
Chapter 11

Matching in 2D

This chapter explores how to make and use correspondences between images and maps,
images and models, and images and other images. All work is done in two dimensions;
methods are extended in Chapter 14 to 3D-2D and 3D-3D matching. There are many im-
mediate applications of 2D matching which do not require the more general 3D analysis.

Consider the problem of taking inventory of land use in a township for the purpose of
planning development or collecting taxes. A plane is dispatched on a clear day to take
aerial images of all the land in the township. These pictures are then compared to the most
recent map of the area to create an updated map. Moreover, other databases are updated to
record the presence of buildings, roads, oil wells, etc., or perhaps the kind of crops growing
in the various �elds. This work can all be done by hand, but is now commonly done using
a computer. A second example is from the medical area. The blood
ow in a patient's heart
and lungs is to be examined. An X-ray image is taken under normal conditions, followed
by one taken after the injection into the bloodstream of a special dye. The second image
should reveal the blood
ow, except that there is a lot of noise due to other body structures
such as bone. Subtracting the �rst image from the second will reduce noise and artifact
and emphasize only the changes due to the dye. Before this can be done, however, the �rst
image must be geometrically transformed or warped to compensate for small motions of the
body due to body positioning, heart motion, breathing, etc.

11.1 Registration of 2D Data

A simple general mathematical model applies to all the cases in this Chapter and many
others not covered. Equation 11.1 and Figure 11.1 show an invertible mapping between
points of a model M and points of an image I. Actually, M and I can each be any 2D
coordinate space and can each represent a map, model, or image.

M [x; y] = I[g(x; y); h(x; y)] (11.1)

I[r; c] = M [g�1(r; c); h�1(r; c)]
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Figure 11.1: A mapping between 2D spaces M and I. M may be a model and I an image,
but in general any 2D spaces are possible.

1 Definition The mapping from one 2D coordinate space to another as de�ned in Equa-

tion 11.1 is sometimes called a spatial transformation, geometric transformation, or warp

(although to some the term warp is reserved for only nonlinear transformations).

The functions g and h create a correspondence between model points [x; y] and image
points [r; c] so that a point feature in the model can be located in the image: we assume
that the mapping is invertible so that we can go in the other direction using their inverses.
Having such mapping functions in the tax record problem allows one to transform property
boundaries from a map into an aerial image. The region of the image representing a par-
ticular property can then be analyzed for new buildings or crop type, etc. (Currently, the
analysis is likely to be done by a human using an interactive graphics workstation.) Having
such functions in the medical problem allows the radiologist to analyze the di�erence image
I2[r2; c2]� I[g(r2; c2); h(r2; c2)]: here the mapping functions register like points in the two
images.

2 Definition Image registration is the process by which points of two images from similar

viewpoints of essentially the same scene are geometrically transformed so that corresponding

feature points of the two images have the same coordinates after transformation.

Another common and important application, although not actually a matching opera-
tion, is creation of a new image by collecting sample pixels from another image. For example,
as shown in Figure 11.2, we might want to cut out a single face I2 from an image I1 of several
people as shown in Figure 11.2. Although the content of the new image I2 is a subset of the
original image I1, it is possible that I2 can have the same number of pixels as I1 (as is the
case in the �gure), or even more.

There are several issues of this theory which have practical importance. What is the form
of the functions g and h, are they linear, continuous, etc? Are straight lines in one space
mapped into straight or curved lines in the other space? Are the distances between point
pairs the same in both spaces? More important, how do we use the properties of di�erent
functions to achieve the mappings needed? Is the 2D space of the model or image continuous
or discrete? If at least one of the spaces is a digital image then quantization e�ects will
impact both accuracy and visual quality. ( The quantization e�ects have deliberately been
kept in the right image of Figure 11.2 to demonstrate this point.)
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Figure 11.2: New image of a face (right) cut out of original image (left) using a sampling
transformation. The face at the right is the rightmost face of the �ve at the left.

