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Distance transforms

- Of binary images

- Of sampled functions

- Algorithms

Chamfer and Hausdorff distances
- Probing the distance transform
Distance transform and dilation

- Application to Hausdorff distance and learning
linear separators

Pictorial structure flexible template models
- Using distance transforms of functions
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Distance Transforms

= Map of distance to nearest features

- Computed from map of feature locations
e E.g., edge detector output

- Traditionally binary features, but need not be
= Powerful and widely applicable

- Can think of as “smoothing in feature space”

- Related to morphological dilation operation

- Often preferable to explicitly searching for
correspondences of features

» Efficiently algorithms for computing
- Time linear in number of pixels, fast in practice
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Distance Transform Definition

= Set of points, P, some measure of distance
Dp(x) = minyp Ix -y
- For each location x distance to nearest y in P
- Think of as cones rooted at each point of P

= Commonly computed on a grid T" using

Dp(x) = miny - (Ix -yl + 1p(y) )
- Where 1p(y) = 0 when yeP, « otherwise
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Simple Dynamic Programming

= 1D case, L, distance: |x-y|

- Two passes:
¢ Find closest point on left
¢ Find closest on right if closer than one on left

- Incremental:

e Moving left-to-right, closest point on left either
previous closest point or current point

e Analogous moving right-to-left for closest point
on right
- Can keep track of closest point as well as
distance to it
o Will illustrate distance; point follows easily
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L, Distance Transform Algorithm

= Two pass O(n) algorithm for 1D L; norm

(for simplicity distance and not source)

1. Initialize: For all j
D[j]1 < 1p[]]

2. Forward: For j from 1 up to n-1 [1]0]
D[j] « min(D[j],D[j-1]+1)

3. Backward: For j from n-2 down to O
D[j] « min(D[j],D[j+1]+1)




L, Distance Transform

= 2D case analogous to 1D
- Initialization
- Forward and backward pass
e Fwd pass finds closest above and to left
e Bwd pass finds closest below and to right
= Note does not depend on 0, initialization
- Can “distance transform” arbitrary array
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L, (Euclidean) Distance Transform

= Approximations using fixed size masks
- Analogous to L, case a1
- Simple but don’t compute right answer 110

= Exact linear time methods for L,?
- Can compute sqgrt but usually not needed

- Have traditionally been complicated to
implement and often slow (not widely used)
- New method that is relatively simple and fast

e 1D case - lower envelope of quadratics
e Higher dimensions “cascade” of 1D cases
e Based on distance transform of function
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Distance Transform of Function

= For a set of points P distance transform is
Dp(Xx) = min, p Ix -yl
= Saw that often computed using indicator
function
Dp(x) = min, - (Ix -yl + 15(y))
- Where 1p(y) = 0 when yeP, « otherwise
= Rather than having binary features (or
points) have feature cost at each location
Di(x) = min,_ - (Ix -yl + f(y))

- Where f an arbitrary (sampled) function
measuring “quality” of feature (big=bad)
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1D L, Illustration

= Distance transform of point set

= Distance transform of (discrete) function

-




1D L, Case

= Same dynamic programming method
works for functions as for point sets

— Previously applied to 0,0 now to arbitrary
sampled function

= For instance
[4]2]8[6]1]3]6]3]4]
- Forward pass with
[4]2]3[4]1]2]3]3]3]
- Backward pass with

[3[2[3]2]1]2]3]3]3]
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L,2 Distance Transform of Function

= For L,2 distance have a quadratics
h(x)=min, ((x-y)> + f(y))
- Also arises in many optimization problems

= Intuition: h small for inputs “near” those
where f small

= Explicit consideration of x,y yields O(n2)
time for n grid points

= Can compute in linear time
- Difference between discrete values
- Values lie on a grid
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Quadratic Distance Transform (DT)

= Compute h(x)=min, ((x-y)2+f(y))
» Intuition: each value y defines a constraint

- Geometric view: in one dimension, lower
envelope of arrangement of n quadratics

e Each rooted at (y,f(y))
— Related to convex hull

7\

Algorithm for Lower Envelope
» Quadratics ordered x;<X,< ... <X

n
= At step j consider adding j-th to LE J

- Maintain two ordered lists -
e Quadratics currently visible on LE
e Intersections currently visible on LE

- Compute intersection of j-th quadratic
with rightmost visible on LE

e If right of rightmost intersection
add quadratic and intersection \

¢ If not, this quadratic hides at least
rightmost quadratic, remove and
try again
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Running Time of LE Algorithm

= Consider adding each quadratic just once
- Intersection and comparison constant time
- Adding to lists constant time
- Removing from lists constant time
e But then need to try again
= Simple amortized analysis

