Partial Differential Equations and Level-Set Methods in Image Sciences

Guillermo Sapiro

University of Minnesota guille@ece.umn.edu

www.ece.umn.edu/users/guille

What is a discrete computer image?

Consequences of discrete image representations

- □ Classical image processing and computer vision is based on discrete mathematics (most of it)
 - ♦ Sums instead of integrals
 - Re-definition of classical continuous operators as a Laplacian, Minkowsky addition, etc

etc...

The PDE's approach

- □ Images are continuous objects
- ☐ Image processing is the results of iteration of infinitesimal operations: PDE's
- □ Differential geometry on images
- Computer image processing is based on numerical analysis

Why? Why Now? Who?

- □ Why now:
 - **♦** Computers!!!
 - ◆ People
- □ Why:
 - ♦ New concepts
 - ◆ Accuracy
 - ◆ Formal analysis (existence, uniqueness, etc)
- ☐ Consequences:
 - ♦ Many state of the art results

What is it?

V=F(curvatures, etc)

Heart segmentation from MRI data

(Malladi et al.)

Click each figure for a movie

Reconstruction

Reconstructed heart beating

Heart and measurements

Introduction to Differential Geometry

Follows in part notes by R. Kimmel

Planar Curves

Arc-length and Curvature

Surface

- \square A surface, $S: \Omega \subset \mathbb{R}^2 \to \mathbb{M}^n$
- ☐ For example, in 3D

$$S(u,v) = \{x(u,v), y(u,v), z(u,v)\}$$

■ Normal

$$N = \frac{S_u \times S_v}{|S_u \times S_v|}$$

- \square Area element $dA = |S_u \times S_v|$
- □ Total area

$$dA = |S_u \times S_v|$$

$$A = \iint |S_u \times S_v| dudv$$

Curves on Surfaces: The Geodesic Curvature

Curves on Surfaces:

The Geodesic Curvature

Normal Curvature

$$\kappa_n = \langle C_{ss}, N \rangle$$

$$\kappa_1 = \max_{\theta}(\kappa)$$

$$\kappa_2 = \min_{\theta}(\kappa)$$

Mean Curvature
$$H = \frac{\kappa_1 + \kappa_2}{2}$$

Gaussian Curvature $K = \kappa_1 \kappa_2$

Geometric measures

Planar Curve Evolution

Curvature flow
$$C_t = \kappa h^0$$

□ Euclidean geometric heat equation

$$C_t = C_{ss}$$
 where $C_{ss} = \kappa h^{0}$

Curvature flow $C_t = \kappa h$

Takes any simple curve into a circular point

in finite time proportional to the area inside

the curve

Embedding is preserved (embedded curves

keep their order along the evolution).

First becomes convex

Important property

□ Tangential components do not affect the geometry of an evolving curve $C_{t} = V \iff C_{t} = \langle V, h \rangle h$

$$C_t = V \iff C_t = \langle V, h \rangle h$$

Constant flow

 $C_t = h$

- Offset curves
- Level sets of distance map
- □ Equal-height contours of the distance transform
- Envelope of all disks of equal radius centered along the curve (Huygens principle)

Constant flow

$$C_t = h$$

Offset curves

Change in topology

Introduction to Calculus of Variations

Calculus of Variations

Generalization of Calculus that seeks to find the path, curve, surface, etc., for which a given Functional has a minimum or maximum.

Goal: find extrema values of integrals of the form

$$\int F(u,u_x)dx$$

It has an extremum only if the Euler-Lagrange Differential Equation is satisfied,

$$\left(\frac{\partial}{\partial u} - \frac{d}{dx}\frac{\partial}{\partial u_x}\right)F(u, u_x) = 0$$

Calculus of Variations

Example: Find the shape of the curve $\{x,y(x)\}$ with shortest length:

$$\int_{x_0}^{x_1} \sqrt{1 + y_x^2} dx,$$
given $y(x0), y(x1)$

Solution: a differential equation that y(x) must satisfy,

$$\frac{y_{xx}}{\left(1+y_x^2\right)^{3/2}} = 0 \implies y_x = a \implies y(x) = ax+b$$

