
Chapter 8

Content-Based Image Retrieval

As large amounts of both internal and external memory become increasingly less expensive
and processors become increasingly more powerful, image databases have gone from an ex-
pectation to a �rm reality. Image databases exist for storing art collections, satellite images,
medical images, and general collections of photographs. Uses vary according to application.
Art collection users may wish to �nd work by a certain artist or to �nd out who painted a
particular image they have seen. Medical database users may be medical students study-
ing anatomy or doctors looking for sample instances of a given disease. General collections
might be accessed by illustrators looking for just the right picture for an article or book. The
domain of this application is enormous; one user might want to �nd images of horses, an-
other might want sunsets, and a third might be looking for an abstract concept, such as love.

Image databases can be huge, containing hundreds of thousands or millions of images. In
most cases they are only indexed by keywords that have to be decided upon and entered into
the database system by a human categorizer. However, images can be retrieved according
to their content, where content might refer to color distributions, texture, region shapes,
or object classi�cation. While the state of segmentation and recognition algorithms is still
primitive, commercial and research systems have been built and are already in use; demo
systems are often available on the World Wide Web. This chapter explores the methods by
which humans can retrieve images without resorting to a keyword search.

8.1 Image Database Examples

Some image databases have been constructed just to show how a particular retrieval system
works. The IBM QBIC Project Database is an example of this kind. QBIC is a research
system that led to a commercial product developed and sold by IBM. It retrieves images
based on visual content, including such properties as color percentages, color layout, and
texture. Virage, Inc. developed a competing product, the Virage search engine, which can
retrieve images based on color, composition, texture, and structure. These and other image
search engines can be used to search databases that are provided by other institutions. For
example, the Fine Arts Museums of San Francisco have provided QBIC access to their Im-
agebase, a collection of digitized paintings. A Renoir painting from this collection is shown
in Figure 8.1a. Similar digital art collections are being created in many major cities of the

1

2 Computer Vision: Mar 2000

a) Renoir painting image

b) Amethyst image

Figure 8.1: Images from digital collections. (Pierre-Auguste Renoir painting image, Land-
scape at Beaulieu, c. 1893, courtesy of the Fine Arts Museums of San Francisco, Mildred
Anna Williams Collection, 1944.9; amethyst image courtesy of the Smithsonian Institution,
1992.)

world.

In addition to art collections, there are general image collections whose individual images
are available for licensing by private customers who may want them for marketing products
or illustrating articles. One of the biggest is the Corbis Archive, which contains more than
17 million images, with nearly one million in digital format and growing. This archive tries
to capture the full range of human expression and perception; it contains such categories
as history, art, entertainment, science and industry, and animals. Corbis provides retrieval
of its images by keyword and by browsing. Another company, PhotoDisc, also provides an
online image database organized by categories and searchable through keywords.

In addition to artwork and photographs, there are scienti�c and medical image collec-
tions. The National Library of Medicine provides a database of Xrays, CT scans, MRI
images and color cross-sections, taken at very small intervals along the bodies of a male and
a female cadaver. There are over 14,000 images available for people who want to use them

Shapiro and Stockman 3

for medical research. The National Aeronautics and Space Administration (NASA) collects
huge databases of images from its satellites and makes them available for public acquisition
(for a fee). The United States Geological Survey (USGS) provides a web search capability
for users who wish to �nd and order data sets including digital satellite and aerial images.
Finally, the World Wide Web itself is a database that contains both text and large numbers
of images. Search engines for �nding images on the Web, based on keywords and, to a
limited extent, on image content are being developed.

8.2 Image Database Queries

Given a database of images, we must have some way, other than searching through the whole
set, to retrieve them. Companies that make databases of images available to their customers
will general have a selection process for determining which images should be added to the
collection and a categorization process for assigning general categories and other keywords
to the selected images. Images appearing on the World Wide Web will usually have a cap-
tion from which keywords can be obtained automatically.

In a relational database system, entities can be retrieved based on the values of their
textual attributes. Attributes used to retrieve images might include general category, names
of objects present, names of people present, date of creation, and source. The images can be
indexed according to these attributes, so that they can be rapidly retrieved when a query is
issued. This type of textual query can be expressed in the SQL relational database language,
which is available for all standard relational systems. For example, the query

SELECT * FROM IMAGEDB

WHERE CATEGORY = 'GEMS' AND SOURCE = 'SMITHSONIAN'

would �nd and return all images from the set named IMAGEDB whose CATEGORY at-
tribute was set to 'GEMS' and whose SOURCE attribute was set to 'SMITHSONIAN'.
The object would be to retrieve images of the gem collection of the Smithsonian Institute.
Figure 8.1b shows an amethyst image from this collection. The amethyst image would be
retrieved along with many other gem images. In order to allow more selective retrievals, a
descriptive set of keywords would have to be stored for each image. In a relational database,
KEYWORD would be an attribute that could have multiple values for each image. So the
amethyst image might have values of 'AMETHYST', 'CRYSTAL', and 'PURPLE' as its
keywords, and could be retrieved according to all three or any of the three, depending on
the desires of the user. For example, the SQL query

SELECT * FROM IMAGEDB

WHERE CATEGORY = 'GEMS' AND SOURCE = 'SMITHSONIAN'

AND (KEYWORD = 'AMETHYST' OR KEYWORD = 'CRYSTAL'

OR KEYWORD = 'PURPLE')

retrieves all images from the set named IMAGEDB, whose CATEGORY is 'GEMS', whose
SOURCE is 'SMITHSONIAN', and which has a KEYWORD value of 'AMETHYST', 'CRYS-
TAL', or 'PURPLE'. This will retrieve more than just the amethyst image; the user will be
able to browse through and select images from the set returned.