Exercise 1
Describe how to enhance the right image of Figure 11.2 to lessen the quantization or aliasing
e�ect.

11.2 Representation of Points

In this chapter, we work speci�cally with points from 2D spaces. Extension of the de�nitions
and results to 3D is done later in Chapter 13; most, but not all, extensions are straightfor-
ward. It is good for the student to master the basic concepts and notation before handling
the increased complexity sometimes present in 3D. A 2D point has two coordinates and is
conveniently represented as either a row vector P = [x; y] or column vector P = [x; y]

t
.

The column vector notation will be used in our equations here to be consistent with most
engineering books which apply transformations T on the left to points P on the right . For
convenience, in our text we will often use the row vector form and omit the formal transpose
notation t. Also, we will separate coordinates by commas, something that is not needed
when a column vector is displayed vertically.

P = [x; y]
t
=

�
x

y

�

Sometimes we will have need to label a point according to the type of feature from which it
was determined. For example, a point could be the center of a hole, a vertex of a polygon,
or the computed location where two extended line segments intersect. Point type will be
used to advantage in the automatic matching algorithms discussed later in the chapter.

Reference Frames

The coordinates of a point are always relative to some coordinate frame. Often, there
are several coordinate frames needed to analyze an environment, as discussed at the end of
Chapter 2. When multiple coordinate frames are in use, we may use a special superscript
to denote which frame is in use for the coordinates being given for the point.

3 Definition If Pj is some feature point and C is some reference frame, then we denote

the coordinates of the point relative to the coordinate system as cPj.
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Homogeneous Coordinates

As will soon become clear, it is often convenient notationally and for computer processing
to use homogeneous coordinates for points, especially when a�ne transformations are used.

4 Definition The homogeneous coordinates of a 2D point P = [x; y]t are [sx; sy; s]t,
where s is a scale factor, commonly 1.0.

Finally, we need to note the conventions of coordinate systems and programs that display
pictures. The coordinate systems in the drawn �gures of this chapter are typically plotted
as they are in mathematics books with the �rst coordinate (x or u or even r) increasing to
the right from the origin and the second coordinate (y or v or even c) increasing upward
from the origin. However, our image display programs display an image of n rows and m

columns with the �rst row (row r = 0) at the top and the last row (row r = n � 1) at the
bottom. Thus r increases from the top downward and c increases from left to right. This
presents no problem to our algebra, but may give our intuition trouble at times since the
displayed image needs to be mentally rotated counterclockwise 90 degrees to agree with the
conventional orientation in a math book.

11.3 A�ne Mapping Functions

A large class of useful spatial transformations can be represented by multiplication of a
matrix and a homogeneous point. Our treatment here is brief but fairly complete: for more
details, consult one of the computer graphics texts or robotics texts listed in the references.

Scaling

A common operation is scaling. Uniform scaling changes all coordinates in the same
way, or equivalently changes the size of all objects in the same way. Figure 11.3 shows
a 2D point P = [1; 2] scaled by a factor of 2 to obtain the new point P0 = [2; 4]. The
same scale factor is applied to the three vertices of the triangle yielding a triangle twice as
large. Scaling is a linear transformation, meaning that it can be easily represented in terms
of the scale factor applied to the two basis vectors for 2D Euclidean space. For example,
[1; 2] = 1[1; 0] + 2[0; 1] and 2[1; 2] = 2(1[1; 0] + 2[0; 1]) = 2[1; 0] + 4[0; 1] = [2; 4]:
Equation 11.2 shows how scaling of a 2D point is conveniently represented using multipli-
cation by a simple matrix containing the scale factors on the diagonal. The second case
is the general case where the x and y unit vectors are scaled di�erently and is given in
Equation 11.3. Recall the �ve coordinate frames introduced in Chapter 2: the change of
coordinates of real image points expressed in mm units to pixel image points expressed in
row and column units is one such scaling. In the case of a square pixel camera, cx = cy = c,
but these constants will be in the ratio of 4=3 for cameras built using TV standards.

