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Conseqguences of discrete image
representations

1 Classical image processing and computer vision is
based on discrete mathematics (most of it)

€ Sums instead of integrals

®Re-definition of classical continuous operators
as a Laplacian, Minkowsky addition, etc

®etc..




The PDE’s approach

J Images are continuous objects

1 Image processing is the results of iteration of
infinitesimal operations: PDE's

O Differential geometry on images

1 Computer image processing is based on numerical
analysis




Why? Why Now? Who?

1 Why now:
¢ Computerslll
@ People
d Why:
€ New concepts
€ Accuracy
@ Formal analysis (existence, uniqueness, etc)

1 Consequences:
® Many state of the art results




What Is 1t?










Heart segmentation from MRI data
(Malladi et al.)

Click each figure for a movie

, ' Reconstruction
The data ' '

Reconstructec
heart beating




| ntroduction to

Differential Geometry

Follows in part notes by R. Kimmel




Planar Curves
QC(p)={x(p).y(p)}. pO[0.1]

C(O'Q/C(O.Z) _
‘\ c(0.7) Cp=tangent
e

._———V




Arc-length and Curvature
s(p)= flc ldp = |C.E1




Surface

A surface, S:QOR? - M"
JFor example, in 3D
S(u,v) = {x(u,v), y(u,v), z(u,v)}
A Normal £_5§x
S, %S|
JArea element da=|s xS
dTotal area A= [[|s, xS, |dudv




Curves on Surfaces:
The Geodesic Curvature

ct)

S=(xy z{xy)




Curves on Surfaces:

The Geogesic Curvature

Normal Curvatyre N Principle Curvatures

= <CSS, N> K, = max, (k)
K, =min,(«)

Kyt K,
2

Mean Curvature H =

Gaussian Curvature K = KK,




Geometric measures

d Curvature &, normaly | Tangenf , arc-length s
J Mean curvature H

1 Gaussian curvature K F Pt
d principle curvatures £u.K, —~J

[ geodesic curvature &

d normal curvature «,

d tangent plane T,




Planar Curve Evolution




Curvature flow C, =xh

[ Euclidean geometric heat equation

C, =C. whereC_ = il
0\

transform

ﬁflow
O

U
= O




Curvature flow C, =xh

Given any simple
planar curve

O Takes any simple curve into a circular
point
in finite time proportional to the area
inside
the curve

Embedding is preserved (embedded
curves

keep their order along the evolution).

First becomes
convex

Vanish at a
Circular

~ @ point

Gage-Hamilton




Important property

[ Tangential components do not affect the
geometry of an evolving curve

c.=V - ¢, =(V,MR




Constant flow

dOffset curves
Level sets of distance map
dEqual-height contours of
the distance transform
dEnvelope of all disks of
equal radius centered
along the curve
(Huygens principle)

C, =h




Constant flow

JOffset curves




Introduction to

Calculus of Variations




Calculus of Variations

Generalization of Calculus that seeks to find the path,
curve, surface, etc., for which a given Functional has a
minimum or maximum.

Goal: find extrema values of integrals of the form

F(u,u, )dx
[ Fuu,

It has an extremum only if the Euler-Lagrange
Differential Equation is satisfied,

OB F(u,u,)=0
ou dxadu,




Calculus of Variations

Example: Find the shape of the curve {x,y(x)} with
shortest length:

y(x,)
y(Xo)|
given y(x0) y(x1)

Solution: a differential equation that y(x)must
satisfy, y

(1 N yX2 )3/2

=0 =y, —a= y(X)=ax+b




Extrema points In calculus

df (x +é&n)
oFx

|

j:o@ 07 1,07 =0 = £,(x) =0

Gradient descent process x = —f

X

f(x) 1




Calculus of variations

E(u(x)) = j F(u,u,)dx
U(x) = u(x) +e&n(x)

Hn(x): |€Im( jF(u 1] )dxj

4

Fl) _[o_d 9 F(u,u,)
a ou dxdu, s

Gradient descent process u, =-




Euler Lagrange Equation

Proof. for fixed u(x0)u(x1):
J‘%F(G,G )dx = J‘(Faﬁg +F_ U )dx = J‘(FG/7 +F; 77, )dX

X U, ~ XE

= [ Fondx+ Fy gl = | ﬂ%(Fax)dX

g -9
= | (Fﬁ (R )jqu
Thus the Euler Lagrange equation is

N F(u,u,)=0
ou dxou,




Conclusions

Euler-Lagrange
\
oE(u)
o

dGradient descent process
Calculus argminf(x =) X =—T,
Calculus of variations argminU F (u,u, )dx

u(x)

E(u)

o F(X) N




L evel Set Formulation

for Curve Evolution




Implicit representation

Consider a closed planar curve C(p):S' - R°?