- Total number of removals O(n)
e Each quadratic, once removed, never considered
for removal again

= Thus overall running time O(n)
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2D Algorithm

= Horizontal pass of 1D algorithm
- Computes minimum i2 distance (in first dim)
= Vertical pass of 1D algorithm on result of
horizontal pass
- Computes minimum i2+j2 distance
- Note algorithm applies to any input (quadratics
can be at any location)
= Actual code straightforward and fast

- Each pass maintains arrays of indexes of
visible parabolas and the intersections

- Fills in distance values at each pixel after
determining which parabolas visible
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1D L,2 Distance Transform

static float *dt(float *£f, int n) {
float *d = new float[n], *z = new float[n];
int *v = new int[n];
int = 0;
v[0] 0;
z[0] -INF;
z[1] +INF;
for (int
float

1; g <= n-1; g++) {

((£[ql+square(q))- (£[v[k]]+square(v[k])))
/ (2*q-2*v[k]) ;

while (s <= z[k]) {

k--;
s = ((f[qgl+square(q))-(£[v[k]l]+square(v[k])))
/ (2*q-2*v[k]) ; }
k++;
vik] = q;
z[k] = s;

z[k+1l] = +INF; }
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DT Values From Intersections

k =0;
for (int = 0; g <= n-1; g++) {
while (z[k+1l] < q)

k++;
d[q] = square(q-v[k]) + f[v[k]];
}

return d;

}

= No reason to approximate L, distance!
» Simple to implement, fast
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Generalizations of DT

= QOther distance functions
- Potts: 0 when f;=f;, t otherwise
- (Truncated) linear: min(z, [fi-f;|)
- (Truncated) quadratic: min(r, (f;-f;)2)
= Truncation allows for discontinuities
- Spatial non-coherence (boundaries)

= All can be computed in linear time
\ —

Distance Transforms in Matching

= Chamfer measure — asymmetric

— Sum of distance transform values

e "Probe” DT at locations specified by model and
sum resulting values

= Hausdorff distance (and generalizations)

- Max-min distance which can be computed
efficiently using distance transform

- Generalization to quantile of distance
transform values more useful in practice

» Pictorial structure models
- Flexible configuration of parts (features)
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Chamfer Measure

= Asymmetric comparison of two binary
images A,B
- Use points of A to select corresponding values
in distance transform of B

— Sum selected values
chamf(A,B) = X, min,_g la-bl
= 2aca Dg(a)

1+1+24+2+3+3+3+3+4+4+5+
12+14+15=172
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Hausdorff Distance

» Classical definition
- Directed distance (not symmetric)
e h(A,B) = max,_, min,_g la-bl
- Distance (symmetry)
e H(A,B) = max(h(A,B), h(B,A))
= Minimization term again simply a distance
transform of B
- h(A,B) = max,.a Dg(a)
- Maximize over selected values of DT
» Classical distance not robust, single “bad
match” dominates value
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Hausdorff Matching

= Partial (or fractional) Hausdorff distance to
address robustness to outliers

- Rank rather than maximum
o hy(A,B) = kth,_, min,_gla-bl = kth,_, Dg(a)
- K-th largest value of Dg at locations given by A

- Often specify as fraction f rather than rank
¢ 0.5, median of distances; 0.75, 75t percentile

1,1,2,2,3,3,3,3,4,4,5,12,14,15
-
25 5 75 1.0
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Hausdorff Matching

= Best match
— Minimum fractional Hausdorff distance over
given space of transformations
= Good matches
- Above some fraction (rank) and/or below some
distance
= Each point in (quantized) transformation
space defines a distance
- Search over transformation space

e Efficient branch-and-bound “pruning” to skip
transformations that cannot be good
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Fast Hausdorff Search

= Branch and bound hierarchical search of
transformation space

= Consider 2D transformation space of
translation in x and y

- (Fractional) Hausdorff distance cannot change
faster than linearly with translation (L; norm)
e Similar constraints for other transformations
- Quad-tree decomposition, compute distance
for transform at center of each cell
¢ If larger than cell half-width, rule out cell
e Otherwise subdivide cell and consider children
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Branch and Bound Illustration

= Guaranteed (or admissible)
search heuristic

- Bound on how good answer
could be in unexplored region Subdivide

e Cannot miss an answer
- In worst case won't rule anything evaluate
out
= In practice rule out vast Subdiide
majority of transformations

- Can use even simpler tests than ...
computing distance at cell center

Evaluate




Comparing DT Matching Measures

» Fractional Hausdorff distance
- Kth largest value selected from DT

= Chamfer
— Sum of values selected from DT

e Suffers from same robustness problems as
classical Hausdorff distance

e Max intuitively worse but sum also bad
- Robust variants
e Trimmed: sum the K smallest distances (same
as Hausdorff but sum rather than largest of K)
e Truncated: truncate individual distances before
summing