�
x0

y0

�
=

�
c 0
0 c

��
x

y

�
=

�
cx

cy

�
= c

�
x

y

�
(11.2)

�
x0

y0

�
=

�
cx 0
0 cy

� �
x

y

�
=

�
cxx

cyy

�
(11.3)
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Figure 11.3: Scaling both coordinates of a 2D vector by scale factor 2.

Exercise 2 scaling for a non-square pixel camera

Suppose a square CCD chip has side 0.5 inches and contains 480 rows of 640 pixels each
on this active area. Give the scaling matrix needed to convert pixel coordinates [r, c] to
coordinates [x, y] in inches. The center of pixel [0,0] corresponds to [0, 0] in inches. Using
your conversion matrix, what are the integer coordinates of the center of the pixel in row
100 column 200?

Rotation

A second common operation is rotation about a point in 2D space. Figure 11.4 (left)
shows a 2D point P = [x; y] rotated by angle � counterclockwise about the origin to obtain
the new point P0 = [x0; y0]. Equation 11.4 shows how rotation of a 2D point about the
origin is conveniently represented using multiplication by a simple matrix. As for any linear

transformation, we take the columns of the matrix to be the result of the transformation
applied to the basis vectors (Figure 11.4 (right)); transformation of any other vector can be
expressed as a linear combination of the basis vectors.

R�([x; y]) = R�(x[1; 0] + y[0; 1])

= xR�([1; 0]) + yR�([0; 1]) = x[cos�; sin�] + y[�sin�; cos�]

= [xcos� � ysin�; xsin� + ycos�]

�
x0

y0

�
=

�
cos� �sin�

sin� cos�

� �
x

y

�
=

�
xcos� � ysin�

xsin� + ycos�

�
(11.4)

2D rotations can be made about some arbitrary point in the 2D plane, which need not
be the origin of the reference frame. Details are left for a guided exercise later in this section.
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Figure 11.4: Rotation of any 2D point in terms of rotation of the basis vectors.

Exercise 3

(a) Sketch the three points [0,0], [2,2], and [0,2] using an XY coordinate system. (b) Scale
these points by 0.5 using Equation 11.2 and plot the results. (c) Using a new plot, plot the
result of rotating the three points by 90 degrees about the origin using Equation 11.4. (d)
Let the scaling matrix be S and the rotation matrix be R. Let SR be the matrix resulting
from multiplying matrix S on the left of matrix R. Is there any di�erence if we transform
the set of three points using SR and RS?
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* Orthogonal and Orthonormal Transforms

5 Definition A set of vectors is said to be orthogonal if all pairs of vectors in the set are

perpendicular; or equivalently, have scalar product of zero.

6 Definition A set of vectors is said to be orthonormal if it is an orthogonal set and if all

the vectors have unit length.

A rotation preserves both the length of the basis vectors and their othogonality. This can
be seen both intuitively and algebraically. As a direct result, the distance between any two
transformed points is the same as the distance between the points before transformation.
A rigid transformation has this same property: a rigid transformation is a composition of
rotation and translation. Rigid transformations are commonly used for rigid objects or for
change of coordinate system. A uniform scaling that is not 1.0 does not preserve length;
however, it does preserve the angle between vectors. These issues are important when we
seek properties of objects that are invariant to how they are placed in the scene or how a
camera views them.

Translation

Often, point coordinates need to be shifted by some constant amount, which is equivalent
to changing the origin of the coordinate system. For example, row-column coordinates of
a pixel image might need to be shifted to transform to latitude-longitude coordinates of a
map. Since translation does not map the origin [0, 0] to itself, we cannot model it using
a simple 2x2 matrix as has been done for scaling and rotation: in other words, it is not a
linear operation. We can extend the dimension of our matrix to 3x3 to handle translation as
well as some other operations: accordingly, another coordinate is added to our point vector
to obtain homogeneous coordinates. Typically, the appended coordinate is 1.0, but other
values may sometimes be convenient.