4 Computer Vision: Mar 2000

a) Image with pigs b) Image with no pigs

Figure 8.2: Pig images returned by keyword search.

There is a limit to what can be done with the keyword approach. Human coding of
keywords is expensive and is bound to leave out some terms by which users will want to
reference an image. In web databases, using HTML captions can help to automate, but
also provides only limited indexing capability. Furthermore, some of the returned images
may turn out to look very di�erent than the user expects from the automatically derived
keywords. Figure 8.2 shows two images returned from a web search with the keyword 'pigs'.

Given that keywords alone are insu�cient, we will explore other methods for retrieving
images that can be used instead of or in addition to keywords.

Exercise 1 Keyword Queries

Give an SQL query that will retrieve the image of Figure 8.2a, but will not retrieve the
image of Figure 8.2b. Use whatever categories and keywords you think are appropriate.

8.3 Query-by-Example

Query-by-example is database terminology for a query that is formulated by �lling in values
and constraints in a table and can be converted by the system to SQL. The �rst QBE system
was developed by IBM; today, Microsoft Access is a good example of this type of system.
In standard relational databases, where the values of attributes are mainly text or numeric
values, query-by-example merely provides a convenient interface for the user, without any
additional power.

In image databases, the very idea of query-by-example is exciting. Instead of typing a
query, the image database user should be able to show the system a sample image, or paint
one interactively on the screen, or just sketch the outline of an object. The system should
then be able to return similar images or images containing similar objects. This is the goal
of all content-based image retrieval systems; each one has its own ways of specifying queries,
determining similarity between a query and an image in the database, and of selecting the
images to be returned.

Shapiro and Stockman 5

 Images 1-8 out of 41

view full size view full size view full size view full size

view full size view full size view full size view full size

Columns: Rows:

Figure 8.3: Results of a QBIC search based on color layout similarity; the query is the
example image shown in the top left position (images courtesy of Egames).

To keep our discussion general, let us consider a query as an example image plus a set
of constraints. The image may be a digital photograph, a user-painted rough example, a
line-drawing sketch, or empty, in which case the retrieval set must only satisfy the con-
straints. The constraints may be keywords that should be present in some indexing system
or may specify objects that should be in the image and even spatial relationships among
them. In the most common case, the query is a digital image that is compared to images
in the database according to an image distance measure. When the distance returned is
zero, the image exactly matches the query. Values larger than zero indicate various degrees
of similarity to the query. Image search engines usually return a set of images in order of
their distance to the query. Figure 8.3 illustrates the results of a QBIC search based on its
color layout distance measure. The images shown were the eight most similar images to the
query image, which is shown in the upper left position as it is most similar to itself.

6 Computer Vision: Mar 2000

8.4 Image Distance Measures

The judgment of how similar a database image is to a query is dependent on which image
distance measure or measures are used to judge similarity. There are four major classes of
similarity measures:

1. color similarity

2. texture similarity

3. shape similarity

4. object and relationship similarity

8.4.1 Color Similarity Measures

Color similarity measures are often very simple. They compare the color content of one
image with the color content of a second image or of a query speci�cation. For example,
QBIC allows users to specify a query in terms of color percentages. The user chooses up to
�ve colors from a color table and indicates the desired percentage of each color. QBIC looks
for images that are closest to having these color percentages. The particular placement of
the colors within the image is not a factor in the search. Figure 8.4 shows a set of images
returned for a query that speci�ed 40% red, 30% yellow, and 10% black. While the colors
returned are very similar in each of the returned images, the images have very di�erent
compositions.

A related technique is color histogram matching, as discussed in Chapter 6 and used for
vegetable recognition in Chapter 16. Users can provide a sample image and ask the system
to return images whose color histogram distance to the sample is low. Color histogram
distances should include some measure of how similar two di�erent colors are. For example,
QBIC de�nes its color histogram distance as

dhist(I;Q) = (h(I) � h(Q))TA (h(I) � h(Q)) (8.1)

where h(I) and h(Q) are the K-bin histograms of images I and Q, respectively, and A is
a K � K similarity matrix. In this matrix colors that are extremely similar should have
similarity values close to one, while colors that are very di�erent should have similarity
values close to or equal to zero.

Color layout is another possible distance measure. It is common for the user to begin
with an empty grid representing the query and to choose colors for each of the grid squares
from a table. In Figure 8.5, the user has selected two colors from the color matrix shown at
the upper left and has painted them onto the 6 � 6 spatial layout grid shown at the upper
right. The images shown are those that were judged most similar to the query according
to a simple color layout distance measure. As was shown in Figure 8.3, it is also possible
to start with an example image and have the system return other images that have spatial
color distributions that are similar to it.

Color layout measures that use a grid require a grid square color distance measure d̂color
that compares each grid square of the query to the corresponding grid square of a potential

Shapiro and Stockman 7

 Images 1-8 out of 50

view full size view full size view full size view full size

view full size view full size view full size view full size

Figure 8.4: Results of a QBIC search based on color percentages; the query speci�ed 40%
red, 30% yellow, and 10% black (images courtesy of Egames).

8 Computer Vision: Mar 2000

Figure 8.5: Results of an image database search in which the query is
a painted grid. (Images from the MIT Media Lab VisTex database:
http://vismod.www.media.mit.edu/vismod/imagery/VisionTexture/vistex.html).

