) = min
q∈G

(d(p, q) + f(q)) , (1)

1

Draft of May 10, 2004

where d(p, q) is some measure of the distance between p and q. Intuitively,
for each point p we find a point q that is close to p, and for which f(q) is
small. Note that if f has a small value at some location, Df will have small
value at that location and any nearby point, where nearness is measured by
the underling distance d(p, q).

The definition in equation (1) is closely related to the traditional distance
transform of a set of points on a grid P ⊆ G, which associates to each grid
location the distance to the nearest point in P ,

DP (p) = min
q∈P

d(p − q).

Many algorithms for computing the distance transform of point sets use the
following alternative definition

DP (p) = min
q∈G

(d(p − q) + 1(q)),

where 1(q) is an indicator function for membership in P ,

1(q) =

{

0 if q ∈ P

∞ otherwise

This alternative definition is almost the same as the definition for the distance
transform of a function in equation (1), except that it uses the indicator
function 1(q) rather than an arbitrary function f(q).

When distance is measured using the l1 norm the distance transform of
a function can be computed using existing algorithms for computing the
distance transform of a point set. When distance is measured by the squared
Euclidean norm we introduce a new linear time algorithm for computing the
distance transform of a function. This in turn provides a new technique for
computing the exact Euclidean distance transform of a binary image by using
indicator functions.

Efficient algorithms for computing the distance transform of a binary
image using the l1 and l∞ distances were developed by Rosenfeld and Pfaltz
[12]. Similar methods described in [2] have been widely used to efficiently
compute approximations to the Euclidean distance transform. There are a
number of techniques for computing the exact Euclidean distance transform
of a binary image in linear time (e.g., [9, 4, 10]), however these methods are
quite involved and are not widely used in practice. In contrast, our algorithm
is relatively simple, easy to implement and very fast in practice.

2

Draft of May 10, 2004

We use the terminology distance transform of a sampled function rather
than of an image for two reasons. First, we want to stress that the input is
generally some kind of cost function that is being transformed so as to incor-
porate spatial (or distance) information. Second, there already are methods
for computing distance transforms of grey level images based on minimum
distances along paths, where the cost of a path is the sum of gray level values
along the path [13]. We want to avoid confusion with these methods which
compute something quite different from what we consider here.

1.1 Energy Minimization Problems

In addition to extending the applicability of distance transforms from binary
feature detectors to “soft” multi-valued feature quality measures, distance
transforms of functions arise in a number of optimization problems that are
related to the Viterbi recurrence. Recently we have used these methods
to develop improved algorithms for recognition of articulated objects [5],
inference with large state-space hidden Markov models [7], and the solution
of low-level vision problems such as stereo, image restoration and optical flow
using loopy belief propagation [6].

The standard Viterbi recurrence that is used for inference using hidden
Markov models can be written as

δt+1(q) = bt+1(q) + min
p

(δt(p) + a(p, q)), (2)

where bt+1(q) is the cost of state (or label) q at time t+1 and a(p, q) is the cost
of transitioning from state p to state q at two successive time steps (see [11]
for a good tutorial on hidden Markov models). For our purposes a detailed
understanding of this equation is not as important as observing its form. The
minimization in the second term on the right hand side of the equation is
closely related to the distance transform of a function. In particular, if the
states are embedded in a grid and the transition costs a(p, q) can be viewed
as a distance between the corresponding grid locations, then the Viterbi
recurrence can be written in terms of a distance transform,

δt+1(q) = bt+1(q) + Dδt
(q) .

Thus efficient algorithms for computing the distance transform of a function
apply to certain problems that can be characterized by equations of the

3

Draft of May 10, 2004

form in (2). For example in the case of a hidden Markov model with n
states the standard computation of the Viterbi recurrence takes O(n2) time
which is not practical for large values of n, while the computation using
distance transform techniques takes O(n) time. Similarly in applying belief
propagation for solving low-level vision problems, the running time can be
reduced from quadratic to linear in the number of possible labels for each
pixel. This makes belief propagation practical for problems such as motion
estimation, where the number of labels is relatively large.

2 Squared Euclidean Distance

2.1 One Dimension

Let G = {0, . . . , n− 1} be a one dimensional grid, and f :G→R an arbitrary
function on the grid. The squared Euclidean (or quadratic) one-dimensional
distance transform of f defined by equation (1) is given by,

Df (p) = min
q∈G

((p − q)2 + f(q)).

Note that for each point q ∈ G there is a constraint that the distance trans-
form of f be bounded by a parabola rooted at (q, f(q)). In fact the distance
transform is defined by the lower envelope of these parabolas, as shown in
Figure 1. The value of the distance transform at p is simply the height of
the lower envelope at that point.

We give a simple linear time algorithm for computing the distance trans-
form under the squared Euclidean distance. Our algorithm has two distinct
steps. First we compute the lower envelope of the n parabolas just men-
tioned. We then fill in the values of Df (p) by checking the height of the
lower envelope at each grid location. This is a unique approach because we
start with something defined on a grid (the values of f), move to a com-
binatorial structure defined over the whole domain (the lower envelope of
the parabolas) and move back to values on the grid by sampling the lower
envelope. Pseudocode for the whole procedure is shown in Algorithm 1.

