
Tutorial on
Distance Transforms
for Image Matching

Prof. Dan Huttenlocher
May 2004

2

Outline

Distance transforms
– Of binary images
– Of sampled functions
– Algorithms

Chamfer and Hausdorff distances
– Probing the distance transform

Distance transform and dilation
– Application to Hausdorff distance and learning

linear separators

Pictorial structure flexible template models
– Using distance transforms of functions

3

Distance Transforms

Map of distance to nearest features
– Computed from map of feature locations

• E.g., edge detector output

– Traditionally binary features, but need not be

Powerful and widely applicable
– Can think of as “smoothing in feature space”
– Related to morphological dilation operation
– Often preferable to explicitly searching for

correspondences of features

Efficiently algorithms for computing
– Time linear in number of pixels, fast in practice

4

Distance Transform Definition

Set of points, P, some measure of distance
DP(x) = miny∈P x - y

– For each location x distance to nearest y in P
– Think of as cones rooted at each point of P

Commonly computed on a grid Γ using
DP(x) = miny∈ Γ (x - y + 1P(y))

– Where 1P(y) = 0 when y∈P, ∞ otherwise

0
0
11

2 1 2

1 1
2 1 2

3
2
2
3

5

Simple Dynamic Programming

1D case, L1 distance: |x-y|
– Two passes:

• Find closest point on left
• Find closest on right if closer than one on left

– Incremental:
• Moving left-to-right, closest point on left either

previous closest point or current point
• Analogous moving right-to-left for closest point

on right

– Can keep track of closest point as well as
distance to it
• Will illustrate distance; point follows easily

6

L1 Distance Transform Algorithm

Two pass O(n) algorithm for 1D L1 norm
(for simplicity distance and not source)
1. Initialize: For all j

D[j] ← 1P[j]
2. Forward: For j from 1 up to n-1

D[j] ← min(D[j],D[j-1]+1)
3. Backward: For j from n-2 down to 0

D[j] ← min(D[j],D[j+1]+1)

∞ 0 ∞ 0 ∞ ∞ ∞ 0 ∞

∞ 0 1 0 1 2 3 0 1
1 0 1 0 1 2 1 0 1

1 0

0 1

7

L1 Distance Transform

2D case analogous to 1D
– Initialization
– Forward and backward pass

• Fwd pass finds closest above and to left
• Bwd pass finds closest below and to right

Note does not depend on 0,∞ initialization
– Can “distance transform” arbitrary array

0
0
11

2 1 2

1 1
2 1 2

3
2
2
3

0
0

∞∞
∞ ∞ ∞

∞ ∞
∞ ∞ ∞

∞
∞

∞
∞

0
0
1∞

∞ ∞ ∞

∞ ∞
∞ ∞ ∞

∞
∞

∞
∞

0
0
1∞

∞ ∞ ∞

∞ 1
∞ 1 2

∞
2
2
3

0
1

1

-
10

1

-

8

L2 (Euclidean) Distance Transform

Approximations using fixed size masks
– Analogous to L1 case
– Simple but don’t compute right answer

Exact linear time methods for L2
2

– Can compute sqrt but usually not needed
– Have traditionally been complicated to

implement and often slow (not widely used)
– New method that is relatively simple and fast

• 1D case – lower envelope of quadratics
• Higher dimensions “cascade” of 1D cases
• Based on distance transform of function

0
1

1
1.4

9

Distance Transform of Function

For a set of points P distance transform is
DP(x) = miny∈P x - y

Saw that often computed using indicator
function

DP(x) = miny∈ Γ (x - y + 1P(y))
– Where 1P(y) = 0 when y∈P, ∞ otherwise

Rather than having binary features (or
points) have feature cost at each location

Df(x) = miny∈ Γ (x - y + f(y))
– Where f an arbitrary (sampled) function

measuring “quality” of feature (big=bad)

