
Chapter 6

Color and Shading

The perception of color is very important for humans. Color perception depends upon
both the physics of the light and complex processing by the eye-brain which integrates
properties of the stimulus with experience. Humans use color information to distinguish
objects, materials, food, places, and even the time of day. Figure 6.1 shows the same scene
coded with di�erent colors: even though all shapes are the same, the right image is quite
di�erent from the left and the viewer might interpret it as an indoor scene of a housecat
rather than a tiger in grass.

With recent innovation in economical devices, color processing by machine has become
commonplace: we have color cameras, color displays and software that processes color im-
ages. Color can also be used by machines for the same purposes humans use it. Color
is especially convenient because it provides multiple measurements at a single pixel of the
image, often enabling classi�cation to be done without complex spatial decision-making.

Figure 6.1: (Left) Naturally colored image of tiger in grass; (right) with transformed colors,
recognition of a tiger is less secure { perhaps it's a cat on a rug?

Careful study of the physics and perception of color would require many pages: here we
provide only a foundation that should be su�cient for beginning programming using color
or as a guide to the literature. Some basic principles of the physics of color are given along
with practical methods of coding color information in images. Then, we give some examples
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and methods for using color in recognizing objects and segmenting images.

We also study the shading of objects, which depends not just on the color of objects
and the light illuminating them, but also on many other factors. These factors include the
roughness of surfaces, the angles made between the surface and both the light sources and
the viewer, and the distances of the surface from both the light sources and the viewer. Color
and shading, important elements of art for centuries, are also important for interpreting a
scene by computer vision algorithms.

6.1 Some Physics of Color

Electromagnetic radiation with wavelength � in the range of between about 400 and 700
nanometers stimulates human neurosensors and produces the sensation of color. (Fig-
ure 6.2). A nanometer is 10�9 meter: it is also referred to as a millimicron. For blue
light, 400�10�9meters per wave means 2:5�106waves per meter or 25000 waves per cm.
The speed of light in a vacuum is 3 � 108m=sec, which is equivalent to a frequency of
0:75� 1015 blue light waves per second. This frequency is one one thousandth of that for
X-rays and one billion times that of broadcast radio waves.

For the rest of this chapter, we refer to wavelength or frequency only in the context of
the qualitative color it produces. Machines can detect radiation well beyond the range of
human neurosensors; for example, short ultraviolet waves and extremely short X-rays can
be detected by special devices. Also, long infrared waves can be detected by many solid
state cameras, and very long radio waves can be detected by a radio receiver. Science and
engineering have developed many devices to sense and transduce pixel measurements into
the visible spectrum: the X-ray machine and IR satellite weather scanner are two common
examples.
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Figure 6.2: Visible part of the electromagnetic spectrum.

Exercise 1

Suppose a piece of paper is 0.004 inches thick. What is its thickness in terms of the equivalent
number of waves of blue light?
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Figure 6.3: Light energy from a source re
ects from an object surface and irradiates a sensor
element.

6.1.1 Sensing Illuminated Objects

Figure 6.3 shows light from a point source illuminating an object surface. As a result of
the illuminating energy interacting with molecules of the object surface, light energy, or
radiance, is emitted from the surface, some of which irradiates, or stimulates, a sensor
element in a camera or organism's eye. The sensation, or perception, of an object's color
depends upon three general factors:

� the spectrum of energy in various wavelengths illuminating the object surface,

� the spectral re
ectance of the object surface, which determines how the surface changes
the received spectrum into the radiated spectrum,

� the spectral sensitivity of the sensor irradiated by the light energy from the object's
surface.

An object that is \blue" has a surface material that appears blue when illuminated with
white light.

1 Definition White light is composed of approximately equal energy in all wavelengths

of the visible spectrum.

This same object should appear violet if illuminated by only red light. A blue car under
intense (white) sunlight will become hot to the touch and radiate energy in the IR range,
which cannot be seen by the human eye but can be seen by an IR camera.

6.1.2 Additional Factors

In addition to the three major factors given above, there are several complicating factors in
both physics and human perception. Surfaces vary in specularity, that is, how much they act
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like a mirror. Matte surfaces re
ect energy equally in all directions. The energy or intensity
of radiation depends upon distance { surface elements farther from a point source of white
light will receive less energy than closer surface elements. The e�ect is similar between
the radiating object and the sensor elements. As a result, image intensities received from
the same surface material might be nonuniform due to the nonuniform distances along the
imaging rays. The orientation � of the surface element relative to the source is even more
important than distance in determining the energy re
ected toward the sensor. These issues
are discussed in more detail toward the end of this chapter.

Exercise 2 variation of intensity with distance

Point your computer's camera perpendicularly at a sheet of uniform white paper that is
illuminated from an incandescent bulb o� to one side. Record the image and study the
image intensities. How much variation is there? Is there a systematic decrease of intensity
as the distance from some brightest pixel increases?

Exercise 3 variation of intensity with surface normal

Repeat the above experiment using a spherical volleyball rather than a 
at sheet of paper.
Record the image and study the image intensities. Report on the variations and regularities.

6.1.3 Sensitivity of Receptors

Actual receptors react only to some wavelengths and are more sensitive to certain wave-
lengths than to others. Figure 6.4 shows sample sensitivity curves. Three of the curves
correspond to three di�erent kinds of cones in the human eye containing di�erent chemical
pigments sensitive to di�erent wavelengths. The curve marked human1 corresponds to a
type of cone that is mildly sensitive to blue light between 400 and 500 nm. The curve marked
human2 corresponds to cones that are very sensitive to green light and mildly sensitive to
shorter wavelengths of blue and longer wavelengths of red. The brain fuses the responses

from a local neighborhood of several cones to produce the perception of any visible color.
It is somewhat remarkable that only three kinds of receptors are needed to do this, even
though there are an in�nite number of possible wavelengths of light. Many other seeing ani-
mals have only one or two types of receptors and perhaps perceive less rich color as a result.
Solid state sensing elements usually have good sensitivity above the range for humans. It's
important to remember this, since sometimes as the workday warms up, a machine vision
system will see a scene di�erently from what a human operator sees. This is primarily due
to the di�erent sensitivity to IR radiation.

