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Ground Rules

• Please interrupt often and loudly!

• The goal of this talk is to teach you a few things, to get you
thinking, and to answer some questions; not to intimidate you.
(I have other talks to intimidate you if you want...)

•Warning: I will try to cover one graduate seminar of material in
80 minutes, so we are going to do it multiscale.



Coarse Resolution (Elevator)

•Unsupervised Learning / Density Estimation / Manifolds

• Linear (Projection) Methods

• Locally Linear (Alignment) Methods

•Nonlinear (Embedding) Methods



Medium Resolution (Coffee)

•Unsupervised Learning / Density Estimation / Manifolds

Data x from the real world is “correlated mush”. (e.g. pixels)
What we really want are y: the “things going on underneath”.
(e.g. pose, expression, lighting, camera position)

Mathematically x = f (y)+noise
We measure xn, want to learn both f (·) and yn.
Sounds hard! Yes! Must make assumptions about f (·).
Typical assumputions: domain is low dimensional; f smooth.

• Linear (Projection) Methods

• Locally Linear (Alignment) Methods

•Nonlinear (Embedding) Methods



Goals of Unsupervised Learning

•Density Modeling?
Gives a quantitative familiarity signal P (x).
Can be used for pattern classification, compression,
outlier rejection, missing data imputation,...
Density models can also generate new data.
• Learning Good Codes for Data

Automatically discover internal representations of inputs to be
used in further analysis: visualization, denoising, interpolation,
extrapolation, compression, classification, measuring similarity
of complex data. “Good” ≈ topographic, sparse, invariant,...
• Building A Magic Box

Ideally, unsupervised learning produces a magic box. Turning
a few knobs/levers generates all possible data on the manifold.
Furthermore, given data, the box estimates the knob settings to
generate it. Learn hidden causes which parameterize relevant
modes of variability.



Dimensionality Reduction & Manifolds

•Dimensionality Reduction
Need to vastly decrease size of inputs while preserving
important similarities and differences.
Improve efficiency of statistical algorithms.

•Most Inputs are Redundant
Data are points in a high dimensional space.
Coherent structure in the world generates
strong correlations between components.
Geometrically, observations lie on or near
thin, connected low dimensional manifolds.
•Many Manifolds are Nonlinear

We want to model the curved geometry of high-dimensional
manifolds. Linearity can be a useful approximation in local
domains, but globally too strong.
Most interesting data has nonlinear structure.



Continuous Latent Variable Models

•Often there are some unknown underlying causes of the data.
•Mixture models use a discrete class variable: clustering.
•Often, it is more appropriate to think in terms of continuous

factors which control the data we observe. Geometrically, this is
equivalent to thinking of a data subspace or manifold.
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• To generate a datapoint from such a model, first generate a
point within the manifold then add noise.
Intrinsic coordinates of point ≡ components of latent variable.



Dimensionality Reduction vs. Clustering

• Training such “factor models” is called dimensionality reduction.
Think of this as (non)linear regression with missing inputs.

•Continuous causes can sometimes be much more efficient at
representing information than discrete causes.

• For example, if there are two factors, with about 256 settings
each we can describe the latent causes with two 8-bit numbers.

• If we tried to cluster we would need 216 ≈ 105 clusters.



Let’s Get Going...

•Unsupervised Learning / Density Estimation / Manifolds

• Linear (Projection) Methods

Assume x = Ay+noise; i.e. f () is linear.
Now we can recover A by searching for the “postcard that best
passes through our cloud of mush”, after which we can recover
the individual yn by solving Ayn = xn.

Factor Analysis, PCA, ICA, MDS

Snap-shot methods and SVD

• Locally Linear (Alignment) Methods

•Nonlinear (Embedding) Methods



Factor Analysis

•When we assume that the subspace
is linear and that the underlying
latent variable has a Gaussian
distribution we get a model known
as factor analysis:
— data y (p-dim);
— latent variable z (k-dim)
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p(z) = N (z|0, I)

p(y|z, θ) = N (y|µ + Λz, Ψ)

where µ is the mean vector, Λ is the p by k factor loading matrix,
and Ψ is the sensor noise covariance (usually diagonal).

• Important: since the product of Gaussians is still Gaussian, the
joint distribution p(z,y), the other marginal p(y) and the
conditional p(z|y) are also Gaussian.