P = [x; y] ' [wx;wy;w] = [x; y; 1] for w = 1

The matrix multiplication shown in Equation 11.5 can now be used to model the translation
D of point [x; y] so that [x0; y0] = D([x; y]) = [x+ x0; y + y0].

2
4 x0

y0

1

3
5 =

2
4 1 0 x0

0 1 y0
0 0 1

3
5
2
4 x

y

1

3
5 =

2
4 x + x0

y + y0
1

3
5 (11.5)

Exercise 4 rotation about a point

Give the 3x3 matrix that represents a �=2 rotation of the plane about the point [ 5, 8].
Hint: �rst derive the matrix D�5;�8 that translates the point [ 5, 8] to the origin of a new
coordinate frame. The matrix which we want will be the combination D5;8 R�=2 D�5;�8.
Check that your matrix correctly transforms points [5, 8],[6, 8] and [5, 9].
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Exercise 5 re
ection about a coordinate axis
A re
ection about the y-axis maps the basis vector [1, 0] onto [-1, 0] and the basis vector
[0, 1] onto [0, 1]. (a) Construct the matrix representing this re
ection. (b) Verify that the
matrix is correct by transforming the three points [1, 1], [1, 0], and [2, 1].
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Figure 11.5: Image from a square-pixel camera looking vertically down on a workbench:
feature points in image coordinates need to be rotated, scaled, and translated to obtain
workbench coordinates.

Rotation, Scaling and Translation

Figure 11.5 shows a common situation: an image I[r, c] is taken by a square-pixel cam-
era looking perpendicularly down on a planar workspace W[x,y]. We need a formula that
converts any pixel coordinates [r; c] in units of rows and columns to, say, mm units [x; y].
This can be done by composing a rotation R, a scaling S, and a translation D as given in
Equation 11.6 and denoted wPj = Dx0;y0 Ss R�

iPj. There are four parameters that deter-
mine the mapping between row-column coordinates and x-y coordinates on the workbench;
angle of rotation �, scale factor s that converts pixels to mm, and the two displacements
x0; y0. These four parameters can be obtained from the coordinates of two control points P1

and P2. These points are determined by clearly marked and easily measured features in the
workspace that are also readily observed in the image { '+' marks, for example. In the land
use application, road intersections, building corners, sharp river bends, etc. are often used
as control points. It is important to emphasize that the same point feature, say P1, can be
represented by two (or more) distinct vectors, one with row-column coordinates relative to I
and one with mmx-y coordinates relative toW. We denote these representations as iP1 and
wP1 respectively. For example, in Figure 11.5 we have iP1 = [100; 60] and wP1 = [200; 100].
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7 Definition Control points are clearly distinguishable and easily measured points used to

establish known correspondences between di�erent coordinate spaces.

Given coordinates for point P1 in both coordinate systems, matrix equation 11.6 yields
two separate equations in the four unknowns.

2
4 xw

yw
1

3
5 =

2
4 1 0 x0

0 1 y0
0 0 1

3
5
2
4 s 0 0

0 s 0
0 0 1

3
5
2
4 cos � � sin � 0

sin � cos � 0
0 0 1

3
5
2
4 xi

yi
1

3
5 (11.6)

xw = xis cos � � yis sin � + x0 (11.7)

yw = xis sin � + yis cos � + y0 (11.8)

Using point P2 yields two more equations and we should be able to solve the system to
determine the four parameters of the conversion formula. � is easily determined independent
of the other parameters as follows. First, the direction of the vector P1P2 in I is determined
as �i = arctan((iy2 �

iy1)=(
ix2 �

ix1)). Then, the direction of the vector inW is determined
as �w = arctan((wy2 � wy1) =(

wx2 � wx1)). The rotation angle is just the di�erence of
these two angles: � = �w��i. Once � is determined, all the sin and cos elements are known:
there are 3 equations and 3 unknowns which can easily be solved for s and x0; y0. The
reader should complete this solution via the exercise below.