Shapiro and Stockman 9

matching image and combines the results into a single image distance

dgridded color (I;Q) =
X
g

d̂color (C
I(g); CQ(g)) (8.2)

where CI(g) represents the color in grid square g of a database image I and CQ(g) represents
the color in the corresponding grid square g of the query image Q. The representation of
the color in a grid square can itself be very simple or more complicated. Some suitable
representations are

1. the mean color in the grid square

2. the mean and standard deviation of the color

3. a multi-bin histogram of the color

The grid square distance d̂ must be able to operate on the color representation to produce
meaningful distances. For example, if mean color is represented as a triple (R;G;B), then

the measure d̂ = k(RQ; GQ; BQ)� (RI ; GI ; BI)k2 would be an obvious choice, but not nec-
essarily the best one. Instead of comparing (R;G;B) values, some systems partition color
space into a set of 3D bins and keep a table of the numerical similarities between pairs of
bins. This is the same technique that was used in QBIC's histogram distance as discussed
above.

Exercise 2 Color Histogram Distances

Implement a 4 � 4 � 4 color histogram distance measure that can imput two images and
compare either the whole images or selected subimages of each. Use this basic measure to
implement a gridded-color distance measure that allows the user to specify the dimensions
of the grid and combines the distances between each pair of corresponding grid squares into
a single distance as shown in equation 8.2. Try your gridded histogram distance measure
on several pairs of color images and with grid dimensions 1 � 1, 4 � 4, and 8 � 8.

8.4.2 Texture Similarity Measures

Texture similarity is more complex than color similarity. An image that has similar texture
to a query should have the same spatial arrangements of colors (or gray tones), but not nec-
essarily the same colors (or gray tones). The texture measures described in Chapter 7 can
be used to judge the similarity between two textures. Figure 8.6 illustrates texture-based
image retrieval, using a distance based on the Laws texture energy measures. As can be seen
from the query results, this distance is independent of the colors in the image. However,
it is also possible to develop distance measures that look for both color and texture similarity.

Texture distance measures have two aspects:

1. the representation of texture and

2. the de�nition of similarity with respect to that representation.

10 Computer Vision: Mar 2000

Figure 8.6: Results of an image database search based on tex-
ture similarity (Images from the MIT Media Lab VisTex database:
http://vismod.www.media.mit.edu/vismod/imagery/VisionTexture/vistex.html).

Shapiro and Stockman 11

The most commonly used texture representation is a texture description vector, which is
a vector of numbers that summarizes the texture in a given image or image region. The
vector of Haralick's �ve co-occurence-based texture features and that of Laws' nine texture
energy features are examples of texture description vectors. While a texture description
vector can be used to summarize the texture in an entire image, this is only a good method
for describing single texture images. For more general images, texture description vectors
are calculated at each pixel for a small (e.g. 15 � 15) neighborhood about that pixel. Then
the pixels are grouped by a clustering algorithm that assigns a unique label to each di�erent
texture category it �nds.

Given that pixels can be assigned a texture description vector and labeled as belonging
to a texture class, various texture distances can be de�ned. The simplest texture distance is
the `pick-and-click' distance. The user selects a texture by clicking on a pixel in a textured
region of the query image or by selecting the texture from a predetermined set of choices.
The selected texture is represented by its texture description vector, which is compared
to the texture description vectors associated with the database. The distance measure is
de�ned by

dpick and click(I;Q) = mini2IkT (i) � T (Q)k2 (8.3)

where T (i) is the texture description vector at pixel i of image I and T (Q) is the texture
description vector at the selected pixel or for the selected texture class of the query. Al-
though this looks like it might be computationally intensive, most of the computation can
be avoided by representing a database image by a list of its texture categories as determined
by the clustering procedure. For each database image, the query texture description vector
needs only to be compared to the texture description vectors in its list. Indexing can provide
even faster retrieval.

The pick-and-click distance requires the user to select a given texture; it cannot operate
automatically on a query image. A more general texture measure is a generalization of the
gridded measures discussed above from color to texture. A grid is placed over the query
image and a texture description vector is calculated for each grid square. The same process
is applied to the database image. The gridded texture distance is given by

dgridded texture(I;Q) =
X
g

d̂texture(T
I(g); TQ(g)) (8.4)

where d̂texture can be Euclidean distance or some other distance metric. Texture histogram
distances can be de�ned in a similar manner to color histograms. For each texture category,
the histogram speci�es the number of pixels whose texture description vector falls into that
category. One interesting and easy to compute texture histogram measure has been devel-
oped in terms of pairs of touching line segments. A line �nder (see Chapter 10) is applied
to the image to detect line segments. Pairs of line segments that touch or almost touch are
found, and the angle between each such pair of segments is computed. These angles are the
variables used to produce the texture histogram that describes the image.

8.4.3 Shape Similarity Measures

Color and texture are both global attributes of an image. Distance measures based on these
quantities try to determine if a given image has a speci�ed color or texture and whether

12 Computer Vision: Mar 2000

Exercise 3 Texture Distance Measures
Pick several di�erent texture measures from Chapter 7 and implement them as image dis-
tance measures that compare the texture in a subimage of a query image to that in a
subimage of a database image. Then write a program that implements a gridded-texture
distance measure and can call on any of these as the individual measures used in each of
the grid squares. Compare results on a set of images using each of the individual measures
and trying several di�erent grid sizes. Test on a database of images that each have several
regions of di�erent textures.

or not it occurs in the same approximate position as in the query image. Shape is not an
image attribute; it does not make sense to ask what the shape of an image is. Instead, shape
tends to refer to a speci�c region of an image. Shape goes one step further than color and
texture in that it requires some kind of region identi�cation process to precede the shape
similarity measure. In many cases, this has to be done manually, but automated segmen-
tation is possible in some domains. Segmentation is still a crucial problem to be solved,
before shape-based retrieval can be made widely available. Segmentation will be discussed
in Chapter 10; shape matching is covered here.