Constrained Covariance Gaussian

•Marginal density for factor analysis (y is p-dim, z is k-dim):

p(y|θ) = N (y|µ , ΛΛ>+Ψ)

• So the effective covariance is the low-rank outer product of two
long skinny matrices plus a diagonal matrix:

ΛT

Λ ΨCov[y]

• In other words, factor analysis is just a constrained Gaussian
model. (If Ψ were not diagonal then we could model any
Gaussian and there would be nothing special about factor
analysis.)

• It is easy to find µ: just take the mean of the data.

•We can do maximum likelihood learning of Ψ, Λ using
(surprise, surprise) the EM algorithm.



Probabilistic Principal Component Analysis

• In Factor Analysis, we can write the marginal density explicitly:

p(y|θ) =

∫

z
p(z)p(y|z, θ)dz = N (y|µ , ΛΛ>+Ψ)

•Noise Ψ must be restricted for model to be interesting.

• In Factor Analysis Ψ is restricted to be diagonal (axis-aligned).

•What if we further restrict Ψ = σ2I (ie spherical)?

•We get Probabilistic Principal Component Analysis (PPCA):

p(z) = N (z|0, I)

p(y|z, θ) = N (y|µ + Λz, σ2I)

µ is the mean vector,
columns of Λ are the principal components (usually orthogonal),
σ2 is the global sensor noise.

• This model can also be fit using EM. (Or directly...)



Gaussians are Footballs in High-D

• Recall the intuition that Gaussians are hyperellipsoids.

•Mean == centre of football
Eigenvectors of covariance matrix == axes of football
Eigenvalues == lengths of axes

• In FA our football is an axis aligned cigar.
In PPCA our football is a sphere of radius σ2.

PCA

εΙ

FA

Ψ



Inference is Linear

• In both FA and PCA we can analytically infer the posterior over
the latent variables given an observation vector:

p(z|y) = N (z|m,V)

V = I − Λ>(ΛΛ> + Ψ)−1Λ

= (I + Λ>Ψ−1Λ)−1

m = Λ>(ΛΛ> + Ψ)−1(y − µ)

= VΛ>Ψ−1(y − µ)

•Note: inference of the posterior mean is just a linear operation.

m = β(y − µ)

β can be computed beforehand given model parameters.

•Also: posterior covariance does not depend on observed data!

cov[z|y] = V = (I + Λ>Ψ−1Λ)−1



Likelihood Functions

• For both FA and PPCA, the data model is Gaussian.
Thus, the likelihood function is simple:

`(θ;D) = −
N

2
log |ΛΛ> + Ψ| −

1

2

∑

n

(yn − µ)>(ΛΛ> + Ψ)−1(yn − µ)

= −
N

2
log |V| −

1

2
trace

[

V−1
∑

n

(yn − µ)(yn − µ)>

]

= −
N

2
log |V| −

1

2
trace

[

V−1S
]

V is model covariance; S is sample data covariance.

• In other words, we are trying to make the constrained model
covariance as close as possible to the observed covariance,
where “close” means the trace of the ratio.

• Thus, the sufficient statistics are the same as for the Gaussian:
mean

∑

n yn and covariance
∑

n(yn − µ)(yn − µ)>.



Direct Fitting

• For FA the parameters are coupled in a way that makes it
impossible to solve for the ML params directly.
We must use EM or other nonlinear optimization techniques.
(And sometimes worry about associated local optima issues.)

• But for PPCA, the ML params can be solved for directly:
The kth column of Λ is the kth largest eigenvalue of the sample
covariance S times the associated eigenvector.

• The global sensor noise σ2 is the sum of all the eigenvalues
smaller than the kth one.

• This technique is good for initializing FA also.

•We can’t make the sensor noise unconstrained, or else we
would always get a perfect fit!



Zero Noise Limit

• The traditional PCA model is actually a limit as σ2 → 0.
The model we saw is actually called “probabilistic PCA”.

•However, the ML parameters Λ∗ are the same.
The only difference is the global sensor noise σ2.

• In the zero noise limit inference is easier: orthogonal projection.

lim
σ2→0

Λ>(ΛΛ> + σ2I)−1 = (Λ>Λ)−1Λ>

µ
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Snap-Shot Method

• If your data is zero mean, knowing the eigenvectors of the
Gram matrix Gij = x>i xj is just as good as knowing the
eigenvectors of the sample covariance S =

∑

n xnx>n.