10

1D L1 Illustration

Distance transform of point set

Distance transform of (discrete) function

11

1D L1 Case

Same dynamic programming method
works for functions as for point sets
– Previously applied to 0,∞ now to arbitrary

sampled function

For instance

– Forward pass with

– Backward pass with

4 2 8 6 1 3 6 3 4

4 2 3 4 1 2 3 3 3

3 2 3 2 1 2 3 3 3

1 0

0 1

12

L2
2 Distance Transform of Function

For L2
2 distance have a quadratics

h(x)=miny ((x-y)2 + f(y))
– Also arises in many optimization problems

Intuition: h small for inputs “near” those
where f small
Explicit consideration of x,y yields O(n2)
time for n grid points
Can compute in linear time
– Difference between discrete values
– Values lie on a grid

13

Quadratic Distance Transform (DT)

Compute h(x)=miny ((x-y)2+f(y))
Intuition: each value y defines a constraint
– Geometric view: in one dimension, lower

envelope of arrangement of n quadratics
• Each rooted at (y,f(y))

− Related to convex hull

14

Algorithm for Lower Envelope

Quadratics ordered x1<x2< … <xn

At step j consider adding j-th to LE

– Maintain two ordered lists

• Quadratics currently visible on LE

• Intersections currently visible on LE

– Compute intersection of j-th quadratic
with rightmost visible on LE

• If right of rightmost intersection
add quadratic and intersection

• If not, this quadratic hides at least
rightmost quadratic, remove and
try again

15

Running Time of LE Algorithm

Consider adding each quadratic just once
– Intersection and comparison constant time
– Adding to lists constant time
– Removing from lists constant time

• But then need to try again

Simple amortized analysis
– Total number of removals O(n)

• Each quadratic, once removed, never considered
for removal again

Thus overall running time O(n)

16

2D Algorithm

Horizontal pass of 1D algorithm
– Computes minimum i2 distance (in first dim)
Vertical pass of 1D algorithm on result of
horizontal pass
– Computes minimum i2+j2 distance
– Note algorithm applies to any input (quadratics

can be at any location)
Actual code straightforward and fast
– Each pass maintains arrays of indexes of

visible parabolas and the intersections
– Fills in distance values at each pixel after

determining which parabolas visible

17

1D L2
2 Distance Transform

static float *dt(float *f, int n) {
float *d = new float[n], *z = new float[n];
int *v = new int[n];
int k = 0;
v[0] = 0;
z[0] = -INF;
z[1] = +INF;
for (int q = 1; q <= n-1; q++) {
float s = ((f[q]+square(q))-(f[v[k]]+square(v[k])))

/(2*q-2*v[k]);
while (s <= z[k]) {
k--;
s = ((f[q]+square(q))-(f[v[k]]+square(v[k])))

/(2*q-2*v[k]); }
k++;
v[k] = q;
z[k] = s;
z[k+1] = +INF; }

18

DT Values From Intersections

k = 0;
for (int q = 0; q <= n-1; q++) {
while (z[k+1] < q)
k++;

d[q] = square(q-v[k]) + f[v[k]];
}
return d;

}

No reason to approximate L2 distance!
Simple to implement, fast

19

Generalizations of DT

Other distance functions
– Potts: 0 when fi=fj, τ otherwise

– (Truncated) linear: min(τ, |fi-fj|)

– (Truncated) quadratic: min(τ, (fi-fj)2)

Truncation allows for discontinuities
– Spatial non-coherence (boundaries)

All can be computed in linear time

20

Distance Transforms in Matching

Chamfer measure – asymmetric
– Sum of distance transform values

• “Probe” DT at locations specified by model and
sum resulting values

Hausdorff distance (and generalizations)
– Max-min distance which can be computed

efficiently using distance transform
– Generalization to quantile of distance

transform values more useful in practice

Pictorial structure models
– Flexible configuration of parts (features)

21

Chamfer Measure

Asymmetric comparison of two binary
images A,B
– Use points of A to select corresponding values

in distance transform of B
– Sum selected values

chamf(A,B) = ∑a∈A minb∈B a-b

= ∑a∈A DB(a)

1+1+2+2+3+3+3+3+4+4+5+
12+14+15 = 72

22

Hausdorff Distance

Classical definition
– Directed distance (not symmetric)

• h(A,B) = maxa∈A minb∈B a-b

– Distance (symmetry)
• H(A,B) = max(h(A,B), h(B,A))

Minimization term again simply a distance
transform of B
– h(A,B) = maxa∈A DB(a)
– Maximize over selected values of DT