Two-dimensional shape recognition is an important aspect of image analysis. In Chapter
3, a number of properties of image regions were de�ned; these are what we call global shape
properties, since they refer to the shape as a whole. Two shapes can be compared accord-
ing to global properties by any of the statistical pattern recognition methods described in
Chapter 4. Shape matching can also use structural techniques whereby a shape is described
by its primitive components and their spatial relationships. Since the representation is a
relational graph, graph-matching methods can be used for matching. Graph matching is
powerful, because it is based on spatial relationships that are invariant to most 2D trans-
formations. However, graph matching can be a very slow process; the computation time is
exponential in the number of components. In the context of content-based image retrieval,
we need methods that can quickly decide how similar an image shape is to a query shape.
Often, we require shape matching methods to be invariant to translation and to size. Some-
times we also want rotational invariance, so that an object can be identi�ed whether it is
right-side-up or in some other orientation. However, this property is not always required
in image retrieval. There are many scenes in which objects usually appear in the correct
orientation. Buildings, trees, and trucks in outdoor scenes are common examples.

Shape measures abound in the computer vision literature. They range from crude global
measures that help with, but do not perform, object recognition to very detailed measures
that look for objects with very speci�c shapes. Shape histograms are examples of simple
measures that can rule out shapes that could not possibly match, but that will return many
false positives, just as color histograms do. Boundary techniques are more speci�c; they
work with a representation of the boundary of a shape and look for shapes with similar
boundaries. Sketch matching can be even more speci�c, looking not just for a single object
boundary, but for a set of image segments involving one or more objects that match a query
drawn or supplied by a user. We now discuss each of these categories.

Shape Histograms Given that histogram distances are fast and easy to compute and
that they have been used for both color and texture matching, it is natural to extend them

Shapiro and Stockman 13

to shape matching. The main problem is to de�ne the variable on which the histogram is
de�ned. Consider the shape as a region of 1's in a binary image whose other pixels are all
0's. One kind of histogram matching is projection matching using horizontal and vertical
projections of the shape. Suppose the shape has n rows and m columns. Each row and each
column become a bin in the histogram. The count that is stored in a bin is the number
of 1-pixels that appear in that row or column. This leads to a histogram of n + m bins,
which is useful only if the shape is always the same size. To make projection matching
size invariant, the number of row bins and the number of column bins can be �xed. By
de�ning the bins from the top left to the bottom right of the shape, translational invariance
is achieved. Projection matching is not rotationally invariant, but may work with small
rotations or other small geometric distortions. One way to make it rotationlly invariant is
to compute the axes of the best-�tting ellipse (as discussed in Chapter 3) and rotate the
shape until the major axis is vertical. Because we don't know which is the top of the shape,
two possible rotations must be tried. Furthermore, if the major and minor axes are about
the same length, four possible rotations must be considered. Projection matching has been
successfully used in logo retrieval.

Another possibility is to construct the histogram over the tangent angle at each pixel on
the boundary of the shape. This measure is automatically size and translationally invariant,
but it is not rotationally invariant, because the tangent angles are computed from a �xed
orientation of the shape. There are several di�erent ways to solve this problem. One way
is to rotate the shape according to its major axis as described above. Another simpler
way is to rotate the histogram instead. If the histogram has K bins, there are K possible
rotations. Incorrect rotations can be ruled out rapidly as soon as the histogram distance
being computed becomes too large. Or, the histograms can be normalized by always choosing
the bin with the largest count to be the �rst bin. Because of possible noise and distortion,
several `largest' bins should be tried.

Exercise 4 Shape Histograms

Write a program that implements a shape-histogram distance measure using the tangent
angle at each pixel on the boundary of the shape. Make it rotationally invariant by rotating
the histogram of the query image so that each bin gets a turn as the �rst bin and the result
is the minimum distance returned by each of these rotations. Use your distance measure to
compare shapes that you extract from real images either by thresholding or interactively.

Boundary Matching Boundary matching algorithms require the extraction and repre-
sentation of the boundaries of the query shape and the image shape. The boundary can be
represented as a sequence of pixels or may be approximated by a polygon. For a sequence
of pixels, one classical kind of matching uses Fourier descriptors to compare two shapes.
In continuous mathematics, the Fourier descriptors are the coe�cients of the Fourier series
expansion of the function that de�nes the boundary of the shape. In the discrete case, the
shape is represented by a sequence of m points < V0; V1; : : : ; Vm�1 >. From this sequence
of points, a sequence of unit vectors

vk =
Vk+1 � Vk��Vk+1 � Vk

�� (8.5)

14 Computer Vision: Mar 2000

and a sequence of cumulative di�erences

lk =
kX
i=1

��Vi � Vi�1
��; k > 0

l0 = 0 (8.6)

can be computed. The Fourier descriptors fa�M ; : : : ; a0; : : : ; aMg are then approximated
by

an =
1

L
�
n2�
L

�2
mX
k=1

(vk�1 � vk)e
�jn(2�=L)lk (8.7)

These descriptors can be used to de�ne a shape distance measure. Suppose Q is the query
shape and I is the image shape to be compared to Q. Let faQn g be the sequence of FDs
for the query and faIng be the sequence of FDs for the image. Then the Fourier distance
measure is given by

dFourier(I;Q) =

"
MX

n=�M

jaIn � aQn j
2

1

2

(8.8)

As described, this distance is only invariant to translation. If the other invariants are re-
quired, it can be used in conjunction with a numeric procedure that solves for the scale,
rotation, and starting point that minimize dFourier(I;Q).