•Why? Because:

w = X>v

Sv = αv

XX>v = Nαv

X>XX>v = NαX>v

X>Xw = Nαw

• So if N < d it is faster to compute this eigendecomposition than
the original one. Intuition: N points span a space of at most
dimension N − 1. The eigenvalues are the same; and the
eigenvectors are linear transforms of each other.
(We say that the two matrices are “similar”.)



SVD

• Think of each row as a data vector, do PCA.
Now think of each column as a data vector and do PCA again.
• If you had the SVD of your raw data matrix you would be

almost there (exept for those troublesome means):
X = USV>

XX> = US2U>

X>X = VS2V>

• The left/right singular vectors are the eigenvectors of
columnwise/rowwise data. The eigenvalues are the squares of
the corresponding singular values.

M U

VT



EM Algorithm for PCA

• The zero noise limit (PCA) also has a nice EM algorithm:
E-step: Z = (C>C)−1C>Y

M-step: Cnew = YZ>(ZZ>)−1
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EM Algorithm for PCA

• The zero noise limit (PCA) also has a nice EM algorithm:
E-step: Z = (C>C)−1C>Y

M-step: Cnew = YZ>(ZZ>)−1

• This scales as O(dNk) for extracting k principal components
from N datappoints in d-dimensions. Much faster than either
regular PCA or Snap-Shot when both d and N are huge but k is
small.
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EM Algorithm for PCA

• The zero noise limit (PCA) also has a nice EM algorithm:
E-step: Z = (C>C)−1C>Y

M-step: Cnew = YZ>(ZZ>)−1

• It can also deal very nicely with missing data.
Imagine that y is partitioned into y = [a;b] where a is the
known part of y and b is the missing part.
Similarly, imagine that C is partitioned into C = [D;E] where
D corresponds to the known portion of y and E corresponds to
the mising portion.

•Now what you do in the E step is:

z = (D>D)−1D>a

b = Ez

• Finally, the M-step uses this z and the vector [a,b] as usual.



Scale Invariance in Factor Analysis

• In FA the scale of the data is unimportant: we can multiply yi by
αi without changing anything:

µi← αiµi

Λij ← αiΛij ∀j

Ψi← α2
iΨi

•However, the rotation of the data is important.

• FA looks for directions of large correlation in the data, so it is
not fooled by large variance noise.

PCA

FA



Rotational Invariance in PCA

• In PCA the rotation of the data is unimportant: we can multiply
the data y by and rotation Q without changing anything:

µ← Qµ

Λ← QΛ

Ψ← unchanged

•However, the scale of the data is important.

• PCA looks for directions of large variance, so it will chase big
noise directions.

PCA

FA



MDS: Multidimensional Scaling

• So far we have considered linear mappings which capture
directions of data correlation or variance.
•Another objective is to capture pairwise similarities between

the datapoints using distances after the mapping.
• In particular, we can find embeddings xi to minimize:

∑

ij

f (Dij − ‖xi − xj‖)

• Torgerson (’52) noticed a linear algebra
trick to minimize this when f (·) is
squared error. (equivalent to PCA)

•Often nonlinear squashing functions are
applied to Dij or used for f (·); this leads
to non-metric MDS and variants like
Sammon mapping.



Independent Components Analysis (ICA)

• ICA is another linear continuous latent variable model, but it
has a non-Gaussian and factorized prior on the latent variables.

• This is good in situations where most of the factors are very
small most of the time and they do not interact with each other.
Example: mixtures of speech signals.

• The learning problem is the same: find the weights from the
factors to the outputs and infer the unknown factor values. In
the case of ICA the factors are sometimes called “sources”, and
the learning is sometimes called “unmixing”.



Geometric Intuition

• Since the latent variables are assumed to be independent, we
are trying to find a linear transformation of the data that
recovers these independent causes.

•Often we use heavy tailed source priors, e.g. p(zi) ∝ 1/ cosh(zi).

•Geometric intuition: finding spikes in histograms.
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ICA Model

• The simplest form of ICA has as many outputs as sources
(square-linear) and no sensor noise on the outputs:

p(z) =
∏

k

p(zk)

y = Vz

• Learning in this case can be done with gradient descent (plus
some “covariant” tricks to make updates faster/more stable).