Extrema points in calculus

$$\forall \eta : \lim_{\varepsilon \to 0} \left(\frac{df(x + \varepsilon \eta)}{d\varepsilon} \right) = 0 \Leftrightarrow \forall \eta : f_x(x) \eta = 0 \Leftrightarrow f_x(x) = 0$$

Gradient descent process $x_t = -f_x$

Calculus of variations

$$E(u(x)) = \int F(u, u_x) dx$$

$$\widetilde{u}(x) = u(x) + \varepsilon \eta(x)$$

$$\forall \eta(x) : \lim_{\varepsilon \to 0} \left(\frac{d}{d\varepsilon} \int F(\widetilde{u}, \widetilde{u}_x) dx \right)^? = 0$$

$$\frac{\delta E(u)}{\delta u} = \left(\frac{\partial}{\partial u} - \frac{d}{dx}\frac{\partial}{\partial u_x}\right) F(u, u_x)$$

Gradient descent process

$$u_{t} = -\frac{\delta E(u)}{\delta u}$$

Euler Lagrange Equation

Proof. for fixed u(x0), u(x1):

$$\int \frac{d}{d\varepsilon} F(\widetilde{u}, \widetilde{u}_{x}) dx = \int (F_{\widetilde{u}}\widetilde{u}_{\varepsilon} + F_{\widetilde{u}_{x}}\widetilde{u}_{x\varepsilon}) dx = \int (F_{\widetilde{u}}\eta + F_{\widetilde{u}_{x}}\eta_{x}) dx$$

$$= \int F_{\widetilde{u}}\eta dx + F_{\widetilde{u}_{x}}\eta\Big|_{x_{0}}^{x_{1}} - \int \eta \frac{d}{dx} (F_{\widetilde{u}_{x}}) dx$$

$$= \int \left(F_{\widetilde{u}} - \frac{d}{dx} (F_{\widetilde{u}_{x}})\right) \eta dx$$

Thus the Euler Lagrange equation is

$$\left(\frac{\partial}{\partial u} - \frac{d}{dx}\frac{\partial}{\partial u_x}\right)F(u, u_x) = 0$$

Conclusions

☐ Gradient descent process

Calculus $\underset{x}{\operatorname{arg\,min}} f(x) \implies x_t = -f_x$

Calculus of variations $\underset{(u,u_x)dx}{\operatorname{arg min}} \int F(u,u_x)dx \Longrightarrow u_t$

 $\frac{\int F(u,u_x)dx}{E(u)} \Longrightarrow u_t = -\frac{\delta E(u)}{\delta u}$

Euler-Lagrange

Level Set Formulation for Curve Evolution

Implicit representation

Consider a closed planar curve $C(p): S^1 \to \mathbb{R}^2$

The geometric trace of the curve can be alternatively represented implicitly as $C = \{(x, y) | \phi(x, y) = 0\}$

Properties of level sets

The level set normal

$$\stackrel{\mathbf{O}}{N} = -\frac{\nabla \phi}{|\nabla \phi|} \qquad \left(\stackrel{\mathbf{O}}{T} = \frac{\overline{\nabla} \phi}{|\nabla \phi|} \right)$$

Proof. Along the level sets we have zero change, that is $\phi_s = 0$, but by the chain rule

$$\phi_s(x, y) = \phi_x x_s + \phi_y y_s = \langle \nabla \phi, T \rangle$$

So,

$$\left\langle \frac{\nabla \phi}{|\nabla \phi|}, \stackrel{\ \, }{T} \right\rangle = 0 \Rightarrow \frac{\nabla \phi}{|\nabla \phi|} \perp \stackrel{\ \, }{T} \Rightarrow \stackrel{\ \, }{N} = -\frac{\nabla \phi}{|\nabla \phi|}$$