Exercise 6 converting image coordinates to workbench coordinates

Assume an environment as in Figure 11.5. (Perhaps the vision system must inform a pick-
and-place robot of the locations of objects.) Give, in matrix form, the transformation
that relates image coordinates [xi; yi; 1] to workbench coordinates [xw; yw; 1]. Compute the
four parameters using these control points: iP1 = [100; 60]; wP1 = [200; 100] ; iP2 =
[380; 120]; wP2 = [300; 200].

An Example A�ne Warp

It is easy to extract a parallelogram of data from a digital image by selecting 3 points.
The �rst point determines the origin of the output image to be created, while the second
and third points determine the extreme point of the parallelogram sides. The output image
will be a rectangular pixel array of any size constructed from samples from the input image.
Figure 11.6 shows results of using a program based on this idea. To create the center image
of the �gure, the three selected points de�ned nonorthogonal axes, thus creating shear in
the output; this shear was removed by extracting a third image from the center image and
aligning the new sampling axes with the skewed axes. Figure 11.7 shows another example:
a distorted version of Andrew Jackson's head has been extracted from an image of a $20 bill
(see Figure 11.24). In both of these examples, although only a portion of the input image
was extracted, the output image contains the same number of pixels.

The program that created Figure 11.7 used the three user selected points to transform
the input parallelogram de�ned at the left of the �gure. The output image was n by m

or 512x512 pixels with coordinates [r; c]; for each pixel [r; c] of the output, the input image
value was sampled at pixel [x; y] computed using the transformation in Equation 11.9. The
�rst form of the equation is the intuitive construction in terms of basis vectors, while the
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Figure 11.6: (Left) 128x128 digital image of grid; (center) 128x128 image extracted by an
a�ne warp de�ned by three points in the left image; (right) 128x128 recti�ed version of part
of the center image.
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Figure 11.7: Distorted face of Andrew Jackson extracted from a $20 bill by de�ning an
a�ne mapping with shear.
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second is its equivalent in standard form.

�
x

y

�
=

�
x0
y0

�
+

r

n

��
x1
y1

�
�

�
x0
y0

��
+

c

m

��
x2
y2

�
�

�
x0
y0

��
2
4 x

y

1

3
5 =

2
4 (x1 � x0)=n (x2 � x0)=m x0

(y1 � y0)=n (y2 � y0)=m y0
0 0 1

3
5
2
4 r

c

1

3
5 (11.9)

Conceptually, the point [x; y] is de�ned in terms of the new unit vectors along the new
axes de�ned by the user selected points. The computed coordinates [x; y] must be rounded
to get integer pixel coordinates to access digital image 1I. If either x or y are out of bounds,
then the output point is set to black, in this case 2I[r; c] = 0; otherwise 2I[r; c] = 1I[x; y].
One can see a black triangle at the upper right of Jackson's head because the sampling
parallelogram protrudes above the input image of the $20 bill image.

Object Recognition/Location Example

Consider the example of computing the transformation matching the model of an object
shown at the left in Figure 11.8 to the object in the image shown at the right of the �gure.
Assume that automatic feature extraction produced only three of the holes in the object.
The spatial transformation will map points [x; y] of the model to points [u; v] of the image.
Assume that we have a controlled imaging environment and the known scale factor has
already been applied to the image coordinates to produce the u-v coordinates shown. Only
two image points are needed in order to derive the rotation and translation that will align
all model points with correpsonding image points. Point locations in the model and image
and interpoint distances are shown in Tables 11.1 and 11.2. We will use the hypothesized
correspondences (A;H2) and (B;H3) to deduce the transformation. Note that these corre-
spondences are consistent with the known interpoint distances. We will discuss algorithms
for making such hypotheses later on in this chapter.