• If you keep the square V and use isotropic Gaussian noise on
the outputs there is a simple EM algorithm (Welling & Weber).

•Much more complex cases have been studied also: nonsquare,
convolutional, time delays in mixing, etc.

• But for that, we would need to get into time-series...



Projection Pursuit

•Diaconis and Freedman showed that most projections of high
dimensional data are approximately Gaussian (normal).

• So search for projections that
look non-Gaussian, because
these should be “interesting”
or at least “unusual”
directions.

•What you can’t have, you always want...

•Generally done in an iterative fashion, in which next direction
is found after projecting out all previously found directions.

•Hence “pursuit”. (In fact, this was originally done manually.)

• The contrast function is very similar to that in ICA.



Moving right along...

•Unsupervised Learning / Density Estimation / Manifolds

• Linear (Projection) Methods

• Locally Linear (Alignment) Methods
Basic Idea:
1) Cluster.
2) Within each cluster do PCA.
That’s almost it, but there is a kink...
and then a variety of solutions

Global Coordination / Charting / Automatic Alignment

•Nonlinear (Embedding) Methods



Mixtures of Dimensionality Reducers

• The next logical step: globally nonlinear but locally linear.

• Try a model that has two kinds latent variables: one discrete
cluster, and one vector of continuous causes.

• Such models simultaneously do clustering, and within each
cluster, dimensionality reduction. Great idea!

• To a good approximation, we can
represent smooth manifolds by collections
of simpler models, each of which
describes a locally linear neighborhood.

• If our data comes from a smooth
manifold, then the local coordinates of
different models in their region of validity
can be related to the global coordinates.



Mixtures of Factor Analyzers

• The simplest version of this is the mixture of factor analyzers.

p(z) = N (z|0, I) p(k) = αk

p(y|z, k, θ) = N (y|µk + Λkz, Ψ)

p(y|θ) =
∑

k

∫

z
p(k)p(z)p(y|z, k, θ)dz

=
∑

k

N (y|µk , ΛkΛ>k +Ψ)

•Which is a constrained mixture of Gaussians.

• This is like a mixture of linear experts, using a logistic
regression gate, with missing inputs.

• Fitting procedure?
Maximum likelihood, using EM.
(Of course!)



Local Linear Density Models

•Mixtures of Factor Analysers (MFA)
Observed data x∈RD

Latent variables
s ∈ {1, 2, . . . , S},zs∈R

d
s,z

x
P (x, s,zs) = P (x|s,zs)P (s)P (zs)

P (zs) =
1

(2π)d/2
exp

{

−
1

2
zs
>zs

}

P (x|s,zs) =
|Ψs|

−1/2

(2π)D/2
exp

{

−
1

2
[x− µs − Λszs]

>Ψ−1
s [x− µs − Λszs]

}

• Learning Parameters
Estimate means µs, loadings Λs, noises Ψs, priors ps.

Maximum likelihood: max. log P (x) on training set.

Tractable, efficient EM algorithm.



A Problem w/Maximum Likelihood

• Parameter Degeneracy
Marginal distribution, P (x) (sum out latent variables):

P (x) =
∑

s

ps
|ΛsΛ

>
s + Ψs|−1/2

(2π)D/2
exp

{

−
1

2
[x− µs]

>
(

ΛsΛ
>
s + Ψs

)−1
[x− µs]

}

Invariance: Λs → ΛsRs, for RsR
>
s = I

Rs allow arbitrary rotations of local coordinates.

• Bad Internal Codes
Likelihood is invariant to these transforma-
tions. Thus, normal EM estimation in MFAs
does not favor models whose local coordi-
nate systems are aligned in a consistent way.

• Instead, ML produces models whose inter-
nal representations change unpredictably
as one traverses connected paths on the
manifold.



Achieving Local Consistency by
Coordination/Alignment

•Want Local Agreement
Idea: at neighbourhood boundaries,
coactivated local models should agree on
global coordinates g. Learn a mapping
from local to global coordinates:

g(zs, s) = Aszs + κs

Additional “coordination” weights A,κ
must also be learned from examples.

s,z

g x

global

hidden
variables

coordinates
data

•Goal: Get Latent Variables to Agree
Want to stitch together the local coordinate systems so that g

changes smoothly and continuously as one traverses a
connected path on the data manifold, even across the domains
of many different local models.

