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Outline

Distance transforms
– Of binary images
– Of sampled functions
– Algorithms

Chamfer and Hausdorff distances
– Probing the distance transform

Distance transform and dilation
– Application to Hausdorff distance and learning 

linear separators

Pictorial structure flexible template models
– Using distance transforms of functions
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Distance Transforms

Map of distance to nearest features
– Computed from map of feature locations

• E.g., edge detector output

– Traditionally binary features, but need not be

Powerful and widely applicable
– Can think of as “smoothing in feature space”
– Related to morphological dilation operation
– Often preferable to explicitly searching for 

correspondences of features

Efficiently algorithms for computing
– Time linear in number of pixels, fast in practice
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Distance Transform Definition

Set of points, P, some measure of distance
DP(x) = miny∈P x - y

– For each location x distance to nearest y in P
– Think of as cones rooted at each point of P

Commonly computed on a grid Γ using
DP(x) = miny∈ Γ (x - y + 1P(y) )

– Where 1P(y) = 0 when y∈P, ∞ otherwise
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Simple Dynamic Programming 

1D case, L1 distance: |x-y|
– Two passes: 

• Find closest point on left
• Find closest on right if closer than one on left

– Incremental:
• Moving left-to-right, closest point on left either 

previous closest point or current point
• Analogous moving right-to-left for closest point 

on right

– Can keep track of closest point as well as 
distance to it
• Will illustrate distance; point follows easily
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L1 Distance Transform Algorithm

Two pass O(n) algorithm for 1D L1 norm
(for simplicity distance and not source)
1. Initialize: For all j

D[j] ← 1P[j]
2. Forward: For j from 1 up to n-1

D[j] ← min(D[j],D[j-1]+1)
3. Backward: For j from n-2 down to 0

D[j] ← min(D[j],D[j+1]+1)
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L1 Distance Transform

2D case analogous to 1D
– Initialization
– Forward and backward pass

• Fwd pass finds closest above and to left
• Bwd pass finds closest below and to right

Note does not depend on 0,∞ initialization
– Can “distance transform” arbitrary array
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L2 (Euclidean) Distance Transform 

Approximations using fixed size masks
– Analogous to L1 case
– Simple but don’t compute right answer

Exact linear time methods for L2
2

– Can compute sqrt but usually not needed
– Have traditionally been complicated to 

implement and often slow (not widely used)
– New method that is relatively simple and fast

• 1D case – lower envelope of quadratics
• Higher dimensions “cascade” of 1D cases
• Based on distance transform of function
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Distance Transform of Function

For a set of points P distance transform is 
DP(x) = miny∈P x - y

Saw that often computed using indicator 
function

DP(x) = miny∈ Γ (x - y + 1P(y))
– Where 1P(y) = 0 when y∈P, ∞ otherwise

Rather than having binary features (or 
points) have feature cost at each location

Df(x) = miny∈ Γ (x - y + f(y))
– Where f an arbitrary (sampled) function 

measuring “quality” of feature (big=bad)
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1D L1 Illustration

Distance transform of point set

Distance transform of (discrete) function
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1D L1 Case

Same dynamic programming method 
works for functions as for point sets
– Previously applied to 0,∞ now to arbitrary 

sampled function

For instance 

– Forward pass with

– Backward pass with
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L2
2 Distance Transform of Function

For L2
2 distance have a quadratics

h(x)=miny ((x-y)2 + f(y))
– Also arises in many optimization problems

Intuition: h small for inputs “near” those 
where f small
Explicit consideration of x,y yields O(n2) 
time for n grid points 
Can compute in linear time 
– Difference between discrete values
– Values lie on a grid
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Quadratic Distance Transform (DT) 

Compute h(x)=miny ((x-y)2+f(y))
Intuition: each value y defines a constraint
– Geometric view: in one dimension, lower

envelope of arrangement of n quadratics 
• Each rooted at (y,f(y))

− Related to convex hull 
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Algorithm for Lower Envelope

Quadratics ordered x1<x2< … <xn

At step j consider adding j-th to LE 

– Maintain two ordered lists

• Quadratics currently visible on LE

• Intersections currently visible on LE

– Compute intersection of j-th quadratic 
with rightmost visible on LE

• If right of rightmost intersection 
add quadratic and intersection 

• If not, this quadratic hides at least 
rightmost quadratic, remove and 
try again
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Running Time of LE Algorithm

Consider adding each quadratic just once
– Intersection and comparison constant time
– Adding to lists constant time
– Removing from lists constant time

• But then need to try again

Simple amortized analysis
– Total number of removals O(n)

• Each quadratic, once removed, never considered 
for removal again

Thus overall running time O(n)
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2D Algorithm