If the boundary is represented by a polygon, the lengths of the sides and the angles
between them can be computed and used to represent the shape. A shape can be repre-
sented by a sequence of junction points < Xi; Yi; �i > where a pair of lines meet at coor-
dinate location (Xi; Yi) with angle magnitude �i. Given a sequence Q = Q1; Q2; : : : ; Qn

of junction points representing the boundary of a query object Q and a similar sequence
I = I1; I2; : : : Im representing the boundary of an image object I, the goal is to �nd a map-
ping from Q to I that maps line segments of the query to similar-length line segments of
the image and requires that a pair of adjacent query line segments that meet at a particular
angle � should map to a pair of adjacent image line segments that meet at a similar angle �0.

Another boundary matching technique is elastic matching in which the query shape is
deformed to become as similar as possible to the image shape. The distance between the
query shape and the image shape depends on two components: 1) the energy required to
deform the query shape into a shape that best matches the image shape and 2) a measure of
how well the deformed query actually matches the image. Figure 8.7 shows the retrieval of
images of horses through elastic matching to a query in which a user drew a rough outline
of the shape he wanted to retrieve.

Exercise 5 Boundary Matching

While there are many known algorithms for boundary shape matching, they have not been
heavily used so far in content-based retrieval. Can you explain why?

Shapiro and Stockman 15

a) The user's query shape

b) Two of the retrieved images.

c) Another retrieved image in which two horses were found.

Figure 8.7: Image retrieval by elastic matching (courtesy of Alberto Del Bimbo).

16 Computer Vision: Mar 2000

Sketch Matching Sketch matching systems allow the user to input a rough sketch of the
major edges in an image and look for full color or gray-scale images that have matching
edges. In the ART MUSEUM system, the database consists of full-color images of famous
paintings. The color images are preprocessed as follows to obtain an intermediate form
called an abstract image.

1. Apply an a�ne transform to reduce the image to a prespeci�ed size, such as 64 � 64
pixels and a median �lter to remove noise. The result is a normalized image.

2. Detect edges using a gradient-based edge-�nding algorithm. The edge �nding is per-
formed in two steps: �rst global edges are found with a global threshold that is based
on the mean and variance of the gradient; then local edges are selected from the global
according to locally-computed thresholds. The result is called the re�ned edge image.

3. Perform thinning and shrinking on the re�ned edge image. The �nal result is called
the abstract image. It is a relatively clean sketch of the edges of the original image.

When the user enters a rough sketch as a query, it is also converted to the normalized
size, binarized, thinned, and shrunk. The result of this processing is called the linear sketch.
Now the linear sketch must be matched to the abstract images. The matching algorithm is
correlation-based. The two images are divided into grid squares. For each grid square of
the query image, the local correlation with the corresponding grid square of the database
image is computed. In order to be more robust, the local correlation is computed for several
di�erent shifts in the position of the grid square on the database image and the maximum
correlation over all the shifts is the result for that query grid square. The �nal similarity
measure is the sum of each of the local correlations. The distance measure is the inverse of
this similarity measure. In terms of our previous notation, it can be expressed as

dsketch(I;Q) =
1P

gmaxn[d̂correlation(shiftn(A
I(g)); LQ(g))]

(8.9)

where AI(g) refers to grid square g of the abstract image computed from database image
I, shift(AI (g)) refers to a shifted version of grid square g of the same abstract image, and
LQ(g) refers to grid square g of the linear sketch resulting from query image Q.

Exercise 6 Sketch Matching

Design and implement a sketch-matching distance measure along the lines of the ART
MUSEUM system. Use it to retrieve a set of known images according to the user's sketch.

8.4.4 Object Presence and Relational Similarity Measures

Although most of the distance measures o�ered by the �rst image search engines involve
color, texture, and shape, these are not the quantities that most end users want to see. End
users tend to ask for images containing certain entities, which can be particular objects,
such as people or dogs or can be abstract concepts, such as happiness or poverty. The �rst
systems to o�er object recognition have looked for such objects as human faces, human
bodies, and horses. This is an area that will require further research in object recognition
in order to be useful in image retrieval.

Shapiro and Stockman 17

Figure 8.8: Faces detected by a neural-net-based face �nder (courtesy of Henry Rowley and
Takeo Kanade).

Face Finding Face �nding is important because it allows us to search for images con-
taining people. It is di�cult because faces are found in all sizes and locations in an image,
can be in a frontal or other view, and come in a variety of colors. A system developed at
Carnegie-Mellon University employs a multiresolution approach to solve the size problem.
It converts color images to gray scale to avoid color di�erences, normalizes for lighting, and
expands the gray-tone range through histogram equalization. It then uses a neural net clas-
si�er that was trained on 16,000 images of faces and non-faces to perform the recognition.
The neural net receives an image of 20 � 20 = 400 intensity values as its input and classi�es
it as a face or non-face. While it is di�cult to extract an exact algorithm from a neural net,
a sensitivity analysis showed that the network relies most heavily on the eyes, then on the
nose, and then on the mouth area of the 20 � 20 image. The method works well, �nding
most, but not all frontal views of faces, as shown in Figure 8.8. It is not generally extensible
to other objects unless they have a very particular pattern that shows up in the same way
that the eyes, nose, and mouth do in gray tone images.

Flesh Finding Another way of �nding objects is to �nd regions in images that have the
color and texture usually associated with that object. One of the �rst e�orts in this area
was focused on �nding images of naked people, which has the useful application of �ltering
out pornography from query result sets. The method developed by Fleck and Forsyth has
two main steps: 1) �nding large regions of potential
esh and 2) grouping these regions to
�nd potential human bodies.