Subtle point: This can affect estimation of model as well.



Idea: Probabilistic Global Coordination

By treating the coordinates g as
latent variables, we can incorporate
them into the probabilistic model:
P (g|zs, s) = δ(g − Aszs − κs)

P (g|x) =
∑

s

P (s|x)P (zs|x, s)P (g|zs, s)

When several models explain a
point xn with high probability, their
posterior distributions for the global
coordinates should be similar:

P (g|xn, si) ≈ P (g|xn, sj)

s,z

g x

hidden
variables

global
coordinates data

cost: KL Q(g) || P(g) − log P(x)

Global coordinates are
independent of the model

given the data.

⇒ Penalize multimodal posteriors P (g|xn).
Unimodal approximating distributions, Q(g|xn).

Q(g, s|xn) = Q(g|xn)Q(s|xn); Q(g|xn) = N (gn, Σn); Q(s|xn) = qns



A New Model: Coordinated MFA

Using P (g|xn) and Q(g|xn) we can do both density estimation
and manifold parameterization using the probabilistic machinery.
Consider the objective function:

Φ =
∑

n

log P (xn)− λ KL [Q(g, s|xn)‖P (g, s|xn)]

Model parameters {ps, Λs,µs, Ψs}.
Coordination parameters {As,κs}.
Regularizing parameters {gn, Σn, qns}.
First term defines the log-likelihood of the data.
Second term, in the form of a Kullback-Liebler divergence,
penalizes MFAs whose posterior distributions are inconsistent
with the global coordinates.
The balancing of these terms leads to models that satisfy
simultaneous goals of modeling, yielding good likelihood with
coordinated factors that match the model’s posterior distributions
to unimodal approximations.



Variational Methods & Internal Representations

Φ =
∑

n

log P (xn)− λ KL [Q(g, s|xn)‖P (g, s|xn)] =
∑

n

Sn −
∑

ns

qns Ens

Sn = H(Qg|n) +H(Qs|n) Ens = −〈log P (g, s,xn) Qg|n

•Our cross entropy regularizer is formally equivalent to the
objective function used in variational penalty methods.

• It is a lower bound on log likelihood.

•Unexpected application: not to perform approximate inference
in intractable models. but to compute auxiliary parameters
and break a degeneracy in the original model’s parameter space
in a way that learns more powerful internal representations.

•As the parameter λ→ 0 we can only make modifications which
exploit strict invariances in the parameterization.



Coordinated MFA Learning Algorithm

• E-step
Iterate fixed-point equations to optimize the regularization
parameters which control the approximate
distributions Q(g, s|xn).
Means gn, covariance matrices Σn, and mixture weights qns are
determined for each data point.
•M-step

Update the model parameters {ps, Λs,µs, Ψs}, and the
coordination parameters {As,κs} to maximize the objective
function, simultaneously trying to model the data well and
learn consistent representations.
• Stable Learning

The algorithm is always increasing a
well defined objective function. (May
lower the log likelihood in exchange
for better consistency or vice versa.)



Synthetic Examples

See the movies!



Real Data: Digits

Digit Data

N=2200
grayscale photos

D=16×16 resolu-
tion.

K=12 neighbours
Euclidean distance.



Real Data: Faces

Face Data

N=2000
grayscale photos

D=20×28 resolu-
tion.

K=12 neighbours
Euclidean distance.



Other Coordination/Alignment Pointers

•Original credit for coordination – Revow & Hinton

•Global Coordination – Roweis, Saul, Hinton

• Post-Coordination:
Automatic Alignment – Teh & Roweis; Verbeek
Charting – Brand

•Correspondences – Ham, Saul, Lee; Verbeek, Roweis, Vlassis



Coffee time again...