The geometric trace of the curve can be alternatively
represented implicitly as C={(x,y)|e(x,y) =0}

J L




Properties of level sets
_F

The level set normal

§--0e [p-Do)
|0g| Ul

Proof. Along the level sets we have zero change,
that is @ =0 but by the chain rule

oY) = 0x, +g,y. = (0pT)

'P> 0= —— D'P:>N—— g
|0 qﬂl |Ug]




Properties of level sets

The level set curvature

c=a{ 50" (/)

| U]

Proof. zero change along the level sets, ¢, =0, also
d d d _P P

V) =— + =— (U 1T)3{— U@ T |+ (U kN
B Y) = (BXAHBY) = o) <ds o T |+ (0@ AN)

O
- X + 1 XS+ sd?
<[<oxx st B Yo By X + @, Y] |D¢|>

: >:_<{<D¢X"E;>’<D¢y’lggl>}|ggl>“




Level Set Formulation

(Osher-Sethian)
c(t)

C ={(x, y): ¢(x,y) =0} implicit representation of C @. X
Then, dC _\/\,
d'[ ¢(x’y,t)

Proof. By the chain rule
0= 0¢(>;ty ) =g x + ¢yyt rq C(t) level se ¢
Then,

“g=gx+4y, =(0pC)=(0pW) =v(0gN)
Recall that §=-_2% . and —V quN < D¢>—V|D¢|

|0g)| |Og]

—> @ =V |Ugy]




Level Set Formulation

[ Handles changes in topology

A Numeric grid points never collide
or drift apart.

[ Natural philosophy for dealing with
gray level images.




Numerical Considerations

A Finite difference approximation.

[ Order of approximation, truncation error, stencil.
3 (Differential) conservation laws.

 Entropy condition and vanishing viscosity.

d Consistent, monotone, upwind scheme.

 CFL condition (stability examples)




Numerical Considerations

Central derivative
Ui — Ui
2h

DU~ = u(ih)

U(X) ’lji

Forward derivative

= ui+1_u'
DMUE

Backward derivative

D;u = U —u_,
h




Truncation Error

Taylor expansion about x=/A
u.,, =u(ih+h) =u(ih) + hu'(ih) + 2 h?u"(ih) + O(h>)
u,_, =u(ih—h) =u(ih) - hu'(ih) + £ h?u"(ih) + O(h°)

B %
D.u =u'(ih)+0O(h?)  &—O—s

S
fo -

D*u = u'(ih) +O(h) —o

Do =u(ih)+O(h)  +—@




Numerical Approximations

U g0 Ui ~ Ui T U_1,4

4h?




Hamilton-Jacobi

In 1D: HJI=Hyperbolic conservation laws
In 2D: just the " flavor'..

Vanishing viscosity, lim of U, + (H (u))x =&u,

The " entropy condition’ selected the “weak solution
that is the " vanishing viscosity solution’ also known
as ~entropy solution'.

b
Ct:N+£ch




General GBM Framework
For Object Segmentation




Introduction

1 Goal:

- Approach:
€ Geometry dependent regularization
®Image dependent velocity




Notation

- Deforming curve:

SEAINN C (p):[01] — R°

:[004a - R? RV




Basic active contours approach

 Terzopoulos et al., Cohen et al.

E(C) = AfIC(p)°dp + yf|C'(p)°dp — [[0I(C)dp




Geodesic active contours
(Caselles-Kimmel-Sapiro, ICCV ‘95)

E(C) = Af|IC(p)*dp + yf/C'(p)°dp — [[OI(C)dp

] Generalize image dependent energy
 Eliminate high order smoothness term

 Equal internal and external energies

J Maupertuis and Fermat principles of dynamical

systems
E(C) = [dllONI(C(s))l] ds

Kimmel-Caselles-Sapiro, Yezzi et al., Paragios-Deriche, efc




Geodesic computatio

] 6radient-descent
E(C) = |ds

E(C) = [ollbI(C(s))l]lds




Further geometric interpretation




Model correctness

The deformation is independent of the
level-sets embedding function

There is a unique solution to the flow in
the viscosity framework

The curve converges to ideal objects
when present in the image




Automatic skin lesion
segmentation via GBM

D. H. Chung and G. Sapiro (IEEE-TM1 2000)




A non-invasive test to aid in the diagnosis of cystic
fibrosis. Automatic chloride patch/sensor analysis

Ratio = 37.380569

[ Ratio between red and green areas is in correlation with chloride
concentration, aiding in the diagnosis of CF

d Collaboration with local industry (PolyChrome Medical), and Medical
School (Prof. Warren Warwick) , performed by Bartesaghi & Sapiro




Example

aneurysm




Morphing active contours

Bertalmio-Sapiro-Randall, IEEE-PAMI







Themain problem and our goal
(Bertalmio-Sapiro-Randall, IEEE-PAMI)

 Problem: Track objects (video or 3D slices)

3 Our Goal:
¢ Simple (no learning, or statistics, etc)

®Handle objects merging and splitting (changes in the

topology)
® Accurate

® Computationally efficient

(]l See also Paragios-Deriche, ICCV '97/'99, CVPR '99




Basic ldea

[ Coupled Partial Differential Equations
® Equation 1: Morphing Equation

e




Fn

= A(F,,F..,) |OF,|

0
‘A(Fn,Fnﬂ)(N u)\DU\

F :featuresn framei (e.g.,gray-valuegedges)
A . discrepang function (e.g.,absolutalifferenceg
U : itszero- levelsetis theboundary a track.

ALTT -0 = Fn_)F Cn_)Cn+1

n+1"?

Guillermo Sapiro ®



MPEG Play
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