-

Experiments Comparing Measures

= Monte Carlo experiments with known
object location and synthetic clutter
- Matching edge locations

= Varying percent clutter -
e 9 77 o~
= Varying occlusion \ R
- Single missing interval, %9\ Lé»)(ﬂ ¥q<
10-25% of boundary ?/ v _{}jé
= Search over location, %t Q‘“@g
scale, orientation S% Clutter image.
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ROC Curves

= Probability of false alarm vs. detection
- 10% and 15% occlusion with 5% clutter
- Chamfer is lowest, Hausdorff (f=.8) is highest
- Chamfer truncated distance better than trimmed

Hausdorff, f=.8
Truncated Chamfer, d=2

Trimmed Chamfer, f=.8

Chamfer

Edge Orientation Information

= Match edge orientation as well as location
- Edge normals or gradient direction

= Increases detection performance and
speeds up matching
- Better able to discriminate object from clutter

- Better able to eliminate cells in branch and
bound search

= Distance in 3D feature space [p,,p,,aP,]
- o weights orientation versus location
- kthaEA m|nbeB|| a_b || = kthaEA DB(a)

-




ROC'’s for Oriented Edge Pixels

» Vast improvement for moderate clutter
- Images with 5% randomly generated contours
- Good for 20-25% occlusion rather than 2-5%
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Observations on DT Based Matching

Fast compared to explicitly considering
pairs of model and data features
- Hierarchical search over transformation space
Important to use robust distance
- Straight Chamfer can be sensitive to outliers
e Truncated DT can be computed fast
No reason to use approximate DT
- Fast exact method for L,2 or truncated L,2
» For edge features use orientation too
- Comparing normals or using multiple edge maps
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Template Clustering

= Cluster templates into tree structures to
speed matching
- Rule out multiple templates simultaneously

e Coarse-to-fine search where coarse granularity
can rule out many templates

e Several variants: Olson, Gavrila, Stenger
= Applies to variety of DT based matching
measures
— Chamfer, Hausdorff and robust Chamfer

= Use hierarchical clustering techniques
offline on templates

-

Example Hierarchical Clusters
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Application to Hand Tracking

» Tree-based filtering of hand templates
using Chamfer matching

= 3D model and tree of 2D hand templates

DT and Morphological Dilation

= Dilation operation replaces each point of P
with some fixed point set Q
-P®Q=U, U, ptq

= Dilation by a “disc” C4 of radius d replaces
each point with a disc

- A point is in the dilation of P by C9 exactly
when the distance transform value is no more
than d (for appropriate disc and distance fcn.)
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Dilate and Correlate Matching

» Fixed degree of “smoothing” of features

- Dilate binary feature map with specific radius
disc rather than all radii as in DT

= h(AB)<d & |AnBd| >k
- At least k points of A contained in Bd

* For low dimensional transformations such
as x-y-translation, best way to compute
- Dilation and binary correlation are very fast

- For higher dimensional cases hierarchical
search using DT is faster
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Dot Product Formulation

= Let A and B9 be (binary) vector
representations of A and B
- E.g. standard scan line order

» Then fractional Hausdorff distance can be
expressed as dot product
- h(A,B) <d < AeBd > k

= Note that if B is perturbation of A by d
then AeB is arbitrary whereas AeBd= AeA

» Hausdorff matching using linear subspaces
- Eigenspace, PCA, etc.
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Learning and Hausdorff Distance

» Learning linear half spaces
- Dot product formulation defines linear
threshold function
e Positive if AeBd > k, negative otherwise
= PAC - probably approximately correct

- Learning concepts that with high probability
have low error

- Linear programming and perceptrons can both
be used to learn half spaces in PAC sense
= Consider small number of values for d
(dilation parameter) and pick best

-

Illustration of Linear Halfspace

= Possible images define n-dimensional
binary space

» Linear function separating positive and
negative examples

111
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Perceptron Algorithm

Examples x; each with label y;e{+,-}
Set initial prediction vector v=0
Fori=1, ..., m
- If sign(vex;) = sign(y;)
then v=v+y;x;
Run repeatedly until no misclassifications
on m training examples
- Or less than some threshold number but then
haven'’t found linear separator
Generally need many more negative than
positive examples for effective training

-

Perceptron Algorithm

= Perceptron classifier learns concepts c of
form uec > 0
— Our problem of form uec > k
- Map into one higher dimensional space

e In practice converges most rapidly if constant
proportional to length of vector (e.g., sqrt)

= Train perceptron on dilated training data
- Positive and negative labeled examples
- Try multiple dilations pick best