•Unsupervised Learning / Density Estimation / Manifolds

• Linear (Projection) Methods

• Locally Linear (Alignment) Methods

•Nonlinear (Embedding) Methods

“Classic” nonlinear dimensionality methods, which try to build
an explicit approximation to the manifold using the
observations as training data directly:

SOM,GTM,Principal Curves, nonlinear autoencoders

and many newer ones that we won’t talk about
(e.g. Latent Variable GP, Stochastic Neighbour Embedding)



SOM: Self Organizing Maps

•Kohonen (’82) introduced the idea of building topology into a
vector quantizer (k-means) model by associating with each
prototype xi a location in a low dimensional embedding space.
• Learning now proceeds as usual, except that when a prototype

is updated, its neighbouring prototypes (in the embedding)
are also updated slightly:

xi← xi + αii∗(x− xi) ∀ neighbours i of i∗

This makes codewords nearby in the embedding encode
similar prototypes in the data space.
• The neighbourhood size α in the embedding space is annealed

from large to small, so SOMs can be thought of as a way of
finding a particular local minimum of the k-means algorithm
with desirable structure in the prototypes.
•Unfortunately there is in general no cost function which SOM

learning is always reducing. (But see elastic nets.)



SOM examples
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GTM:Generative Topographic Mapping

A probabilistic extension of
SOMs which consists of a
constrained mixture of
Gaussians rather than a
constrained k-means model.
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x3
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•Hidden variables x, observables y, mapping p(y|x):

p(y) =

∫

x
p(y|x)p(x)dx

Prior p(x) & mapping p(y|x) chosen to make model tractable.

• In particular, p(x) is a sum of delta-functions centred on a
regular grid in latent space. The mapping is achieved using a
fixed set of radial basis functions plus isotropic Gaussian noise:

p(y) =
∑

k

1

K

(

β

2π

)

exp

[

−
β

2
‖Wφ(xk)− y‖2

]



Principal Curves

•A “self-consistent” curve passing through a data distribution
such that the average of data which project to a point on the
curve is that point. [Hastie&Stuetzle]

•Algorithm:
P-step: project the data points xi onto the current curve x(λ)
giving λi.
C-step: refit the curve by averaging all data points that project
“nearby”: x(γ)← 〈xj〉j(γ)

• If curve is a line, it is the first principal component of the data.
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Autoencoder Neural Networks: Linear & Nonlinear
• If squared error is used on the

output, a three layer autoencoder
with a bottleneck of k units will
learn to span the first k principal
components of the data.

outputs

inputs

bottleneck
targets
= inputs

• This is because the encoder is linear, and given that the best
decoder is also linear.

•What if we use a (nonlinear) MLP for encoding?
Now the decoder must also be (a larger) MLP.

This leads to five layer
autoencoders, which can in
principle learn nonlinear manifolds
but are difficult to train. inputs

bottleneck

outputs



Coming around the final bend, looking strong,
but a little behind the clock...

•Unsupervised Learning / Density Estimation / Manifolds

• Linear (Projection) Methods

• Locally Linear (Alignment) Methods

•Nonlinear (Embedding) Methods
“Spectral” embedding methods, which set up an eigensystem
whose solution simultaneously delivers the low-dimensional
coordinates of all the training points at once:

LLE, Isomap, Laplacian Eigenmaps, Kernel PCA, Spectral
“Clustering”



Relationship Preserving Embeddings

• Problem formulation: embed high dimensional sensory
“objects” into a low dimensional “description” space so that
nearby objects in original space remain nearby in the
description (embedding) space.

• Input: Original data X i ∈ <
D

•Output: New coordinates Y i ∈ <
d (d� D) chosen so that some

aspect(s) of the original relationships between the points
preserved.

• Possibilities:
Local geometry should stay constant.
Geodesic distances should not change.
Nearby points in X should remain nearby in Y .

•Key assumptions:
1) The manifold is relatively smooth and well sampled.
2) It is easy to compare nearby points.



Locally Linear Embedding (LLE)

Wik

Wij

Yk

Yj

iY

k

j

X X

XijW

Wiki

Xi

1

3

2

Map to embedded coordinates.

Reconstruct

weights.
linearwith

Select neighbors.



LLE Step 1: Assign neighbours.

For each point, choose a surrounding neighbourhood over which the
manifold is roughly flat.

•Given: raw data consisting of N real-valued vectors X i, each of
dimensionality D.

• Pick a few∗ neighbours for each point.
Possible neighbourhood rules:

– K nearest neighbours
– points within a certain radius (ε-ball)
– more sophisticated metric based on

prior knowledge (e.g. local curvature)

Xi

•Must have sufficient data such that underlying manifold is well
sampled.



LLE Step 2: Locally linear fits.

Characterize the local geometry of each neighbourhood by weights that
linearly reconstruct X i from its neighbours.