The main part of the algorithm is the lower envelope computation. Note
that any two parabolas defining the distance transform intersect at exactly
one point. Simple algebra yields the horizontal position of the intersection

4

Draft of May 10, 2004

0 1 2f (0)
f (3)f (2)f (n � 1)

n � 1.
Figure 1: The distance transform as the lower envelope of n parabolas.

between the parabola coming from grid position q and the one from p as,

x =
(f(p) + p2) − (f(q) + q2)

2p − 2q
.

If q < p then the parabola coming from q is below the one from p to the left
of the intersection x, and above it to the right of x.

We can compute the lower envelope by sequentially computing the lower
envelope of the first i parabolas, where the parabolas are ordered according
to their corresponding horizontal grid locations. The algorithm works by
computing the combinatorial structure of the lower envelope defining the
distance transform. We keep track of this structure by using two arrays.
The horizontal grid location of the j-th parabola in the lower envelope is
stored in v[j]. The range in which the j-th parabola of the lower envelope is
below the others is given by z[j] and z[j + 1]. The variable k keeps track of
the number of parabolas in the lower envelope.

When considering the parabola from q, we find its intersection with the
parabola from v[k] (the rightmost parabola in the lower envelope computed
so far). There are two possible cases. If the intersection is after z[k], then
the lower envelope is modified to indicate that the parabola from q is below
the other parabolas in the lower envelope starting at the intersection point.
If the intersection is before z[k] then the parabola from v[k] should not be
part of the new lower envelope. In this case we decrease k to delete that
parabola and repeat this procedure.

5

Draft of May 10, 2004

Algorithm DT (f)
1. k ← 0 (∗ Index of rightmost parabola in lower envelope ∗)
2. v[0] ← 0 (∗ Locations of parabolas in lower envelope ∗)
3. z[0] ← −∞ (∗ Locations of boundaries between parabolas ∗)
4. z[1] ← +∞
5. for q = 1 to n − 1 (∗ Compute lower envelope ∗)
6. s ← ((f(q) + q2) − (f(v[k]) + v[k]2))/(2q − 2v[k])
7. if s ≤ z[k]
8. then k ← k − 1
9. goto 6
10. else k ← k + 1
11. v[k] ← q
12. z[k] ← s
13. z[k + 1] ← +∞
14. k ← 0
15. for q = 0 to n − 1 (∗ Fill in values of distance transform ∗)
16. while z[k + 1] < q
17. k ← k + 1
18. Df (q) ← (q − v[k])2 + f(v[k])

Algorithm 1: The distance transform algorithm for the the squared Euclidean
distance in one-dimension.

To understand the running time of the algorithm note that we consider
adding each parabola to the lower envelope exactly once. The addition of
one parabola may involve the deletion of many others, but each parabola
is deleted at most once. So the overall computation of the lower envelope
in lines 1 through 13 takes O(n) time. The computation of the distance
transform values from the lower envelope in lines 14 through 18 considers
each grid position and each parabola in the lower envelope at most once, so
the second part of the algorithm also takes O(n) time.

2.2 Arbitrary Dimensions

Let G = {0, . . . , n − 1} × {0, . . . ,m − 1} be a two dimensional grid, and
f :G→R an arbitrary function on the grid. The two dimensional distance

6

Draft of May 10, 2004

(a) (b) (c)

Figure 2: An input function f(x, y) corresponding to a binary image is shown
in (a). The transform of the input along each column is shown in (b). The
final distance transform is shown in (c). Dark pixels correspond to low values
of the sampled functions while bright pixels correspond to high values.

transform of f under the Euclidean distance squared is given by,

Df (x, y) = min
(x′,y′)∈G

((x − x′)2 + (y − y′)2 + f(x′, y′)).

The first term does not depend on y′ so we can rewrite this equation as,

Df (x, y) = min
x′

((x − x′)2 + min
y′

((y − y′)2 + f(x′, y′))).

Thus the two dimensional transform can be computed by first performing one
dimensional transforms along each column of the grid, and then performing
one dimensional transforms along each row of the result. This argument
extends to arbitrary dimensions, resulting in the composition of transforms
along each dimension of the underlying grid. Note that changing the order
of these transforms yields the same result, as can be seen readily for the
two-dimensional case above.

Figure 2 illustrates the computation of the two-dimensional transform of a
binary picture using this method, where we start with the indicator function
for the points in the grid. The notion of a distance transform for arbitrary
sampled functions is important to be able to compute the two-dimensional
transform by sequentially applying the one-dimensional algorithm.

7

Draft of May 10, 2004

3 l1 Norm

For a set of points on a one-dimensional grid, the distance transform under
the l1 norm can be computed using a simple two-pass algorithm (e.g., [12]).
Essentially the same algorithm can be used to compute the distance trans-
form of a one-dimensional sampled function under the l1 norm. Pseudocode
for the method is shown in Algorithm 2.