Exercise 4 favorite color
Do you have a favorite color? Is so, what is it? Why is it your favorite? Ask 3 other people
what their favorite color is. Assuming you have multiple answers, how can you explain it
given the known physics of color?



Shapiro and Stockman 5

400 500 600 700 800

wavelength (nanometers)

sensitivity

human 1

human 2 human 3

solid state

Figure 6.4: Comparison of relative sensitivities of 3 human pigments in cones and solid state
sensor element.

6.2 The RGB Basis for Color

Using only three types of receptors, humans can distinguish among thousands of colors; a
more exact number is subject to argument. The trichromatic RGB (red-green-blue) encod-
ing in graphics systems usually uses three bytes enabling (28)3 or roughly 16 million distinct
color codes. To be precise, we say 16 million codes and not 16 million colors because humans
cannot actually perceive that many distinct colors. Machines can distinguish between any
pair of di�erent bit encodings, but the encodings may or may not represent di�erences that
are signi�cant in the real world. Each 3-byte or 24-bit RGB pixel includes one byte for
each of red, green, and blue. The order in which each appears in memory can vary; order is
irrelevant to theory but important for programming. Display devices whose color resolution
matches the human eye are said to use true color. At least 16 bits are needed: a 15-bit
encoding might use 5 bits for each of R,B,G, while a 16-bit encoding would better model
the relatively larger green sensitivity using 6 bits.

The encoding of an arbitrary color in the visible spectrum can be made by combining
the encoding of three primary colors (RGB) as shown in Figure 6.5. Red:(255,0,0) and
green:(0,255,0) combined in equal amounts create yellow:(255,255,0). The amount of each
primary color gives its intensity. If all components are of highest intensity, then the color
white results. Equal proportions of less intensity create shades of grey:(c,c,c) for any con-
stant 0 < c < 255 down to black:(0,0,0). It is often more convenient to scale values in the
range 0 to 1 rather than 0 to 255 when making decisions about color in our algorithms: use
of such a range is device-independent.

The RGB system is an additive color system because colors are created by adding compo-
nents to black:(0,0,0). This corresponds well to RGB displays (monitors) which have three
types of phosphors to emit light. Three neighboring elements of phosphor corresponding to
a pixel are struck by three electron beams of intensity c1, c2 and c3 respectively: the human
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RGB CMY HSI

RED (255, 0, 0) ( 0,255,255) (0.0 , 1.0, 255)

YELLOW (255,255, 0) ( 0, 0,255) (1.05, 1.0, 255)

(100,100, 50) (155,155,205) (1.05, 0.5, 100)

GREEN ( 0,255, 0) (255, 0,255) (2.09, 1.0, 255)

BLUE ( 0, 0,255) (255,255, 0) (4.19, 1.0, 255)

WHITE (255,255,255) ( 0, 0, 0) (-1.0, 0.0, 255)

GREY (192,192,192) ( 63, 63, 63) (-1.0, 0.0, 192)

(127,127,127) (128,128,128) (-1.0, 0.0, 127)

( 63, 63, 63) (192,192,192) (-1.0, 0.0, 63)

...

BLACK ( 0, 0, 0) (255,255,255) (-1.0, 0.0, 0)

Figure 6.5: Di�erent digital trichromatic color encoding systems. It is often more convenient
to scale values in the range 0 to 1 when making decisions in algorithms. HSI values are
computed from RGB values using Algorithm 1: H 2 [0:0; 2�), S 2 [0:0; 1:0] and I 2 [0; 255].
Byte codings exist for H and S.

eye integrates their luminance to perceive \color":(c1, c2, c3). The light of 3 wavelengths
from a small region of the CRT screen is thus physically added or mixed together.

Suppose that a color sensor encodes a pixel of a digital image as (R;G;B), where each
coordinate is in the range [0; 255], for example. The computations shown in Equation 6.1 are
one way to normalize image data for interpretation by both computer programs and people
and for transformation to other color systems as discussed below. Imagine a color camera
staring at a scene with variations in illumination; for example, object surface points are at
varying distances from illumination sources and may even be in shadow relative to some of
the light sources. An algorithm to aggregate green pixels corresponding to the image of a
car would perform poorly unless the normalization for intensity were done �rst.

intensity I = (R + G + B)=3 (6.1)

normalized red r = R=(R + G + B)

normalized green g = G=(R + G + B)

normalized blue b = B=(R + G + B)

Using the normalization of Equation 6.1, the normalized values will always sum to 1.
There are alternative normalizations; for instance, we could use max(R;G;B) as the divisor
rather than the average RBG value. By using r + g + b = 1, the relationship of coordinate
values to colors can be conveniently plotted via a 2D graph as in Figure 6.6. Pure colors
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Figure 6.6: Color triangle for normalized RGB coordinates. The blue ('b') axis is out of the
page perpendicular to the 'r' and 'g' axes. Thus, the triangle is actually a slice through the
points [1,0,0], [0,1,0] and [0,0,1] in 3D. The value for blue can be computed as b = 1� r� g

for any pair of r-g values shown in the triangle.

are represented by points near the corners of the triangle. For example, a \�re-engine-red"
will be near the lower right corner with coordinates (1,0) and a \grass-green" will be at
the top with coordinates (0,1) while \white" will be at the centroid (1/3,1/3). In Fig-
ure 6.6, the blue ('b') axis is out of the page perpendicular to the 'r' and 'g' axes, and thus
the triangle is actually a slice through the points [1,0,0], [0,1,0] and [0,0,1] in 3D. The value
for blue can be computed as b = 1�r�g for any pair of r-g values shown inside the triangle.