Properties of level sets

The level set curvature

$$\kappa = \operatorname{div}\left(\frac{\nabla \phi}{|\nabla \phi|}\right)$$

Proof. zero change along the level sets, $\phi_{ss} = 0$, also

$$\phi_{ss}(x,y) = \frac{d}{ds}(\phi_x x_s + \phi_y y_s) = \frac{d}{ds} \langle \nabla \phi, T \rangle = \left\langle \frac{d}{ds} \nabla \phi, T \right\rangle + \left\langle \nabla \phi, \kappa N \right\rangle$$

So,
$$\kappa \left\langle \nabla \phi, \frac{\nabla \phi}{|\nabla \phi|} \right\rangle = \kappa |\nabla \phi| = \left[-\left\langle \left[\phi_{xx} x_s + \phi_{xy} y_s, \phi_{xy} x_s + \phi_{yy} y_s \right], \frac{\overline{\nabla} \phi}{|\nabla \phi|} \right\rangle \right]$$

$$= -\left\langle \left[\left\langle \nabla \phi_x, P \right\rangle, \left\langle \nabla \phi_y, P \right\rangle \right], \frac{\overline{\nabla} \phi}{|\nabla \phi|} \right\rangle = -\left\langle \left[\left\langle \nabla \phi_x, \frac{\overline{\nabla} \phi}{|\nabla \phi|} \right\rangle, \left\langle \nabla \phi_y, \frac{\overline{\nabla} \phi}{|\nabla \phi|} \right\rangle \right], \frac{\overline{\nabla} \phi}{|\nabla \phi|} \right\rangle ...$$

Level Set Formulation

(Osher-Sethian)

 $C = \{(x, y) : \phi(x, y) = 0\}$ implicit representation of C

Then,
$$\frac{dC}{dt} = VN \iff \frac{d\phi}{dt} = V |\nabla \phi|$$

Proof. By the chain rule

Then,

$$(-\phi_t = \phi_x x_t + \phi_y y_t = \langle \nabla \phi, C_t \rangle = \langle \nabla \phi, VN \rangle = V \langle \nabla \phi, N \rangle$$

Recall that $N = -\frac{\nabla \phi}{|\nabla \phi|}$, and $-V\langle \nabla \phi, N \rangle = V\langle \nabla \phi, \frac{\nabla \phi}{|\nabla \phi|} \rangle = V|\nabla \phi|$

$$\phi_{t} = V \mid \nabla \phi$$

Level Set Formulation

- Handles changes in topology
- Numeric grid points never collide or drift apart.
- Natural philosophy for dealing with gray level images.

Numerical Considerations

- ☐ Finite difference approximation.
- Order of approximation, truncation error, stencil.
- □ (Differential) conservation laws.
- □ Entropy condition and vanishing viscosity.
- Consistent, monotone, upwind scheme.
- CFL condition (stability examples)

Numerical Considerations

Central derivative

$$D_x u \equiv \frac{u_{i+1} - u_{i-1}}{2h}$$

Forward derivative

$$D_x^+ u \equiv \frac{u_{i+1} - u_i}{h}$$

Backward derivative

$$D_x^- u \equiv \frac{u_i - u_{i-1}}{h}$$

Truncation Error

Taylor expansion about x=ih

$$u_{i+1} = u(ih+h) = u(ih) + hu'(ih) + \frac{1}{2!}h^2u''(ih) + O(h^3)$$

$$u_{i-1} = u(ih - h) = u(ih) - hu'(ih) + \frac{1}{2!}h^2u''(ih) + O(h^3)$$

$$D_x u_i = u'(ih) + O(h^2)$$

Stencils

$$D_x^+ u_i = u'(ih) + O(h)$$

$$D_x^- u_i = u'(ih) + O(h)$$

Numerical Approximations

$$D_{xx}u = \frac{u_{i+1} - 2u_i + u_{i-1}}{h^2}$$

$$D_{xy}u \equiv \frac{u_{i+1,j+1} - u_{i-1,j+1} - u_{i+1,j-1} + u_{i-1,j-1}}{4h^2}$$

Hamilton-Jacobi

In 1D: HJ=Hyperbolic conservation laws

In 2D: just the `flavor'...