Horizontal pass of 1D algorithm
– Computes minimum i2 distance (in first dim)
Vertical pass of 1D algorithm on result of 
horizontal pass
– Computes minimum i2+j2 distance
– Note algorithm applies to any input (quadratics 

can be at any location)
Actual code straightforward and fast
– Each pass maintains arrays of indexes of 

visible parabolas and the intersections
– Fills in distance values at each pixel after 

determining which parabolas visible
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1D L2
2 Distance Transform

static float *dt(float *f, int n) {
float *d = new float[n], *z = new float[n];
int *v = new int[n];
int k = 0;
v[0] = 0;
z[0] = -INF;
z[1] = +INF;
for (int q = 1; q <= n-1; q++) {
float s = ((f[q]+square(q))-(f[v[k]]+square(v[k])))

/(2*q-2*v[k]);
while (s <= z[k]) {
k--;
s  = ((f[q]+square(q))-(f[v[k]]+square(v[k])))

/(2*q-2*v[k]);    }
k++;
v[k] = q;
z[k] = s;
z[k+1] = +INF; }
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DT Values From Intersections

k = 0;
for (int q = 0; q <= n-1; q++) {
while (z[k+1] < q)
k++;

d[q] = square(q-v[k]) + f[v[k]];
}
return d;

}

No reason to approximate L2 distance!
Simple to implement, fast
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Generalizations of DT

Other distance functions
– Potts: 0 when fi=fj, τ otherwise

– (Truncated) linear: min(τ, |fi-fj|)

– (Truncated) quadratic:  min(τ, (fi-fj)2)

Truncation allows for discontinuities
– Spatial non-coherence (boundaries)

All can be computed in linear time
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Distance Transforms in Matching

Chamfer measure – asymmetric
– Sum of distance transform values

• “Probe” DT at locations specified by model and 
sum resulting values

Hausdorff distance (and generalizations)
– Max-min distance which can be computed 

efficiently using distance transform
– Generalization to quantile of distance 

transform values more useful in practice

Pictorial structure models
– Flexible configuration of parts (features)
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Chamfer Measure

Asymmetric comparison of two binary 
images A,B
– Use points of A to select corresponding values 

in distance transform of B
– Sum selected values

chamf(A,B) = ∑a∈A minb∈B a-b

= ∑a∈A DB(a)

1+1+2+2+3+3+3+3+4+4+5+
12+14+15 = 72
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Hausdorff Distance

Classical definition
– Directed distance (not symmetric)

• h(A,B) = maxa∈A minb∈B a-b

– Distance (symmetry)
• H(A,B) = max(h(A,B), h(B,A))

Minimization term again simply a distance 
transform of B
– h(A,B) = maxa∈A DB(a)
– Maximize over selected values of DT

Classical distance not robust, single “bad 
match” dominates value 
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Hausdorff Matching

Partial (or fractional) Hausdorff distance to 
address robustness to outliers
– Rank rather than maximum

• hk(A,B) = ktha∈A minb∈Ba-b = ktha∈A DB(a)

– K-th largest value of DB at locations given by A

– Often specify as fraction f rather than rank

• 0.5, median of distances; 0.75, 75th percentile

1,1,2,2,3,3,3,3,4,4,5,12,14,15

1.0.75.5.25
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Hausdorff Matching

Best match
– Minimum fractional Hausdorff distance over 

given space of transformations

Good matches
– Above some fraction (rank) and/or below some 

distance

Each point in (quantized) transformation 
space defines a distance
– Search over transformation space

• Efficient branch-and-bound “pruning” to skip 
transformations that cannot be good
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Fast Hausdorff Search

Branch and bound hierarchical search of 
transformation space
Consider 2D transformation space of 
translation in x and y
– (Fractional) Hausdorff distance cannot change 

faster than linearly with translation (L1 norm)
• Similar constraints for other transformations

– Quad-tree decomposition, compute distance 
for transform at center of each cell
• If larger than cell half-width, rule out cell
• Otherwise subdivide cell and consider children
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Branch and Bound Illustration

Guaranteed (or admissible) 
search heuristic
– Bound on how good answer 

could be in unexplored region
• Cannot miss an answer

– In worst case won’t rule anything 
out

In practice rule out vast 
majority of transformations
– Can use even simpler tests than 

computing distance at cell center
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Comparing DT Matching Measures

Fractional Hausdorff distance
– Kth largest value selected from DT

Chamfer
– Sum of values selected from DT

• Suffers from same robustness problems as 
classical Hausdorff distance

• Max intuitively worse but sum also bad
– Robust variants

• Trimmed: sum the K smallest distances (same 
as Hausdorff but sum rather than largest of K)

• Truncated: truncate individual distances before 
summing
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Experiments Comparing Measures

Monte Carlo experiments with known 
object location and synthetic clutter
– Matching edge locations