Exercise 5 experimenting with color codes

Aquire an RGB color image and view it with some image tool. Exchange the green and blue
bytes and report on the results. Double all and only the low blue values and report on the
results.

6.3 Other Color Bases

Several other color bases exist which have special advantages relative to devices that pro-
duce color or relative to human perception. Some bases are merely linear transformations
of others and some are not.
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Figure 6.7: Color cube for normalized RGB coordinates: the triangle in Figure 6.6 is a
projection of the plane through points [1, 0, 0], [0, 1, 0], and [0, 0, 1].
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Figure 6.8: Color hexacone for HSI representation. At the left is a projection of the RGB
cube perpendicular to the diagonal from (0, 0, 0) to (1, 1, 1): color names now appear at
the vertices of a hexagon. At the right is a hexacone representing colors in HSI coordinates:
intensity (I) is the vertical axis; hue (H) is an angle from 0 to 2� with RED at 0.0; saturation
(S) ranges from 0 to 1 according to how pure, or unlike white, the color is with S=0.0
corresponding to the I-axis.
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6.3.1 The CMY Subtractive Color System

The CMY color system models printing on white paper and subtracts from white rather than
adds to black as the RGB system does. CMY coding is shown next to RGB in Figure 6.5.
CMY is an abbreviation of Cyan-Magenta-Yellow, which are its three primary colors corre-
sponding to three inks. Cyan absorbs red illumination, magenta absorbs green and yellow
absorbs blue, thus creating appropriate re
ections when the printed image is illuminated
with white light. The system is termed subtractive because of the encoding for absorption.
Some trichromatic encodings are as follows; white:(0,0,0) because no white illumination
should be absorbed, black:(255,255,255) because all components of white light should be
absorbed and yellow:(0,0,255) because the blue component of incident white light should
be absorbed by the inks, leaving the red and green components to create the perception of
yellow.

6.3.2 HSI: Hue-Saturation-Intensity

The HSI system encodes color information by separating out an overall intensity value I
from two values encoding chromaticity | hue H and saturation S. The color cube in Fig-
ure 6.7 is related to the RGB triangle shown in Figure 6.6. In the cube representation,
each r; g; b value can range independently in [0:0; 1:0]. If we project the color cube along its
major diagonal, we arrive at the hexagon at the left of Figure 6.8. In this representation,
shades of grey that were formerly along the color cube diagonal now are all projected to
the center \white" point while the \red" point [1,0,0] is now at the right corner and the
green point [0,1,0] is at the top left corner of the hexagon. A related 3D representation,
called a \hexacone", is shown at the right in Figure 6.8: the 3D representation allows us
to visualize the former cube diagonal as a vertical intensity axis I. Hue H is de�ned by an
angle between 0 and 2� relative to the \red"-axis, with pure \red" at an angle of 0, pure
\green" at 2�=3 and pure \blue" at 4�=3. Saturation S is the 3rd coordinate value needed
in order to completely specify a point in this color space. Saturation models the purity of
the color or hue, with 1 modeling a completely pure or saturated color and 0 modeling a
completely unsaturated hue, i.e. some shade of \grey".

The HSI system is sometimes referred to as the \HSV" system using the term \value"
instead of \intensity". HSI is more convenient to some graphics designers because it pro-
vides direct control of brightness and hue. Pastels are centered near the I axis, while deep or
rich colors are out at the periphery of the hexacone. HSI might also provide better support
for computer vision algorithms because it can normalize for lighting and focus on the two
chromaticity parameters that are more associated with the intrinsic character of a surface
rather than the source that is lighting it.

Derivation of HSI coordinates from RGB coordinates is given in Algorithm 1. The al-
gorithm can convert input values (r; g; b) from the 3D color cube, or those normalized by
Equation 6.1, or even byte-coded RGB values as in the left column of Figure 6.5. Intensity
I is returned in the same range as the input values. Saturation S is not de�ned when in-
tensity I = 0 and hue H is not de�ned when S = 0. H is in the range [0; 2�). Whereas
one might use a square root and inverse cosine to de�ne mathematical conversion formulas,
Algorithm 1 uses very simple computational operations so that it will run fast when con-
verting an entire image of pixels from one encoding to another. Samples of the output of
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Algorithm 1 are given at the right in Figure 6.5.

Conversion of RGB encoding to HSI encoding.

R,G,B : input values of RGB all in range [0,1] or [0,255];
I : output value of intensity in same range as input;
S : output value of saturation in range [0,1];
H : output value of hue in range [0,2�), -1 if S is 0;
R,G,B,H,S,I are all 
oating point numbers;

procedure RGB to HSI( in R,G,B; out H,S,I)
f
I := max ( R, G, B );
min := min ( R, G, B );
if (I � 0.0) then S := (I - min )/I else S := 0.0;
if (S � 0.0) then f H := -1.0; return; g
\compute the hue based on the relative sizes of the RGB components"

di� := I - min;
\is the point within +/- 60 degrees of the red axis?"
if (r = I) then H := (�=3)*(g - b)/di�;
\is the point within +/- 60 degrees of the green axis?"
else if (g = I) then H := (2 � �=3) + �=3 *(b - r)/di�;
\is the point within +/- 60 degrees of the blue axis?"
else if (b = I) then H := (4 � �=3) + �=3 *(r - g)/di�;
if (H � 0.0) H := H + 2�;
g

Algorithm 1: Conversion of RGB to HSI.