Algorithm DT (f)
1. Df ← f (∗ Initialize Df with f ∗)
2. for q = 1 to n − 1 (∗ Forward pass ∗)
3. Df (q) ← min(Df (q),Df (q − 1) + 1)
4. for q = n − 2 to 0 (∗ Backward pass ∗)
5. Df (q) ← min(Df (q),Df (q + 1) + 1)

Algorithm 2: The distance transform algorithm for the the l1 norm in one-
dimension.

It is straightforward to verify that this algorithm correctly computes the
one-dimensional distance transform by local propagation of values. The val-
ues of the distance transform are initialized to the values of f itself. In the
forward pass, each successive element of Df (q) is set to the minimum of its
own value and one plus the value of the previous element (this is done “in
place” so that updates affect one another). In the backward pass each item
is analogously set to the minimum of its own value and one plus the value
of the next element. For example given the input (4, 2, 8, 6, 1), after the first
pass Df be (4, 2, 3, 4, 1), and after the second pass it will be (3, 2, 3, 2, 1).

As with the squared Euclidean distance considered in the previous sec-
tion, the two-dimensional transform can be computed by first performing
one-dimensional transforms along each column of the grid, and then perform-
ing one-dimensional transforms along each row of the result (or vice versa).
Higher dimensional transforms can analogously be computed by successive
transforms along each coordinate axis.

4 Other distances

There are two simple relationships that can be used to compute distance
transforms of functions under other distances not discussed so far. For ex-

8

Draft of May 10, 2004

ample, the distance d(p, q) = min(c(p− q)2, a|p− q|+ b) is commonly used in
robust estimation and is very important in practice. Intuitively this distance
is robust because it grows slowly after a certain point. We can compute
the distance transform of a function under the robust distance by using the
relationships described below.

First we consider the case where the distance between two points is given
by the minimum of two other distances.

Theorem 1. d(p, q) = min(d1(p, q), d2(p, q)) ⇒ Df (p) = min(D1
f (p),D2

f (p)).

Proof. The result is straightforward,

Df (p) = min
q∈G

(min(d1(p, q), d2(p, q)) + f(q))

= min
q∈G

(min(d1(p, q) + f(q), d2(p, q) + f(q)))

= min(min
q∈G

(d1(p, q) + f(q)), min
q∈G

(d2(p, q) + f(q)))

= min(D1
f (p),D2

f (p)).

Now lets consider the case where the distance between two points is a
scalar multiple of another distance plus a constant.

Theorem 2. d(a,b)(p, q) = ad(p, q) + b ⇒ D
(a,b)
f (p) = aDf/a(p) + b.

Proof. This is another simple result,

D
(a,b)
f (p) = min

q∈G
((ad(p, q) + b) + f(q))

= min
q∈G

(ad(p, q) + f(q)) + b

= a min
q∈G

(d(p, q) + f(q)/a) + b

= aDf/a(p) + b.

9

Draft of May 10, 2004

References

[1] H. Blum. Biological shape and visual science (part 1). Theoretical Bi-

ology, 38:205–287, 1973.

[2] G. Borgefors. Distance transformations in digital images. Computer

Vision, Graphics and Image Processing, 34(3):344–371, 1986.

[3] G. Borgefors. Hierarchical chamfer matching: A parametric edge match-
ing algorithm. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 10(6):849–865, November 1988.

[4] H. Breu, J. Gil, D. Kirkpatrick, and M. Werman. Linear-time euclidean
distance transform algorithms. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 17(5):529–533, May 1995.

[5] P.F. Felzenszwalb and D.P. Huttenlocher. Pictorial structures for object
recognition. To appear in the International Journal of Computer Vision.

[6] P.F. Felzenszwalb and D.P. Huttenlocher. Efficient belief propagation
for early vision. In IEEE Conference on Computer Vision and Pattern

Recognition, 2004.

[7] P.F. Felzenszwalb, D.P. Huttenlocher, and J.M. Kleinberg. Fast al-
gorithms for large-state-space HMMs with applications to web usage
analysis. In Advances in Neural Information Processing Systems, 2003.

[8] D. Huttenlocher, G. Klanderman, and W. Rucklidge. Comparing images
using the hausdorff distance. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 15(9):850–863, September 1993.

[9] A.V. Karzanov. Quick algorithm for determining the distances from
the points of the given subset of an integer lattice to the points of its
complement. Cybernetics and System Analysis, pages 177–181, April-
May 1992. Translation from the Russian by Julia Komissarchik.

[10] C.R. Maurer, R. Qi, and V. Raghavan. A linear time algorithm for
computing exact euclidean distance transforms of binary images in arbi-
trary dimensions. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 25(2):265–270, February 2003.

10

Draft of May 10, 2004

[11] L. Rabiner. A tutorial on hidden Markov odels and selected applications
in speech recognition. Proceedings of the IEEE, 77(2):257–289, 1989.

[12] A. Rosenfeld and J.L. Pfaltz. Sequential operations in digital pic-
ture processing. Journal of the Association for Computing Machinery,
13(4):471–494, October 1966.

[13] D. Rutovitz. Data structures for operations on digital images. In Cheng
et al., editor, Pictorial Pattern Recognition, pages 105–133. Thomson
Book, WA, 1968.

11