The
esh �lter operates at the pixel level. The initial RGB image is transformed into
log-opponent space as follows:

18 Computer Vision: Mar 2000

I = L(G) (8.10)

Rg = L(R)� L(G) (8.11)

By = L(B) �
L(G) + L(R)

2
(8.12)

where L(x) is de�ned by

L(x) = 105 log10(x + 1 + n) (8.13)

and n is a random noise value from the range [0,1]. The I component is used to produce a
texture amplitude map as follows:

texture = med2(jI �med1(I)j) (8.14)

where med1 and med2 are two separate median �lters of di�erent sizes (med2 is 1.5 times
the size of med1). The texture amplitude map is used to �nd regions of low texture, since
skin in images tends to have a very smooth texture.

Hue and saturation are used to select the regions whose color matches that of skin.
The Rg and By images are also median �ltered before being used in the calculations. The
conversion from log opponent space to hue and saturation is given by

hue = atan(Rg; By) (8.15)

saturation =
q
R2
g +B2

y (8.16)

If a pixel falls into either of the following two ranges, it is marked as a skin pixel.

1. texture < 5; 110 < hue < 150; 20 < saturation < 60

2. texture < 5; 130 < hue < 170; 30 < saturation < 130

Note that all the constants used above are from the original work and can be modi�ed for
di�erent data sets or user preference.

The skin map is a binary array where 1-pixels are skin pixels and 0-pixels are non-skin
pixels. This array can be processed by a morphological closing operation to produce a
cleaner result. Once the images with skin regions have been found, they can be checked for
1) having enough
esh to be considered pornography (30% of the image was used) and 2)
having regions in appropriate spatial relations to be considered human body parts.

Exercise 7 Flesh and Face Finding

Implement a
esh �nder to �nd regions of
esh color. Select regions of a speci�ed size and
larger and try to �nd evidence of facial features: in particular, the eyes, nose, and mouth, in
that order of priority. Based on the features you �nd, assign to each region the probability
of being a face.

Shapiro and Stockman 19

Original Image Segmentation Symbolic Representation

Figure 8.9: Objects and spatial relationships that can be extracted from images and used
for retrieval. (Original image licensed from Corel Stock Photos.)

Spatial Relationships Once objects can be recognized, their spatial relationships can
also be determined, and queries can be formulated that require a certain set of named ob-
jects in predetermined spatial relationships. This is the �nal step in the image retrieval
hierarchy. In recent work at Berkeley and in similar work at Santa Barbara, researchers
have sucessfully used both color and texture to segment images into regions that often cor-
respond to objects or scene backgrounds. Such objects as tigers and zebras that stand out
well and have a particular color/texture pattern can be found in this way. Backgrounds
such as jungle or sky or beach can also be isolated. Figure 8.9 gives an example of this type
of segmentation process. The original color image is shown at left, and its segmentation into
regions is shown at center. A symbolic representation of the image in which the regions of
interest are depicted as ellipses is shown at right. This representation can be used to con-
struct a relational graph whose nodes are the classi�cations of the regions and whose edges
represent spatial relationships. Now relational matching techniques can be used to create
relational distance measures for image retrieval. Although the system shown here doesn't
go that far, Del Bimbo has developed a retrieval system that could use this representation
as its input. This system allows users to construct queries by placing selected icons in spa-
tial relationships on the query screen and returns images having the corresponding objects
in those relationships. Figure 8.10 shows an example of retrieval by this spatial query system.

Exercise 8 Retrieval by Objects and Relationships

Obtain or write a program that segments a color image into regions based on color and, if
possible, texture. Run the program on a set of training images in which each class of object,
such as tiger, sky, jungle, is present in several images. Train a classi�cation algorithm on
these known regions according to their color and texture properties. Write a program that
uses the segmenter and classi�er to produce a set of labeled regions for an input image
and then computes the spatial relationships above, below, left-of, right-of, and adjacent-to

between pairs of regions. Then write an interactive front end that allows users to input
a graph structure in which the nodes are objects from the training set and the edges are
the required relationships. The program should return all database images that satisfy the
user's query.

20 Computer Vision: Mar 2000

Query Window Retrieved Image

Figure 8.10: Results of a spatial-relationship query. (Figure courtesy of Alberto Del Bimbo
with permission of IEEE. Reprinted from \Symbolic Description and Visual Querying of
Image Sequences using Spatio-Temporal Logic," by A. Del Bimbo, E. Vicario, D. Zingoni,
IEEE Transactions on Knowledge and Data Engineering, Vol. 7, No. 4, Aug. 1995. c

1995 IEEE)

8.5 Database Organization

Large databases of images, like any other large databases, are too big to search the whole
database for images that satisfy a given query. Instead, the images must be organized and
indexed so that only a fraction of them are even considered for any one query. There are
standard methods for indexing numeric and textual data that are used in most relational
database systems. Methods for indexing spatial data also exist and have been used, in
particular, for geographic information systems. Methods for indexing images for content-
based image retrieval are being developed for current research systems.

8.5.1 Standard Indexes

In most relational databases, the user can specify an attribute on which an index is to be
built. Usually this attribute is an important key associated with each data record. For
example, if the database contains records of the employees who work for a certain company,
then the social security number would be a good attribute to use to index the data. Since
everyone has a unique social security number, this attribute is called a primary key. If the
data is often accessed by some other attribute, such as last name of employee, a separate
index can be built for it.

In a relational database, an index is a data structure with which the system can look up
a given attribute value and rapidly �nd the set of all records in the database that have that
value for that attribute. There are two common types of indexes used in relational database
systems: hash indexes and B-tree indexes. Hash indexes allow rapid determination of the
set of data records that have exactly the attribute value speci�ed in the query. B-tree or
B+-tree indexes allow a speedy search for records whose attribute values lie in the range
speci�ed by a query.