Exercise 6

Using Algorithm 1, (a) convert the RGB code (100,150,200) into an HSI code and (b) convert
the rgb code (0.0, 1.0, 0.0) to HSI.

Returning to Figure 6.6, we see how HSI values relate to the color triangle. Hue is
related to the dominant wavelength of the light and corresponds approximately to a point
on the sides of the triangle in Figure 6.6 with the lower values of � near 400 nm starting
at the origin and increasing along the g � axis to about 520 nm and further increasing
toward 800 nm down along the hypotenuse. Hue corresponds to the angle from the centroid
corresponding to \white" toward some point (r, g) on a side of the triangle. The H and S
values for 50% saturated gold is midway between the points marked \white" and \gold" in
Figure 6.6. Figure 6.6 is an approximation to the painters color palette.

Figure 6.9 shows the transformation of an image by changing its saturation. The original
input image is at the left. The center image is the result of decreasing the saturation S of all
individual pixels by 20% and the right image is the result of a 20% increase in S. Relative
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Figure 6.9: (Left) Input RGB image; (center) saturation S increased by 40%; (right) satu-
ration S decreased by 20%. (Photo by Frank Biocca.)

to our experience, colors in the center image look washed out while those in the right image
appear overdone. It is important to note that hue H is unchanged in the three images and
should thus be a reliable feature for color segmentation despite variations in intensity of
white light under which a machine vision system might have to operate.

Exercise 7

Develop an algorithm to convert r,g,b color coordinates in [0; 1] to H,S,I using the following
approach based on analytical geometry. Construct a perpendicular from point [r; g; b] to the
color cube diagonal through [0; 0; 0] to [1; 1; 1] and compute H,S,I accordingly.

6.3.3 YIQ and YUV for TV signals

The NTSC television standard is an encoding that uses one luminance value Y and two
chromaticity values I and Q; only luminance is used by black and white TVs, while all three
are used by color TVs. An approximate linear transformation from RGB to YIQ is given in
Equation 6.2. In practice, the Y value is encoded using more bits than used for the values
of I and Q because the human visual system is more sensitive to luminance (intensity) than
to the chromaticity values.

luminance Y = 0:30R + 0:59G + 0:11B (6.2)

R� cyan I = 0:60R � 0:28G � 0:32B

magenta � green Q = 0:21R � 0:52G + 0:31B

YUV encoding is used in some digital video products and compression algorithms such
as JPEG and MPEG. The conversion of RGB to YUV is as follows.

Y = 0:30R + 0:59G + 0:11B (6.3)

U = 0:493 � (B � Y )

V = 0:877 � (R � Y )



12 Computer Vision: Mar 2000

YIQ and YUV have better potential for compression of digital images and video than
do other color encoding schemes, because luminance and chrominance can be coded using
di�erent numbers of bits, which is not possible with RGB.

Exercise 8 color code conversion
Suppose a color camera encodes a given pixel in RGB as (200,50,100), where 255 is the
highest (most energy) value. (a) What should be the equivalent triple in the HSI system?
(b) What should be the equivalent triple in the YIQ system?

Exercise 9

Is the transformation from RGB to YIQ invertible? If so, compute the inverse.

Exercise 10 recoding images

Assuming that you have a display and software to view an RGB image, perform the following
experiment. First, create an HSI image such that the upper right quarter is saturated red,
the lower left corner is saturated yellow, the upper left quarter is 50% saturated blue and the
lower right quarter is 50% saturated green. Invert the RGB to HSI conversion of Algorithm 1
and convert the HSI image to RGB. Display the image and study the colors in the 4 image
quarters.

6.3.4 Using Color for Classi�cation

The color of a pixel contains good information for classifying that pixel in many applica-
tions. In Section 6.5 a color model for human skin color is described that goes a long way
toward �nding a human face in a color image. Confusion is possible, however. For example,
pixels from a brown cardboard box can pass the skin color test and region shape might
be needed to distinguish a polyhedral box face from an elipsoidal human face. Figure 6.10
shows the result of extracting \white regions" of an image by passing pixels that are close to
some sample pixel from training. Sample pixels were obtained from the symbols on the sign.
Several unwanted regions are also formed by other white objects and by specular re
ections.
Character recognition algorithms could recognize many of the characters and discard most
of the unwanted components.

In general, interpretation of the color of an individual pixel is error prone. The image
at the left in Figure 6.9 was taken with a 
ash from the camera and some of the faces
of the pineapple chunks appear white because of specular re
ection (described below in
Section 6.6.3). A classi�er that broadens the de�nition of yellow to include these white
pixels is also likely to include pixels from specular re
ections o� a blue cup, for instance.
Interpetation problems occur in particular regions of the color space: when saturation is
close to zero computation and interpretation of hue is unreliable and when intensity is low
interpretation of saturation is also unreliable.
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Figure 6.10: \White pixels" are segmented from the color image at the left. Individual
connected components of white pixels are arbitrarily labeled by a coloring algorithm as
decribed in Chapter 3. (Analysis contributed by David Moore.)

Exercise 11

Show that conversion from RGB to HSI is unstable when either saturation or intensity is
close to 0 by performing the following experiments. Implement Algorithm 1 as a program.
(a) Convert the RGB codes (L+ �LR; L+ �LG; L+ �LB) to HSI for L large and �LX 2 f-2,
-1, 1, 2g. Are the values of H consistent? (b) Repeat this experiment for L small (about
10) and � as above. Are the values for S consistent?