Classical distance not robust, single “bad
match” dominates value

23

Hausdorff Matching

Partial (or fractional) Hausdorff distance to
address robustness to outliers
– Rank rather than maximum

• hk(A,B) = ktha∈A minb∈Ba-b = ktha∈A DB(a)

– K-th largest value of DB at locations given by A

– Often specify as fraction f rather than rank

• 0.5, median of distances; 0.75, 75th percentile

1,1,2,2,3,3,3,3,4,4,5,12,14,15

1.0.75.5.25

24

Hausdorff Matching

Best match
– Minimum fractional Hausdorff distance over

given space of transformations

Good matches
– Above some fraction (rank) and/or below some

distance

Each point in (quantized) transformation
space defines a distance
– Search over transformation space

• Efficient branch-and-bound “pruning” to skip
transformations that cannot be good

25

Fast Hausdorff Search

Branch and bound hierarchical search of
transformation space
Consider 2D transformation space of
translation in x and y
– (Fractional) Hausdorff distance cannot change

faster than linearly with translation (L1 norm)
• Similar constraints for other transformations

– Quad-tree decomposition, compute distance
for transform at center of each cell
• If larger than cell half-width, rule out cell
• Otherwise subdivide cell and consider children

26

Branch and Bound Illustration

Guaranteed (or admissible)
search heuristic
– Bound on how good answer

could be in unexplored region
• Cannot miss an answer

– In worst case won’t rule anything
out

In practice rule out vast
majority of transformations
– Can use even simpler tests than

computing distance at cell center

27

Comparing DT Matching Measures

Fractional Hausdorff distance
– Kth largest value selected from DT

Chamfer
– Sum of values selected from DT

• Suffers from same robustness problems as
classical Hausdorff distance

• Max intuitively worse but sum also bad
– Robust variants

• Trimmed: sum the K smallest distances (same
as Hausdorff but sum rather than largest of K)

• Truncated: truncate individual distances before
summing

28

Experiments Comparing Measures

Monte Carlo experiments with known
object location and synthetic clutter
– Matching edge locations

Varying percent clutter
– Probability of edge

pixel 2.5-15%

Varying occlusion
– Single missing interval,

10-25% of boundary

Search over location,
scale, orientation 5% Clutter Image

29

ROC Curves

Probability of false alarm vs. detection
– 10% and 15% occlusion with 5% clutter
– Chamfer is lowest, Hausdorff (f=.8) is highest
– Chamfer truncated distance better than trimmed

Hausdorff, f=.8

Trimmed Chamfer, f=.8

Truncated Chamfer, d=2

Chamfer

30

Edge Orientation Information

Match edge orientation as well as location
– Edge normals or gradient direction

Increases detection performance and
speeds up matching
– Better able to discriminate object from clutter
– Better able to eliminate cells in branch and

bound search

Distance in 3D feature space [px,py,αpo]
– α weights orientation versus location
– ktha∈A minb∈B a-b  = ktha∈A DB(a)

31

ROC’s for Oriented Edge Pixels

Vast improvement for moderate clutter
– Images with 5% randomly generated contours
– Good for 20-25% occlusion rather than 2-5%

Oriented Edges Location Only

32

Observations on DT Based Matching

Fast compared to explicitly considering
pairs of model and data features
– Hierarchical search over transformation space

Important to use robust distance
– Straight Chamfer can be sensitive to outliers

• Truncated DT can be computed fast

No reason to use approximate DT
– Fast exact method for L2

2 or truncated L2
2

For edge features use orientation too
– Comparing normals or using multiple edge maps

33

Template Clustering

Cluster templates into tree structures to
speed matching
– Rule out multiple templates simultaneously

• Coarse-to-fine search where coarse granularity
can rule out many templates

• Several variants: Olson, Gavrila, Stenger

Applies to variety of DT based matching
measures
– Chamfer, Hausdorff and robust Chamfer

Use hierarchical clustering techniques
offline on templates

34

Example Hierarchical Clusters

Larger pairwise differences higher in tree

35

Application to Hand Tracking

Tree-based filtering of hand templates
using Chamfer matching
3D model and tree of 2D hand templates

36

DT and Morphological Dilation

Dilation operation replaces each point of P
with some fixed point set Q
– P ⊕ Q = Up Uq p+q

Dilation by a “disc” Cd of radius d replaces
each point with a disc
– A point is in the dilation of P by Cd exactly

when the distance transform value is no more
than d (for appropriate disc and distance fcn.)