Vanishing viscosity, $\lim_{\varepsilon \to 0}$ of $u_t + (H(u))_x = \varepsilon u_{xx}$

The `entropy condition' selected the `weak solution' that is the `vanishing viscosity solution' also known as `entropy solution'.

 $C_{t} = N + \varepsilon \kappa N$

General GBM Framework For Object Segmentation

Introduction

- ☐ Goal: Object detection
- ☐ Approach: Curve/surface deformation
 - Geometry dependent regularization
 - ◆Image dependent velocity

Notation

□ Deforming curve:

$$C(p):[0,1]\rightarrow R^2$$

$$I:[0,1]\times[0,1]\to R^2 (R^N)$$

Basic active contours approach

□ Terzopoulos et al., Cohen et al.

$$E(C) = \lambda \int |C(p)|^2 dp + \gamma \int |C'(p)|^2 dp - \int |\nabla I(C)| dp$$

Geodesic active contours

(Caselles-Kimmel-Sapiro, ICCV '95)

$$E(C) = \lambda \int |C'(p)|^2 dp + \gamma \int |C''(p)|^2 dp - \int |\nabla I(C)| dp$$

- ☐ Generalize image dependent energy
- □ Eliminate high order smoothness term
- □ Equal internal and external energies
- Maupertuis and Fermat principles of dynamical systems

$$E(C) = \int g[|\nabla I(C(s))|] ds$$

Geodesic computation

☐ Gradient-descent

$$E(C) = \int ds \qquad \Rightarrow \frac{\partial C}{\partial t} = \kappa N$$

$$E(C) = \int g[|\nabla I(C(s))|] ds \qquad \Rightarrow \qquad \frac{\partial C}{\partial t} = g \kappa N - \nabla g \cdot N$$

Follows Osher-Sethian:

$$\frac{\partial C}{\partial t} = \beta N \Rightarrow \frac{\partial \Phi}{\partial t} = \beta |\nabla \Phi|$$

Further geometric interpretation

Model correctness

- □ Theorem: The deformation is independent of the level-sets embedding function
- □ Theorem: There is a unique solution to the flow in the viscosity framework
- ☐ Theorem: The curve converges to ideal objects when present in the image

Automatic skin lesion segmentation via GBM

A non-invasive test to aid in the diagnosis of cystic fibrosis: Automatic chloride patch/sensor analysis

- Ratio between red and green areas is in correlation with chloride concentration, aiding in the diagnosis of CF
- Collaboration with local industry (PolyChrome Medical), and Medical School (Prof. Warren Warwick), performed by Bartesaghi & Sapiro

Example

Morphing active contours

Show it to me!!!

The main problem and our goal

(Bertalmio-Sapiro-Randall, IEEE-PAMI)

□ Problem: Track objects (video or 3D slices)

Frame n

Frame n+1

- □ Our Goal:
 - ♦ Simple (no learning, or statistics, etc)
 - Handle objects merging and splitting (changes in the topology)
 - **♦** Accurate
 - ◆ Computationally efficient
- □ See also Paragios-Deriche, ICCV '97/'99, CVPR '99

Basic Idea

- □ Coupled Partial Differential Equations
 - ◆Equation 1: Morphing Equation

$$\frac{\partial F_n}{\partial t} = \Delta(F_n, F_{n+1}) |\nabla F_n|$$
 Morphing eq.
$$\frac{\partial U}{\partial t} = \Delta(F_n, F_{n+1}) (N_{F_n} \bullet N_U) |\nabla U|$$
 Tracking eq.
$$\frac{\partial V}{\partial t} = \Delta(F_n, F_{n+1}) (N_{F_n} \bullet N_U) |\nabla U|$$
 Projection term

 F_i : features in frame i (e.g., gray - value, edges)

 Δ : discrepancy function (e.g., absolute difference)

U: its zero - level set is the boundary to track.

$$\Delta \xrightarrow{t \to \infty} 0 \implies F_n \to F_{n+1}, C_n \to C_{n+1}$$

Tracking

Tracking