6.4 Color Histograms

A histogram of a color image can be a useful representation of that image for the purpose
of image retrieval or object recognition. A histogram counts the number of pixels of each
kind and can be rapidly created by reading each image pixel just once and incrementing
the appropriate bin of the histogram. Retrieval of images from image databases using color
histograms is treated in Chapter 8. Color histograms are relatively invariant to translation,
rotation about the imaging axis, small o�-axis rotations, scale changes and partial occlusion.
Here, we sketch the method of color histogram matching originally proposed by Swain and
Ballard (1991) for use in object recognition.

A simple and coarse method of creating a histogram to represent a color image is to
concatenate the higher order two bits of each RGB color code. The histogram will have
26 = 64 bins. It is also possible to compute three separate histograms, one for each color,
and just concatenate them into one. For example, separate RGB histograms quantized into
16 levels would yield an overall k = 48 bin histogram as used by Jain and Vailaya (1996).
Two color images and histograms derived from them are shown in Figure 6.4.

The intersection of image histogram h(I) and model histogram h(M ) is de�ned as the
sum of the minimum over all K corresponding bins as denoted in Equation 6.4. The inter-
section value is normalized by dividing by the number of pixels of the model to get a match
value. This match value is a measure of how much color content of the model is present
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Figure 6.11: Color images and their 64-bin histograms (obtained from A. Vailaya).
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in the image and is not diminished due to background pixels of the image that are not in
the model. Other similarity measures can be de�ned; for example, we could normalize the
histograms into frequencies by dividing each bin count by the total number of pixels and
then use the Euclidean distance to compare two images.

intersection(h(I); h(M )) =
PK

j=1
minfh(I)[j]; h(M )[j]g (6.4)

match(h(I); h(M )) =
PK
j=1minfh(I)[j];h(M)[j]g
P
K
j=1 h(M)[j]

Experiments have shown that histogram match values can be good indicators of image
similarity under variations mentioned above and also using di�erent spatial quantizations of
the image. Swain and Ballard also developed a backprojection algorithm which could locate
a region in an image approximately the size of the model object that best matched the
model histogram. Thus, they have developed two color-based algorithms, one to recognize
if an image contains a known object and another to determine where that object is located.
If images are taken under di�erent lighting conditions, then intensity should be factored out
�rst. One should also consider smoothing the histograms so that a good match will still be
obtained with minor shifts of the re
ectance spectrum. An alternate method is to match
the cumulative distributions rather than the frequencies themselves.

Exercise 12 matching images with permuted pixels

Suppose that given image A, we create image B by randomly permuting the locations of
the pixels in A. (This could be done as follows. First, copy A to B. Then, for each pixel I[r,
c] in B, choose pixel I[x, y] at random and swap I[r, c] with I[x, y].) What would be the
resulting match value between the histograms from A and B?

Exercise 13 recognizing produce

Obtain 3 bananas, 3 oranges, 3 red apples, 3 green apples, 3 green peppers and 3 red
tomatoes. For each of these six sets of produce, take three images, varying the arrangement
of the 3 di�erent produce items each time. This will result in 18 images. Construct a color
histogram for each image. Use the �rst histogram of each set to be the model (6 models in
all), then compute the histogrammatch value between each of the 6 models and the 12 other
histograms. Report the results: do your results support the possibility of a supermarket
produce recognition system to recognize produce placed on the cashier's scale?

6.5 Color Segmentation

We now describe work on �nding a face in a color image taken from a workstation cam-
era. The ultimate goal of the work is better man-machine communication. An algorithm is
sketched which �nds the main region of the image corresponding to the user's face. First, a
training phase is undertaken to determine the nature of face pixels using samples from dif-
ferent people. Figure 6.12 shows a plot of pixels (r, g) taken from di�erent images containing
faces: normalized red and green values are used as computed from Equations 6.1. Six classes
of pixels are easy to de�ne by decision boundaries using the methods of Chapter 4; three
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Figure 6.12: Skin color clusters obtained from training: the horizontal axis is Rnorm and
the vertical axis is Gnorm. The cluster labeled as t 4 is the primary face color, clusters t 5

and t 6 are secondary face clusters associated with shadowed or bearded areas of a face.
(Figure from V. Bakic.)

of them contain face pixels, a primary class and two classes of pixels from shadows or beards.

Three major steps are used to identify the face region. The input to the �rst step is
a labeled image using the labels 1, 2,...,7 which result from classi�cation according to the
training data (label 7 is used for a pixel that is not in any of the other six classes). The
middle images of Figure 6.13 show labeled images for two di�erent faces: most of the face
pixels are correctly labeled as are most of the background pixels; however, there are many
small areas of error. Components are aggregated and then merged or deleted according
to their size and location relative to the major face region. First, connected component
processing is done as described in Chapter 3 with only pixels labeled 4, 5, or 6 as foreground
pixels. The second step selects as the face object the largest suitable component. This
step also discards components that are too small or too big using heuristics learned from
processing many examples. Typically, less than 100 components remain, the majority of
which are in the shadow classes. The third step discards remaining components or merges
them with the selected face object. Several heuristics using knowledge of the human face
are applied; also, it is assumed that there is only one face in the scene. Example results are
shown at the right in Figure 6.13. The program is fast enough to do these computations
roughly 30 times per second (real-time), including computing the locations of the eyes and
nose, which has not been described. This example generalizes to many other problems. A
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Figure 6.13: Face extraction examples: (left) input image, (middle) labeled image, (right)
boundaries of the extracted face region. (Images from V. Bakic.)

key stage is the clustering of the thousands of color codes in the original image to obtain
the labeled image with only a few labels. In the face extraction example, clusters were
decided \by hand", but sometimes automatic clustering is done. Segmentation is covered
thoroughly in Chapter 10.