Shapiro and Stockman 21

Hash Indexes A hash index applies the theory of the hash table to access a large set of
records in a database. The assumption is that there is a potentially large set of possible key
values and only a fraction of these are ever present in the database at one time. Suppose
that the database consists of a �le of N records. Each record contains several di�erent
�elds including one �eld for the key values. The access mechanism for the hash index is a
hash function that maps any key value into an address in the �le that contains (or some-
times points to) a database record containing the particular key value. If the key values
are numeric, then one simple hash function is f(x) = x mod N , which reduces to dividing
x by N and using the remainder of the division as the record number of the record to be
accessed. Figure 8.11 shows a hash index for a database with numeric keys. The hash table
has ten positions numbered 0 through 9 (a real hash table would be much bigger). The hash
function being used is f(x) = x mod 10. The query shown is asking for all records whose
key value is equal to 45, which hashes to positon 5 in the hash table.

0

1

2

3

4

5

6

7

8

9

QUERY

KEY=45 45 45

HASH TABLE

data data

Figure 8.11: A sample hash index.

If each key value hashes to a di�erent location in the table, then the access time for any
given key is constant. Generally, this doesn't happen. Instead, several di�erent keys may
hash to the same location. This phenomenum is called a collision and solutions to it can
be found in any data structures text. The solution shown in the �gure is to keep a linked
list of all records whose keys hash to the same location. The end result, in any case, is that
the access process may involve a small amount of search, rather than being a simple direct
access, but for good hash functions and tables that are not too full, the access time is still
approximately constant. Because of the nature of the hashing process, it is most suitable for
an exact match constraint of the form KEY = V ALUE and is less useful for range queries.

B+-Tree Indexes B-trees and B+-trees are balanced multi-way search trees that can be
used for indexing and are suitable for range queries. B-trees have values of keys and data
at both internal and leaf nodes, while B+ trees have data only at leaf nodes. We will con-
centrate on B+ trees, since the data in a database should be separate from the index.

A search tree of order p is a tree in which each node contains � p � 1 key values and
p pointers. A B+-tree is a search tree that has one format for internal nodes and a second

22 Computer Vision: Mar 2000

format for leaf nodes. Each internal node of a B+-tree has the following constraints:

1. It has the format < P1;K1; P2;K2; : : : ; Pq�1;Kq�1; Pq > where each Pi is a pointer to
another node and each Ki is a key value. Intuitively, Pi�1 points to a subtree whose
nodes contain keys with values less than or equal to Ki, while Pi points to a subtree
whose nodes contain keys with values greater than Ki.

2. If it is a nonroot node, it has at least d(p=2)e subtree pointers.

3. If it is a root node, it has at least 2 subtree pointers.

Each leaf node of a B+-tree satis�es the following:

1. It has the form < K1; P r1;K2; P r2; : : : ;Kq�1; P rq�1 >;Pnext > where Ki is a key,
Pri is a data pointer, and Pnext points to the next leaf node.

2. Pri points to a record whose search key is Ki or to a block of such records if the search
�eld of the index is not a key of the �le.

3. Each leaf node has b(p=2)c values.

4. All leaf nodes are at the same level of the tree.

Internal nodes may have a di�erent order p than leaf nodes; the goal is usually to �t each
type of node into the physical block of storage that is the unit amount transferred from disk
to internal memory.

To �nd a given key value or range of values in a B+-tree, the retrieval system starts
at the root of the tree. It reads that node into memory and performs a binary search of
the keys in that node. If it �nds two adjacent keys values in the node between which the
given key value lies, the pointer between them points to the subtree that will contain the
given key value or the smallest value in the given key range. If the given key value is less
than the �rst key value in the node, the pointer to the left of this key value references the
appropriate subtree. Similarly, if the given key value is greater than the last key value in
the node, the pointer to the right of this key value references the correct subtree. Once the
appropriate subtree has been identi�ed, it becomes the root of the tree to be searched. The
retrieval system performs this operation recursively until it reaches a leaf node.

In the leaf node, a binary search is again performed to �nd the given key or starting
key value Ki. The associated pointer Pi then points to the data record containing this key
value. If only one key value is sought, the associated record can now be returned. If this
is a range search, the Pnext pointers in the data records can be used to �nd the remaining
data records until the end of the speci�ed key range is encountered.

Figure 8.12 gives an example B+-tree that indexes database records with numeric keys
and image data. The internal nodes are shown with solid rectangles, and the leaf nodes
are shown with dashed rectangles. The root node points to three di�erent subtrees: those
with key values less than or equal to 100, those with key values between 100 and 200, and
those with key values greater than 200. The subtree with key values between 100 and 200 is
shown. Its root points to two leaf nodes: one with key values less than 110 and one with key
values between 110 and 150. The leaf nodes contain some actual key values and associated

Shapiro and Stockman 23

200100

150110

image image image
data data data

subtree with key values <= 100 subtree with key values > 200

105 108 115

Figure 8.12: A sample B+-tree index.

image data �les.

B+ trees are
exible and e�cient and are used heavily in relational database systems.
They can be used in image database systems to index single numeric or text �elds associated
with an image. They were not intended to be used to index multi-dimensional data.

8.5.2 Spatial Indexing

Spatial information systems contain data that is multi-dimensional. A number of structures
have been proposed for spatial indexing. Quadtrees are hierarchical structures of degree
four that break up the search space for 2D data into four sub-quadrants at each level of
the tree. Quad trees can be used to represent regions in binary images. K-d trees are an
extension of binary search trees, which allow search for k-dimensional data. R-trees are an
extension of B-trees to higher dimensions and are suitable for a variety of spatial information
system applications. In an R-tree, a data object is indexed by an n-dimensional minimum
bounding rectangle (MBR), which bounds the space occupied by the object. Each actual
data object is referenced by a unique identi�er (ID). The leaf nodes of the R-tree contain
the data object IDs. The internal nodes contain entries of the form (MBR,CHILD) where
CHILD is a pointer to a lower node in the R-tree and MBR covers all the rectangles in the
lower node's entries. Figure 8.13 shows a sample R-tree index for a collection of 2D objects.
The distribution of the rectangles depends on the order in which the tree was constructed
and the exact R-tree construction algorithm used. Variants such as R+-trees and R�-trees
also exist.