– x ∈ P ⊕ Cd ⇔ DP(x) ≤ d

0
0
11

2 1 2

1 1
2 1 2

3
2
2
3

1
1
11

1 1 1

1 1
1 1 1

0
1
1
0

1
1
11

0 1 0

1 1
0 1 0

0
0
0
0

37

Dilate and Correlate Matching

Fixed degree of “smoothing” of features
– Dilate binary feature map with specific radius

disc rather than all radii as in DT

hk(A,B) ≤ d ⇔ |A ∩ Bd| ≥ k
– At least k points of A contained in Bd

For low dimensional transformations such
as x-y-translation, best way to compute
– Dilation and binary correlation are very fast
– For higher dimensional cases hierarchical

search using DT is faster

38

Dot Product Formulation

Let A and Bd be (binary) vector
representations of A and B
– E.g. standard scan line order

Then fractional Hausdorff distance can be
expressed as dot product
– hk(A,B) ≤ d ⇔ A•Bd ≥ k

Note that if B is perturbation of A by d
then A•B is arbitrary whereas A•Bd= A•A
Hausdorff matching using linear subspaces
– Eigenspace, PCA, etc.

39

Learning and Hausdorff Distance

Learning linear half spaces
– Dot product formulation defines linear

threshold function
• Positive if A•Bd ≥ k, negative otherwise

PAC – probably approximately correct
– Learning concepts that with high probability

have low error
– Linear programming and perceptrons can both

be used to learn half spaces in PAC sense

Consider small number of values for d
(dilation parameter) and pick best

40

Illustration of Linear Halfspace

Possible images define n-dimensional
binary space
Linear function separating positive and
negative examples

000 100

101

111

010

011

001

110

41

Perceptron Algorithm

Examples xi each with label yi∈{+,-}
Set initial prediction vector v=0
For i=1, …, m
– If sign(v•xi) ≠ sign(yi)

then v=v+yixi

Run repeatedly until no misclassifications
on m training examples
– Or less than some threshold number but then

haven’t found linear separator

Generally need many more negative than
positive examples for effective training

42

Perceptron Algorithm

Perceptron classifier learns concepts c of
form u•c ≥ 0
– Our problem of form u•c ≥ k
– Map into one higher dimensional space

• In practice converges most rapidly if constant
proportional to length of vector (e.g., sqrt)

Train perceptron on dilated training data
– Positive and negative labeled examples
– Try multiple dilations pick best

Recognize by dot product of resulting
concept with (un-dilated) image

43

Learned Half-Space Templates

Positive examples (500)

Negative examples (350,000)

All Model
Coefs.

Pos. Model
Coefs.

Example Model (dilation d=3, picked automatically)

44

Detection Results

Train on 80% test on 20% of data
– No trials yielded any false positives
– Average 3% missed detections, worst case 5%

45

Flexible Template Matching

Pictorial structures
– Parts connected by springs and appearance

models for each part
– Used for human bodies, faces
– Fischler&Elschlager introduced in 1973, recent

efficient algorithms

46

Formal Definition of Model

Set of parts V={v1, …, vn}
Configuration L=(l1, …, ln)
– Specifying locations of the parts

Appearance parameters A=(a1, …, an)
– Model for each part (e.g., template)

Edge eij, (vi,vj) ∈ E for connected parts
– Explicit dependency between part locations li, lj
Connection parameters C={cij | eij ∈ E}
– Spring parameters for each pair of connected

parts

47

Flexible Template Algorithms

Difficulty depends on structure of graph
– Which parts are connected (E) and how (C)

General case exponential time
– Consider special case in which parts translate

with respect to common origin
• E.g., useful for faces

• Parts V= {v1, … vn}

• Distinguished central part v1

• Spring ci1 connecting vi to v1

• Quadratic cost for spring

48

Efficient Algorithm for Central Part

Location L=(l1, …, ln) specifies where each
part positioned in image
Best location minL Σi (mi(li) + di(li,l1))
– Part cost mi(li)