Varying percent clutter
– Probability of edge 

pixel 2.5-15%

Varying occlusion
– Single missing interval, 

10-25% of boundary

Search over location,
scale, orientation 5% Clutter Image
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ROC Curves

Probability of false alarm vs. detection
– 10% and 15% occlusion with 5% clutter
– Chamfer is lowest, Hausdorff (f=.8) is highest
– Chamfer truncated distance better than trimmed

Hausdorff, f=.8

Trimmed Chamfer, f=.8

Truncated Chamfer, d=2

Chamfer
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Edge Orientation Information

Match edge orientation as well as location
– Edge normals or gradient direction

Increases detection performance and 
speeds up matching
– Better able to discriminate object from clutter
– Better able to eliminate cells in branch and 

bound search

Distance in 3D feature space [px,py,αpo]
– α weights orientation versus location
– ktha∈A minb∈B a-b  = ktha∈A DB(a) 
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ROC’s for Oriented Edge Pixels

Vast improvement for moderate clutter
– Images with 5% randomly generated contours
– Good for 20-25% occlusion rather than 2-5%

Oriented Edges Location Only
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Observations on DT Based Matching

Fast compared to explicitly considering 
pairs of model and data features
– Hierarchical search over transformation space

Important to use robust distance
– Straight Chamfer can be sensitive to outliers

• Truncated DT can be computed fast

No reason to use approximate DT 
– Fast exact method for L2

2 or truncated L2
2

For edge features use orientation too 
– Comparing normals or using multiple edge maps
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Template Clustering

Cluster templates into tree structures to 
speed matching
– Rule out multiple templates simultaneously

• Coarse-to-fine search where coarse granularity 
can rule out many templates

• Several variants: Olson, Gavrila, Stenger

Applies to variety of DT based matching 
measures
– Chamfer, Hausdorff and robust Chamfer

Use hierarchical clustering techniques 
offline on templates
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Example Hierarchical Clusters

Larger pairwise differences higher in tree 
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Application to Hand Tracking

Tree-based filtering of hand templates 
using Chamfer matching
3D model and tree of 2D hand templates
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DT and Morphological Dilation

Dilation operation replaces each point of P 
with some fixed point set Q
– P ⊕ Q = Up Uq p+q 

Dilation by a “disc” Cd of radius d replaces 
each point with a disc
– A point is in the dilation of P by Cd exactly 

when the distance transform value is no more 
than d (for appropriate disc and distance fcn.)

– x ∈ P ⊕ Cd ⇔ DP(x) ≤ d
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Dilate and Correlate Matching

Fixed degree of “smoothing” of features
– Dilate binary feature map with specific radius 

disc rather than all radii as in DT

hk(A,B) ≤ d  ⇔ |A ∩ Bd| ≥ k
– At least k points of A contained in Bd

For low dimensional transformations such 
as x-y-translation, best way to compute
– Dilation and binary correlation are very fast
– For higher dimensional cases hierarchical 

search using DT is faster 
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Dot Product Formulation

Let A and Bd be (binary) vector 
representations of A and B
– E.g. standard scan line order

Then fractional Hausdorff distance can be 
expressed as dot product
– hk(A,B) ≤ d ⇔ A•Bd ≥ k

Note that if B is perturbation of A by d 
then A•B is arbitrary whereas A•Bd= A•A
Hausdorff matching using linear subspaces
– Eigenspace, PCA, etc.
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Learning and Hausdorff Distance

Learning linear half spaces
– Dot product formulation defines linear 

threshold function
• Positive if A•Bd ≥ k, negative otherwise

PAC – probably approximately correct
– Learning concepts that with high probability 

have low error 
– Linear programming and perceptrons can both 

be used to learn half spaces in PAC sense

Consider small number of values for d 
(dilation parameter) and pick best

40

Illustration of Linear Halfspace

Possible images define n-dimensional 
binary space
Linear function separating positive and 
negative examples

000 100
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010

011

001

110
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Perceptron Algorithm

Examples xi each with label yi∈{+,-}
Set initial prediction vector v=0
For i=1, …, m
– If sign(v•xi) ≠ sign(yi)

then v=v+yixi

Run repeatedly until no misclassifications 
on m training examples
– Or less than some threshold number but then 

haven’t found linear separator

Generally need many more negative than 
positive examples for effective training
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Perceptron Algorithm

Perceptron classifier learns concepts c of 
form u•c ≥ 0
– Our problem of form u•c ≥ k
– Map into one higher dimensional space

• In practice converges most rapidly if constant 
proportional to length of vector (e.g., sqrt)

Train perceptron on dilated training data
– Positive and negative labeled examples
– Try multiple dilations pick best

Recognize by dot product of resulting 
concept with (un-dilated) image 
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Learned Half-Space Templates

Positive examples (500)

Negative examples (350,000) 

All Model
Coefs.