8.5.3 Indexing for Content-Based Image Retrieval with Multiple

Distance Measures

The above methods can be used to index images for retrieval via simple distance measures
that are based on a single attribute or a small number of attributes. They are not suitable for

24 Computer Vision: Mar 2000

R1 R2

A

E

C

B

D

R1

R4

R2

B C DR3 R4

A E

R3

Collection of Indexed Rectangles

R-Tree

Figure 8.13: A sample R-tree index for 2D data. The ellipses represent the data objects and
the indexing rectangles are shown with dashed lines. Rectangle R1 has been broken down
further into rectangles R3 and R4, each of which contain a single data object. Rectangle
R2 has not been broken down further and contains three data objects: B, C, and D.

Shapiro and Stockman 25

a larger, general system that provides the user with the choice of a number of base distance
measures and methods to combine them. Such a system requires a more
exible form of
organization and indexing. If the base measures are metrics, then the triangle inequality
property can be used to provide a nonstandard indexing method. The triangle inequality
says that if Q is a query image, I is a database image, and K is a specially-selected key

image, then
d(I;Q) � jd(I;K)� d(Q;K)j

for any image distance measure d. Thus by comparing the database and query images to a
third key image, a lower bound on the distance between the query image and the database
image can be obtained.

Consider �rst the case of a single distance metric d. A set of key images can be selected
from the database; intuitively, they should represent the di�erent classes of scenes in the
database. The query image Q is compared to each of the keys, K1;K2; : : : ;KM , obtaining a
set of distances d(Q;K1); d(Q;K2); : : : ; d(Q;KM). Suppose that the user has speci�ed that
all images with distance less than T from the query Q should be returned. Then for each
key Ki, all images I such that

jd(I;Ki) � d(Q;Ki)j > T

can be immediately ruled out, since d(I;Q) is already known to be too large. A data
structure called the triangle-trie has been designed to take advantage of this approach and
to rule out most of the images in a database from direct comparison to the query. The
technique has also been extended to handle dynamically de�ned distance measures that are
linear or Boolean combinations of the base distance measures.

Exercise 9 Indexing

Suppose a set of images is to be indexed according to Laws' texture energy measures.
Explain how you could use R-trees as your indexing mechanism for this system.

8.6 References

1. R. Baeza-Yates, W. Cunto, U. Manber, and S. Wu, \Proximity matching using �xed-
queries trees," Combinatorial Pattern Matching, pp 198{212, Springer-Verlag, June
(1994).

2. A. P. Berman, \A new data structure for fast approximate matching," Technical Re-
port 94-03-02, Department of Computer Science and Engineering, University of Wash-
ington, (1994).

3. A. P. Berman and L. G. Shapiro, \A Flexible Image Database System for Content-
Based Retrieval," Computer Vision and Image Understanding, Vol. 75, Nos. 1-2, pp.
175-195 (1999).

4. C. Carson, S. Belongie, H. Greenspan, and J. Malik, \Region-Based Image Querying,"
in Proc. IEEE Workshop on Content-Based Access of Image and Video Libraries,
(1997).

26 Computer Vision: Mar 2000

5. A. Del Bimbo, E. Vicario, D. Zingoni, \Sequence retrieval by contents through spatio
temporal indexing," IEEE Simposium on Visual Languges pp. 88-92, (1993).

6. A. Del Bimbo, P. Pala, S. Santini, \Visual image retrieval by elastic deformation of
object sketches," IEEE Symposium on Visual Languages, pp. 216-223, (1994).

7. M. M. Fleck, D. A. Forsyth, and C. Pregler, \Finding Naked People," Proceddings of

the European Conference on Computer Vision, Springer-Verlag, 1996, pp. 593-602.

8. Forsyth, D. A., J. Malik, M. M. Fleck, H. Greenspan, T. Leung, S. Belongie, C.
Carson, and C. Bregler, \Finding Pictures of Objects in Large Collections of Images,"
Proceedings of the 2nd International Workshop on Object Representation in Computer

Vision, April, 1996.

9. T. Kato, T. Kurita, N. Otsu, K. Hirata, \A sketch retrieval method for full color
image database," 11th International Conference on Pattern Recognition, pp. 530-533,
(1992).

10. W. Y. Ma and B. S. Manjunath, \NETRA: A Toolbox for Navigating Large Image
Databases," in Proc. IEEE Workshop on Content-Based Access of Image and Video
Libraries, 1997.

11. T. P. Minka and R. W. Picard, \Interactive Learning with a Society of Models,"
Proceedings of CVPR-96, pp. 447-452, (1996).

12. W. Niblack et al., \The QBIC Project: Querying Images by Content using Color,
Texture, and Shape," in SPIE Proc. Storage and Retrieval for Image and Video

Databases, 1993.

13. R. W. Picard and T. P. Minka, \Vision texture for annotation," Journal of Multimedia

Systems, Vol. 3, pp. 3-14, (1995).

14. H. Rowley, S. Baluja, and T. Kanade, \Human Face Detection in Visual Scenes,"
Carnegie-Mellon University, 1996.

15. H. Samet, The Design and Analysis of Spatial Data Structure, Addison-Wesley, Read-
ing, MA, 1990.