• Measures degree of mismatch of appearance ai
when part vi placed at location li

– Deformation cost di(li,l1)
• Spring cost ci1

of part vi measured with respect
to central part v1

• E.g., quadratic or truncated quadratic function
• Note deformation cost zero for part v1 (wrt self)

49

Central Part Model

Spring cost cj1: ideal location of lj wrt l1
– Translation oj=rj-r1

Tj(x)=x+oj

Spring cost deformation from this ideal
dj = (lj–Tj(l1))2

v1

v3

v2

r1

r2

r3

o2

o3

50

Consider Case of 2 Parts

minl1,l2
(m1(l1) + m2(l2)+(l2–T2(l1))2)

– Where T2(l1) transforms l1 to ideal location with
respect to l2 (offset)

minl1
(m1(l1) + minl2

(m2(l2)+(l2–T2(l1))2))
– But minx (f(x) + x–y2) is a distance transform

minl1
(m1(l1) + Dm2

(T2(l1))

Sequential rather than simultaneous min
– Don’t need to consider each pair of positions for

the two parts because a distance
• Just distance transform the match cost function, m

51

Several Parts wrt Reference Part

minL (Σi (mi(li) + di(li,l1)))

minL (Σi mi(li) + (li – Ti(l1))2)
– Quadratic distance between location of part vi

and ideal location given location of central part

minl1
(m1(l1) +
Σi>1 minli

(mi(li)+(li–Ti(l1))2))
– i-th term of sum minimizes only over li

minl1
(m1(l1) + Σi>1 Dmi

(Ti(l1)))
• Because Df(x) = miny (f(y) + (y-x)2)

• Using distance transform of a function

52

Several Parts wrt Reference

Simple overall computation
– Match cost mi(li) for each part at each location
– Distance transform of mi(li) for each part other

than reference part
• Shifted by ideal relative location Ti(l1) for that

part

– Sum the match cost for the first part with the
distance transforms for the other parts

– Find location with minimum value in this sum
array (best match)

DT allows for flexibility in part locations

53

Application to Face Detection

Five parts: eyes, tip of nose, sides of
mouth
Each part a local image patch
– Represented as response to oriented filters

– 27 filters at 3 scales and 9 orientations
– Learn coefficients from labeled examples

Parts translate with respect to central
part, tip of nose

54

Flexible Template Face Detection

Runs at several frames per second
– Compute oriented filters at 27 orientations and

scales for part cost mi

– Distance transform for each part other than
central one (nose tip)

55

More General Flexible Templates

Efficient computation using distance
transforms for any tree-structured model
– Not limited to central reference part

Two differences from reference part case
– Relate positions of parts to one another using

tree-structured recursion
• Solve with Viterbi or forward-backward

algorithm

– Parameterization of distance transform more
complex – transformation Tij for each
connected pair of parts

56

Tree Structured Model Examples

57

Variety of Poses

58

Summary

Fast, simple algorithms for computing
distance transforms
Wide application in image matching
– Comparing binary images using Chamfer or

Hausdorff distance
• Extension to comparing “feature quality” maps

– Related to morphological dilation
• Use for fast Hausdorff computation and learning

models using linear separators

– Distance transforms of functions for pictorial
structure flexible templates

59

References

G. Borgefors. Distance transformations in digital images.
CVGIP, p. 344–371, 1986.
G. Borgefors. Hierarchical chamfer matching: A parametric
edge matching algorithm. T-PAMI, p. 849–865, 1988.
P. Felzenszwalb. Learning Models for Object Recognition,
CVPR 2001.
P. Felzenszwalb and D. Huttenlocher. Distance transforms
of sampled functions, paper draft.
P. Felzenszwalb and D. Huttenlocher. Pictorial structures for
object recognition. To appear in IJCV.
D. Huttenlocher, G. Klanderman, and W. Rucklidge.
Comparing images using the Hausdorff distance. T-PAMI, p.
850–863, 1993.
C. Olson and D. Huttenlocher. Automatic target recognition
by matching oriented edge pixels. T-IP, p. 103-113, 1197.
B. Stenger, A. Thayananthan, P. Torr, and R. Cipolla.
Filtering Using a Tree-Based Estimator. ICCV 2003.