6.6 Shading

There are several complicating factors in both the physics of lighting and human percep-
tion. Surfaces vary in specularity, that is, how much they act like a mirror. Highly specular
surfaces re
ect a ray of incident energy in a restricted cone about a ray of re
ection. Matte

surfaces re
ect energy equally in all directions. Thus, a surface not only has a wavelength
dependent bias in re
ecting incident radiation, but it also has directional bias. Moreover,

the energy or intensity of radiation depends upon distance { surface elements farther from a
point source of white light will receive less energy than closer surface elements. The e�ect is
similar between the radiating object and the sensor elements. As a result, image intensities
will be nonuniform due to the nonuniform distances along the imaging rays. The orientation
� of the surface element relative to the source is also very important.

6.6.1 Radiation from One Light Source

Consider radiation from a single distant light source reaching an object surface as shown in
Figure 6.14. Currently, there is no view position from which we observe the surface; we are
only considering how the surface is irradiated by the light source. We assume that the light
source is far enough away so that the direction from all surface elements of the illuminated
object to the light source can be represented by a single unit length direction vector s. The
light energy per unit area (intensity i) that reaches each surface element Aj is proportional
to the area of the surface element times the cosine of the angle that the surface element
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Figure 6.14: Object surface elements Aj irradiated by light source S receive energy propor-
tional to the cross section Cj = Aj cos�j presented to the source. Intensity of received
radiation is thus i � n � s where n is the unit normal to the surface and s is the unit
direction toward the source. �j is the angle between the surface normal nj and s.

makes with the illumination direction s. The cosine of the angle is n� s, where n is the unit
vector normal to the surface element Aj . Thus our mathematical model for the intensity of
radiation received by a surface element is

received i � n � s: (6.5)

The radiation received is directly proportional to the power of the light source, which
may or may not be known. The light source may radiate energy in all directions, or may be
like a spotlight radiating light only in a small cone of directions. In either case, the power
of the light source is expressed in watts per steradian, or energy per unit area of a conical
sector of a unit sphere centered at the source. This simple model for irradiating surface
elements extends readily to curved surfaces by considering that the rectangular surface ele-
ments become in�nitesimally small in the limit. The fraction of the incident radiation that
a surface element re
ects is called its albedo.

2 Definition The albedo of a surface element is the ratio of the total re
ected illumination

to the total received illumination.

We have assumed that albedo is an intrinsic property of the surface: for some surfaces
this is not the case because the fraction of illumination re
ected will vary with the direction
of lighting relative to the surface normal.

6.6.2 Di�use Re
ection

We now extend our model to consider the re
ection from object surfaces; moreover, we
model how the surface element appears from some viewing position V. Figure 6.15 shows
di�use or Lambertian re
ection. Light energy reaching a surface element is re
ected evenly
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Figure 6.15: Di�use, or Lambertian, re
ection distributes energy uniformly in all directions
of the hemisphere centered at a surface element. Thus an entire planar patch will appear
to be of uniform brightness for all viewpoints from which that surface is visible.

in all directions of the hemisphere centered at that surface element. Di�use re
ections oc-
cur from surfaces that are rough relative to the wavelength of the light. The intensity of
the re
ected illumination is proportional to the intensity of the received illumination: the
constant factor is the albedo of the surface, which is low for dark surfaces and high for light
surfaces.

di�use re
ected i � nj � s (6.6)

3 Definition A di�use re
ecting surface re
ects light uniformly in all directions. As a

result, it appears to have the same brightness from all viewpoints.

The critical characteristic is that the surface element will have the same brightness when
viewed from the entire hemisphere of directions, because its brightness is independent of
the viewer location. From Figure 6.15, surface element A1 will have the same brightness
when viewed from positions V1 or V2; similarly, surface A2 will also appear to be of the same
brightness when viewed from either V1 or V2. If all three surface elements are made of the
same material, they have the same albedo and thus A2 will appear brighter than A1, which
will appear brighter than A3, due to the angles that these surfaces make with the direction
of the illumination. Surface element A3 will not be seen at all from either position V1 or V2.
(A surface element will not be visible if n�v < 0 where v is the direction toward the viewer.)

A convincing example of di�use re
ection is given in Figure 6.16, which shows intensity
of light re
ected o� an egg and a blank ceramic vase. Intensities from a row of the image
are much like a cosine curve, which demonstrates that the shape of the object surface is
closely related to the re
ected light as predicted by Equation 6.6.

Exercise 14

Consider a polyhedral object of di�usely re
ective material such that face F directly faces
a distant light source S. Another face A adjacent to F appears to be half as bright as F.
What is the angle made between the normals of faces A and F?
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Figure 6.16: Di�use re
ection from Lambertian objects | a vase and an egg | and a plot
of intensities across the highlighted row. The intensities are closely related to the object
shape.

6.6.3 Specular re
ection

Many smooth surfaces behave much like a mirror, re
ecting most of the received illumina-
tion along the ray of re
ection as shown in Figure 6.17. The ray of re
ection(R) is coplanar
with the normal(N) to the surface and the ray of received illumination(S), and, makes equal
angles with them. A perfect mirror will re
ect all of the light energy received from source
S along ray R. Moreover, the re
ected energy will have the same wavelength composition
as the received light regardless of the actual color of the object surface. Thus a red apple
will have a white highlight, or twinkle, where it re
ects a white light source. Equation 6.7
gives a mathematical model of specular re
ection commonly used in computer graphics.
Equation 6.8 de�nes how to compute the re
ected ray R from the surface normal and the
direction toward the source. The parameter � is called the shininess of the surface and has
a value of 100 or more for very shiny surfaces. Note that as � increases, cos�� decreases
more sharply as � moves away from 0.

specular re
ected i � (R �V)� (6.7)

R = 2N(N � (�S)) � S (6.8)

4 Definition Specular re
ection is mirrorlike re
ection. Light re
ected o� the surface

is radiated out in a tight cone about to the ray of re
ection. Moreover, the wavelength

composition of the re
ected light is similar to that of the source and independent of the

surface color.