= Recognize by dot product of resulting
concept with (un-dilated) image

-




Learned Half-Space Templates
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Detection Results

= Train on 80% test on 20% of data
- No trials yielded any false positives
- Average 3% missed detections, worst case 5%
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Flexible Template Matching

» Pictorial structures

- Parts connected by springs and appearance
models for each part

- Used for human bodies, faces

- Fischler&Elschlager introduced in 1973, recent
efficient algorithms

Formal Definition of Model

Set of parts V={v;y, ..., V,}

Configuration L=(ly, ..., |,)

- Specifying locations of the parts

Appearance parameters A=(ay, ..., a,)

- Model for each part (e.g., template)

Edge e;;, (v;,v;) € E for connected parts

- Explicit dependency between part locations |[;, |
Connection parameters C={c; | ¢; € E}

- Spring parameters for each pair of connected
parts

-
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Flexible Template Algorithms

= Difficulty depends on structure of graph
- Which parts are connected (E) and how (C)
= General case exponential time

- Consider special case in which parts translate
with respect to common origin

e E.g., useful for faces

ﬂ.: @ e Parts V= {v,, ... V,}
e Distinguished central part v,
. e Spring ¢;; connecting v; to v,

- * Quaderatic cost for spring

Efficient Algorithm for Central Part

= Location L=(ly, ..., |,,) specifies where each
part positioned in image

= Best location min_ %, (m;(l)) + d;(l;,11))
- Part cost my(l;)

e Measures degree of mismatch of appearance g;
when part v; placed at location |,

- Deformation cost d;(l;,11)

e Spring cost ¢;, of part v; measured with respect
to central par% A

e E.g., quadratic or truncated quadratic function
» Note deformation cost zero for part v, (wrt self)
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Central Part Model

= Spring cost ¢;;: ideal location of |; wrt I,
- Translation o;=r;-ry

T;(X)=x+0;
= Spring cost deformation from this ideal
dj = (I;=Tj(11))? 0,
Va
Iy
Vi
3
3
V3

Consider Case of 2 Parts

miny , (My(ly) + my(l)+(1>-Ty(14))?)
- Where T,(l;) transforms |, to ideal location with
respect to |, (offset)

min;, (my(ly) + min,, (my(l)+(1,-Tx(1;))?))

- But min, (f(x) + |x-yl?2) is a distance transform
min;, (my(ly) + sz(T2(|1))

Sequential rather than simultaneous min

- Don’t need to consider each pair of positions for
the two parts because a distance
¢ Just distance transform the match cost function, m

-




Several Parts wrt Reference Part

ming (Z; (my(1) + di(l;,11)))

ming (Z;m(l) + (I, = Ti(13))?)

- Quadratic distance between location of part v;
and ideal location given location of central part

min;, (my(ly) +
Zi1 ming (my(1)+(1-Ti(11))?))
- i-th term of sum minimizes only over |;
min;, (My(l1) + Zis1 Dy (Ti(l1)))
e Because D¢(x) = min, (f(y) + (y-x)?)
¢ Using distance transform of a function

-

Several Parts wrt Reference

= Simple overall computation
- Match cost my(l;) for each part at each location

- Distance transform of m;(l;) for each part other
than reference part

e Shifted by ideal relative location T;(l,) for that
part

- Sum the match cost for the first part with the
distance transforms for the other parts

- Find location with minimum value in this sum
array (best match)

= DT allows for flexibility in part locations

-




Application to Face Detection

» Five parts: eyes, tip of nose, sides of
mouth

= Each part a local image patch
- Represented as response to oriented filters

— 27 filters at 3 scales and 9 orientations
- Learn coefficients from labeled examples

= Parts translate with respect to central
part, tip of nose

-

Flexible Template Face Detection

= Runs at several frames per second

- Compute oriented filters at 27 orientations and
scales for part cost m;

- Distance transform for each part other than
central one (nose tip)




More General Flexible Templates

= Efficient computation using distance
transforms for any tree-structured model
- Not limited to central reference part

= Two differences from reference part case

- Relate positions of parts to one another using

tree-structured recursion
¢ Solve with Viterbi or forward-backward
algorithm

- Parameterization of distance transform more
complex - transformation T;; for each
connected pair of parts

-

Tree Structured Model Examples




Variety of Poses

Summary

» Fast, simple algorithms for computing
distance transforms
= Wide application in image matching
- Comparing binary images using Chamfer or
Hausdorff distance
e Extension to comparing “feature quality” maps
- Related to morphological dilation

¢ Use for fast Hausdorff computation and learning
models using linear separators

- Distance transforms of functions for pictorial
structure flexible templates

-
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