• Local Geometry: Nearby data points lie on locally (almost)
linear patches, so a linear reconstruction of X i from its
neighbours should have small error:

min
W
E(W ) =

∑

i

|x−
∑

j

WijXj|
2 k

j

X X

XijW

Wiki

•Weight Constraints: weights must sum to unity:
∑

j Wij = 1.
Nonzero weights Wij only for neighbours of Xi.
Optimal weights subject to these constraints can be found by
solving a least squares problem.

NB: solution is invariant to rotations, translations, and rescalings
of Xi and its neighbours.



LLE Step 3: Compute embedding.

Map high-dimensional data observations X into low-dim. embedding
vectors Y representing manifold coordinates.

• Embedding cost: minY Φ(Y ) =
∑

i |y −
∑

j WijY j|
2

This cost also measures linear reconstruc-
tion errors.
But now we optimize Y i while holding the
weights Wij fixed.

Wik

Wij

Yk

Yj

iY

•Constraints:
Centre the coordinates on the origin:

∑

i y = 0.
Avoid degenerate solutions by requiring unit covariance:
1
N

∑

i yy> = I .

Optimal vectors Y i subject to these constraints are found by
solving an eigenvector problem. (Up to a rotation.)

[Φ(Y ) =
∑

ij Mij(y · Y j) with Mij = δij −Wij −Wji +
∑

k WkiWkj]



Summary of LLE

•Choose Neighbours
Assign K neighbours to each point.
This is the algorithm’s only free parameter.
Only ever need to measure local distances.
How you pick neighbours is crucial.

•Compute Weights from Neighbours
Exploit local linearity to reconstruct each point from its
neighbours using constrained least squares.

•Generate Embedding from Weights
Compute low dimensional vectors Y that are well
reconstructed by the same weights as the data by finding
bottom eigenvectors of a sparse matrix.

Embedding dims are ordered and do not change as more added.
One pass algorithm. Always finds the exact global optimum of
cost function. Has no learning rates, annealing schedules, etc.



LLE Examples



W characterizes local geometry

Weights Wij capture local geometry of manifold near X i.

• Symmetries: optimal Wij are invariant to data transformations
– rotations |Rx−

∑

j WijRXj|2 = |x−
∑

j WijXj |2 since RRT = I

– translations |(x + z)−
∑

j Wij(Xj + z)|2 = |x−
∑

j WijXj|
2 since

∑

j Wij = 1

– scalings |αx−
∑

j WijαXj |2 = α2|x−
∑

j WijXj|2 same Wopt

• Springs: Think of Wij as setting the strength of a spring
connecting Xi to Xj. Why are Wij also valid in Y-space?

Because the coordinate map
X ↔ Y is locally linear, i.e. a
rotation, translation and scaling.

Xj

Xk

Wij

Wik

iX

The springs are invariant to exactly these operations!
NB: Because of these weights, LLE achieves a more powerful
embedding than one that preserves local distances to neighb.



LLE Eigenvector Calculation

The computational bottleneck in LLE is the last step in which we find
the coordinate which minimize the embedding cost.

• Eigenvectors minimize quadratic form

Rayleigh-Ritz theorem: e(Q) =

∑

ij qiqjMij
∑

ij qiqjLij
is extremized by ~q

which are largest/smallest eigenvectors of L−1M

• Structure of M is key
We seek smallest eigenvectors of the sparse matrix

M = (I −W )>(I −W )

1. Don’t store M , only store W .
2. Easy to multiply by M using Mx = (x−Wx)−W>(x−Wx).
3. Find eigenvectors using power methods with spectral

shifting or gradient descent on RR quotient.
4. Discard bottom eigenvector [1,1,1...] (has zero eigenvalue).



LLE Example: Text

Data: word-document counts of
N=5000 words from D = 31000

encyclopedia entries.

(ability, able, academy, . . . ,
yellow, york, zone)

Neighbours: K=20 nearest
using normalized dot products.
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LLE Example: Lips

Data: many (N=9000) high resolution (D=27000) images
of one speaker’s mouth during speech.
Neighbours: K=16 nearest using Euclidean distance.



Isomap

• Josh Tenenbaum (’98) came up with a very clever way to apply
MDS to achieve nonlinear embeddings.

• Build a graph on the data that is only locally connected, and
then measure pairwise distance by path length on that graph.

•Now use those graph-derived distances as the target distances
for MDS.