5 Definition A highlight on an object is a bright spot caused by the specular re
ection

of a light source. Highlights indicate that the object is waxey, metalic, or glassy, etc.
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Figure 6.17: Specular, or mirrorlike, relection distributes energy in a narrow cone about the
ray of re
ection R. The viewpoint V receives some re
ected energy from surface element
�A1 but very little from surface element �A2. The intensity received atV is ei � (R�V)�,
where R is the ray of re
ection, V is the direction from the surface element toward the
viewpoint and � is the shininess parameter.

6.6.4 Darkening with Distance

The intensity of light energy reaching a surface decreases with the distance of that surface
from the light source. Certainly our Earth receives less intense radiation from the sun than
does Mercury. A model of this phenomena is sketched in Figure 6.18. Assuming that a
source radiates a constant energy 
ux per unit of time, any spherical surface enclosing that
source must intercept the same amount of energy per unit time. Since the area of the
spherical surface increases proportional to the square of its radius, the energy per unit area
must decrease proportional to the inverse of the radius squared. Thus, the intensity of light
received by any object surface will decrease with the square of its distance from the source.
Such a distance is labeled d1 in Figure 6.18. The same model applies to light energy re-

ected from the object surface elements: thus, a viewer at position V in space will observe a
surface brightness (d2) inversely proportional to the square of the distance from that surface
element. This inverse square model is commonly used in computer graphics to compute the
shading of rendered surfaces so that 3D distance, or depth, can be communicated to a user.

Exercise 15

An inventor wants to sell the tra�c police the following device for detecting the speed of
cars at night. The device emits a very short 
ash of light at times t1 and t2 and senses
the re
ection back from the car. From the intensities of the re
ections, it computes the
distances d1 and d2 for the two time instants using the principle in Figure 6.18. The speed
of the car is simply computed as the change in distance over the change in time. Critique
the design of this instrument. Will it work?
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Figure 6.18: The total energy radiating from a point source through any enclosing spherical
surface is the same: thus the energy per unit area of surface, or intensity, must decrease
inversely with the square of the radius of the enclosing sphere (d1). Similarly, light energy
re
ecting o� a surface element must descrease in intensity with the distance (d2) from which
that surface is viewed.

6.6.5 Complications

For most surfaces, a good re
ection model must combine both di�use and specular re
ec-
tions. If we view an apple with a 
ashlight, we will actually see a reddish object with a
whitish highlight on it: the reddish re
ections are from di�use re
ection, while the highlight
is from specular re
ection. Were the apple entirely specular, then we wouldn't be able to
observe most of its surface.

Often there are many light sources illuminating a scene and many more surface elements
re
ecting light from these sources. We might not be able to account for all the exchanges
of energy, except by saying that there is ambient light in the scene. In computer graphics,
it is common to use an ambient light factor when shading a surface.

6 Definition Ambient light is steady state light energy everywhere in the scene resulting

from multiple light sources and the interre
ections o� many surfaces.

Some surfaces actually emit light. These might be light bulbs or perhaps an object
that absorbs one kind of energy and then emits it in the visible band. Such objects will
re
ect light as well as emit it. Finally, all of our emitting or re
ecting phenomena are wave-
length dependent. A source emits an entire spectrum of di�erent wavelengths (unless it is a
monchromatic laser) and a surface re
ects or absorbs energy in some wavelengths more than
others. Machines can be built to be sensitive to these wavelength phenomena; for example,
multispectral scanners can produce 200 values for re
ection from a single surface element.
For humans, however, we can summarize a sample of visible light using a combination of
only three values, such as RGB or HSI. Computer graphics commonly describes both illu-
mination and surface re
ection in terms of only RGB components.
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Exercise 16

An amateur photographer took a photo of friends at the rim of the Grand Canyon just after
sunset. Although a 
ash was used and the images of the friends were good, the beautiful
canyon wall background was almost black. Why?

6.6.6 * Phong Model of Shading

A popular shading model used in computer graphics is the Phong shading model, which
accounts for several phenomena; (a) ambient light, (b) di�use re
ection, (c) specular re
ec-
tion, and (d) darkening with distance. Components (b),(c), and (d) are summed for each
separate light source. We assume that we know the details of the surface element imaging
at image point I[x; y] and the position and characteristics of all light sources. The re
ective
properties of this surface element are represented by Kd� for di�use re
ectivity and Ks�

for specular re
ectivity, where Kq� is a vector of coe�cients of re
ection for di�erent wave-
lengths � | usually three of them for RGB.

I�[x; y] = Ia�Kd� +

MX

m=1

(
1

cd2m
Im�[Kd�(n � s) + Ks�(Rm �V)�]) (6.9)

Equation 6.9 uses ambient illumination Ia� and a set of M light sources Im�. The equa-
tion can be thought of as a vector equation treating each wavelength � similarly. Ia� is the
intensity of ambient light for wavelength �, Im� is the intensity of the light source m for
wavelength �. The m� th light source is a distance dm from the surface element and makes
re
ection ray Rm o� the surface element.