Pos. Model
Coefs.

Example Model (dilation d=3, picked automatically)
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Detection Results

Train on 80% test on 20% of data
– No trials yielded any false positives
– Average 3% missed detections, worst case 5%
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Flexible Template Matching

Pictorial structures
– Parts connected by springs and appearance 

models for each part
– Used for human bodies, faces
– Fischler&Elschlager introduced in 1973, recent 

efficient algorithms
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Formal Definition of Model

Set of parts V={v1, …, vn}
Configuration L=(l1, …, ln)
– Specifying locations of the parts

Appearance parameters A=(a1, …, an)
– Model for each part (e.g., template)

Edge eij, (vi,vj) ∈ E for connected parts
– Explicit dependency between part locations li, lj
Connection parameters C={cij | eij ∈ E}
– Spring parameters for each pair of connected 

parts
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Flexible Template Algorithms

Difficulty depends on structure of graph
– Which parts are connected (E) and how (C)

General case exponential time
– Consider special case in which parts translate 

with respect to common origin
• E.g., useful for faces

• Parts V= {v1, … vn}

• Distinguished central part v1

• Spring ci1 connecting vi to v1

• Quadratic cost for spring
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Efficient Algorithm for Central Part  

Location L=(l1, …, ln) specifies where each 
part positioned in image
Best location minL Σi (mi(li) + di(li,l1))
– Part cost mi(li) 

• Measures degree of mismatch of appearance ai
when part vi placed at location li

– Deformation cost di(li,l1)
• Spring cost ci1

of part vi measured with respect 
to central part v1

• E.g., quadratic or truncated quadratic function
• Note deformation cost zero for part v1 (wrt self)
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Central Part Model

Spring cost cj1: ideal location of lj wrt l1
– Translation oj=rj-r1

Tj(x)=x+oj

Spring cost deformation from this ideal
dj = (lj–Tj(l1))2

v1

v3

v2

r1

r2

r3

o2

o3
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Consider Case of 2 Parts

minl1,l2
(m1(l1) + m2(l2)+(l2–T2(l1))2)

– Where T2(l1) transforms l1 to ideal location with 
respect to l2 (offset)

minl1
(m1(l1) + minl2

(m2(l2)+(l2–T2(l1))2))
– But minx (f(x) + x–y2) is a distance transform

minl1
(m1(l1) + Dm2

(T2(l1))

Sequential rather than simultaneous min
– Don’t need to consider each pair of positions for 

the two parts because a distance
• Just distance transform the match cost function, m
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Several Parts wrt Reference Part

minL (Σi (mi(li) + di(li,l1)))

minL (Σi mi(li) + (li – Ti(l1))2)
– Quadratic distance between location of part vi

and ideal location given location of central part

minl1
(m1(l1) + 
Σi>1 minli

(mi(li)+(li–Ti(l1))2))
– i-th term of sum minimizes only over li

minl1
(m1(l1) + Σi>1 Dmi

(Ti(l1)))
• Because Df(x) = miny (f(y) + (y-x)2)

• Using distance transform of a function
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Several Parts wrt Reference 

Simple overall computation
– Match cost mi(li) for each part at each location
– Distance transform of mi(li) for each part other 

than reference part
• Shifted by ideal relative location Ti(l1) for that 

part

– Sum the match cost for the first part with the 
distance transforms for the other parts

– Find location with minimum value in this sum 
array (best match)

DT allows for flexibility in part locations
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Application to Face Detection

Five parts: eyes, tip of nose, sides of 
mouth
Each part a local image patch
– Represented as response to oriented filters

– 27 filters at 3 scales and 9 orientations
– Learn coefficients from labeled examples

Parts translate with respect to central 
part, tip of nose
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Flexible Template Face Detection

Runs at several frames per second
– Compute oriented filters at 27 orientations and 

scales for part cost mi

– Distance transform for each part other than 
central one (nose tip)
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More General Flexible Templates

Efficient computation using distance 
transforms for any tree-structured model
– Not limited to central reference part

Two differences from reference part case
– Relate positions of parts to one another using 

tree-structured recursion
• Solve with Viterbi or forward-backward 

algorithm

– Parameterization of distance transform more 
complex – transformation Tij for each 
connected pair of parts 
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Tree Structured Model Examples
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Variety of Poses
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Summary

Fast, simple algorithms for computing 
distance transforms
Wide application in image matching
– Comparing binary images using Chamfer or 

Hausdorff distance
• Extension to comparing “feature quality” maps

– Related to morphological dilation
• Use for fast Hausdorff computation and learning 

models using linear separators

– Distance transforms of functions for pictorial 
structure flexible templates
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