0 10

10

0

10

Figure 1: (A) Intrinsically 
two−dimensional manifold 
embedded nonlinearly in 
three−dimensional space, as a 
"swiss roll". Points nearby in 
the embedding space may be far 
apart on the underlying 
manifold. (B) ISOMAP 
efficiently estimates the true 
geodesic distances by 
computing shortest paths in a 
discrete network representation 
of the manifold.A B

•Originally Isomap generated a dense eigenproblem and could
not deal with local scaling, but now there are sparse
(“landmark”) and non-isometric (“conformal”) versions.



Laplacian Eigenmaps & Spectral Clustering

• Rather than asking to maintain local geometry (as in LLE) or to
maintain all pairwise distance – emphasizing the large ones (as
in Isomap) we can ask that nearby points not be moved too far
away in the embedding.
•Define an undirected graph on neighbours, with weights:

Wij = Wji = exp
[

−‖xi − xj‖
2/2σ2

]

•Now look for a set of embeddings that minimize:
∑

ij

Wij‖yi − yj‖
2

while still keeping Y of rank at least d.
Can be found by solving a generalized eigenvector problem.
•Amazingly, this is exactly the internal representation used by

spectral clustering before it normalizes the affinity matrix and
begins the actual clustering phase.



General structure of Spectral Embedding Algorithms

•Optional: find neighbours to define a sparse graph.

• Build a (possibly sparse) affinity matrix/tensor between points.

•Munge the affinities/weights/etc. into a quadratic form
involving the unknown embedding coordinates.

•Drop the hammer: compute biggest/smallest eigenvectors.

• Read out embedding coordinates from the eigenvectors.

•Many more recent inventions/variations
(e.g. Semidefinite Embedding, Hessian LLE)



Picking neighbours is crucial

•Neighbourhood scale
Should be small enough so manifold is roughly flat. but...
Should be large enough to include a reasonable number of
neighbours at your data sampling density.
In particular, if we ultimately want up to d coordinates, each
point must have > d neighbours on average.

•Nearby Distances
If you want to define the neighbours using distance, (e.g. k-NN
or ε-ball), you need to know how to measure distances between
nearby datapoints.

•Relative positions
A single global coordinate system for the original data is not
needed. Each datapoint only needs to know the location of its
neighbours relative to itself.
In fact, most of these algorithms can work based on distances
alone. (But not the way you might think at first!)



Kernel PCA

• Since you’ve seen the Snap-Shot method, you know that PCA
can be performed either using the sample covariance matrix or
the Gram matrix.
•What’s that you say? An algorithm that depends only on the

Gram matrix? Bring on the Kernel Machine!
•Using Gaussian or other kernels we can do nonlinear

“embedding” of some original data, but often we view this as
feature extraction rather than dimensionality reduction.
• Plus, there is the preimage problem...
•However, if you insist, you can unify all spectral embedding

algorithms as a special kind of kernel PCA by defining
whatever you do before you take the eigenvectors as a
“data-dependent kernel” and whatever you do afterwards as
“computing the embedding from the kernel PCA functions”.
[Han et. al]



Comments on Spectral Embedding

•Out of sample extensions
The algorithms I discussed provide an embedding of the
training data only, but they do not provide a full mapping as
did the coordination procedures.
Recently, Bengio et. al have worked out a way of generalizing
these algorithms to new data by viewing them all as special
cases of the problem of learning the eigenfunctions of an
unknown operator.

•Manifolds which are not locally flat
Some data (e.g. fractals) have different intrinsic dimensionality
in different parts of the space.
Some data has a closed topology (e.g. sphere).



Wrapping Up

•Dimensionality reduction is a slippery business, focussing on
the geometric aspect of structure discovery.
• Linear methods are a good baseline, and very important to

know about. Often they get you quite far, and have nice linear
algebraic closed form solutions.
• Beyond that, you can try to embed each training example into a

low-dimensional space so as to preserve some stuff you like.
• If done properly even this can sometimes fall out as a nice

spectral problem with an SVD-like solution.
•Or, more ambitiously, you can try to build the “magic box”, i.e.

learn a full mapping from the high-dimensional space to the
low-dimensional space and back again, possibly by
coordinating some local models or by generalizing a spectral
embedding.
• Tons of stuff we couldn’t cover. See the references...
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