6.6.7 Human Perception using Shading

There is no doubt that human perception of three-dimensional object shape is related to
perceived surface shading. Moreover, the phenomena described account for shading that
we perceive, although the above models of illumination and re
ection are simpli�ed. The
simpli�edmodels are of central importance in computer graphics and various approximations
are used in order to speed up rendering of lit surfaces. In controlled environments, computer
vision systems can even compute surface shape from shading using the above formulas: these
methods are discussed in Chapter 13. We could, for example, compute surface normals for
the surface points shown in Figure 6.16 by calibrating our formulas. In uncontrolled scenes,
such as outdoor scenes, it is much more di�cult to account for the di�erent phenomena.

6.7 * Related Topics

6.7.1 Applications

Color features make some pattern recognition problems much simpler compared to when
only intensity, texture, or shape information are available. Color measurements are local;
aggregation methods and shape analysis may not be needed. For example, as indicated
in Exercise 13, pixel level color information goes a long way in classi�cation of fruits and
vegetables for automatic charging at the grocery store or for quality sorting in a distribution
center. A second example is the creation of a �lter to remove pornographic images from the



24 Computer Vision: Mar 2000

WWW. The face detection algorithm as described above �rst detects skin color according
to the training data: regions of skin pixels can then be aggregated and geometric relations
between skin regions computed. If it is probable that bare body parts �ll a signi�cant part of
the image, then that image could be blocked. Color is useful for access to image databases,
as described in Chapter 8, and for understanding of biological images taken through a mi-
croscope.

6.7.2 Human Color Perception

Characteristics of human color perception are important for two reasons; �rst, the human
visual system is often an e�cient system to study and emulate, secondly, the main goal of
graphic and image displays is to communicate with humans. The machine vision engineer
often wants to learn how to duplicate or replace human capabilities, while the graphic artist
must learn how to optimize communication with humans.

Humans in general have biased interpretations of colors. For example, wall colors are
generally unsaturated pastels and not saturated colors; reds tend to stimulate, while blues
tend to relax. Perhaps 8% of humans have some kind of color blindness, meaning that color
combinations should be chosen carefully for communication. In the human retina, red and
green sensitve receptors greatly outnumber blue receptors; this is accentuated in the high
resolution fovea where blue receptors are rare. As a result, much color processing occurs
in neurons that integrate input from the receptors. Various theories have been proposed
to explain color processing in terms of processing by neurons. This higher level processing
is not fully understood and human visual processing is constantly under study. The color
of single pixels of a display cannot be accurately perceived, but humans can make good
judgements about the color of an extended surface even under variations of illumination,
including illumination by only two principal wavelengths. Often, separate edge-based pro-
cessing of intensity (Chapter 5) that is faster than color processing yields object recognition
before color processing is complete. Theories usually address how human color processing
might have evolved on top of more primitive intensity processing. The reader can pursue
the vast area of human visual perception by referring to the references and following other
references given there.

6.7.3 Multispectral Images

As discussed in Chapter 2, a sensor that obtains 3 color measurements per pixel is a mul-
tispectral sensor. However, sensing can be done in bands of the electromagnetic spectrum
that are not perceived as color by humans; for example, in infrared bands of the spectrum.
In IR bands of a satellite image, hot asphalt roads should appear bright and cold bodies of
water should appear dark. Having multiple measurements at a single pixel is often useful for
classifying the surface imaged there using simple procedures. The scanning system can be
expensive, since it must be carefully designed in order to insure that the several frequency
bands of radiation are indeed collected from the same surface element. The parameters of
MRI scanning (refer to Chapter 2) can be changed to get multiple 3D images, e�ectively
yielding m intensities for each voxel of the volume scanned. These n measurements can be
used to determine whether the voxel material is fat, blood, muscle tissue, etc. The reader
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might be alarmed to learn that it can take a full hour to obtain a 3D volume of MRI data,
implying that some noise due to motion will be observed, particularly near the boundaries
between di�erent tissues where the material element sampled is most likely to change during
the scanning process due to small motions caused by circulation or respiration.

6.7.4 Thematic Images

Thematic images use pseudo color to encode material properties or use of space represented
in an image. For example, pixels of a map or satellite image might be labeled for human
consumption so that rivers are blue, urban areas are purple and roads are red. These are not
the natural colors recorded by sensors but communicate image content well in our culture.
Weather maps might show a temperature theme with red for hot and blue for cold. Similarly,
thematic images can encode surface depth, local surface orientation or geometry, texture,
density of some feature or any other scalar measurement or nominal classi�cation. The two
center images in Figure 6.13 are thematic images: the yellow, blue and purple colors are just
labels for three clusters in the real color space. It is important to remember that thematic
images do not show actual physical sensor data but rather transduced or classi�ed data for
better visualization by a human.

6.8 References

For a detailed treatment of light and optics, one can consult the text by Hecht and Zajac
(1974). Some of the treatment of practical digital encoding of color was derived fromMurray
and VanRiper (1994): the reader can consult that book for many details on the many
�le formats used to store digital images. Details of the design of color display hardware,
especially the shadow-mask technology for color displays, can be found in the graphics text
by Foley et al (1996). The book by Levine (1985) contains the discussion of several di�erent
biological vision systems and their characteristics as devices. More detail is given in the book
by Overington (1992), which takes a technical signal processing approach. Livingston (1988)
is a good start in the psychology literature. The discussion of matching color histograms
was drawn from Swain and Ballard (1991) and Jain and Vailaya (1996). More details on
the face extraction work can be found in a technical report by Bakic and Stockman (1999).
Work on multispectral analysis of the brain using MRI can be found in the paper by Taxt
and Lundervold (1994).
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