Table 11.1: Model Point Locations and Interpoint Distances (ycoordinates are for the center
of holes).

point coordinates y to A to B to C to D to E

A (8,17) 0 12 15 37 21

B (16,26) 12 0 12 30 26

C (23,16) 15 12 0 22 15

D (45,20) 37 30 22 0 30

E (22,1) 21 26 15 30 0

The direction of the vector from A to B in the model is �1 = arctan(9:0=8:0) =
0:844 and the heading of the corresponding vector from H2 to H3 in the image is �2 =
arctan(12:0=0:0) = �=2 = 1:571. The rotation is thus � = 0:727 radians. Using Equa-
tions 11.6 and substituting the known matching coordinates for points A in the model and
H2 in the image, we obtain the following system, where u0; v0 are the unknown translation
components in the image plane. Note that the values of sin(�) and cos(�) are actually known
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Figure 11.8: (Left) Model object and (right) three holes detected in an image.

Table 11.2: Image Point Locations and Interpoint Distances (ycoordinates are for the center
of holes).

point coordinates y to H1 to H2 to H3

H1 (31,9) 0 21 26
H2 (10,12) 21 0 12
H3 (10,24) 26 12 0

since � has been computed.

2
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3
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1

3
5 (11.10)

The two resulting linear equations readily produce u0 = 15:3 and v0 = �5:95. As a
check, we can use the matching points B and H3, obtaining a similar result. Each distinct
pair of points will result in a slightly di�erent transformation. Methods of using many
more points to obtain a transformation that is more accurate across the entire 2D space
are discussed later in this chapter. Having a complete spatial transformation, we can now
compute the location of any model points in the image space, including the grip points

R = [29; 19] and Q = [32; 12]. As shown below, model point R transforms to image point
iR = [24:4; 27:4]: using Q = [32; 12] as the input to the transformation outputs the image
location iQ = [31:2; 24:2] for the other grip point.

2
4 uR

vR
1

3
5 =

2
4 24:4

27:4
1

3
5 =

2
4 cos � � sin � 15:3

sin � cos � �5:95
0 0 1

3
5
2
4 29

19
1

3
5 (11.11)
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Given this knowledge, a robot could grasp the real object being imaged, provided that
it had knowledge of the transformation from image coordinates to coordinates of the work-
bench supporting the object. Of course, a robot gripper would be opened a little wider
than the transformed length obtained from iRiQ indicates, to allow for small e�ects such
as distortions in imaging, inaccuracies of feature detection, and computational errors. The
required gripping action takes place on a real continuous object and real number coordinates
make sense despite the fact that the image holds only discrete spatial samples. The image
data itself is only de�ned at integer grid points. If our action were to verify the presence of
holes iC and iD by checking for a bright image pixel, then the transformed model points
should be rounded to access an image pixel. Or, perhaps an entire digital neighborhood
containing the real transformed coordinates should be examined. With this example, we
have seen the potential for recognizing 2D objects by aligning a model of the object with
important feature points in its image.

8 Definition Recognizing an object by matching transformed model features to image fea-

tures via a rotation, scaling, and translation (RST) is called recognition-by-alignment.

Exercise 7 are transformations commutative?
Suppose we have matrices for three primitive transformations: R� for a rotation about the
origin, Ssx;sy for a scaling, and Dx0;y0 for a translation. (a) Do scaling and translation
commute; that is, does Ssx;sy Dx0;y0 = Dx0;y0 Ssx;sy? (b) Do rotation and scaling
commute; that is, does R� Ssx;sy = Ssx;sy R�? (c) Same question for rotation and
translation. (d) Same question for scaling and translation. Do both the algebra and intuitive
thinking to derive your answers and explanations.

Exercise 8
Construct the matrix for a re
ection about the line y=3 by composing a translation with
y0 = �3 followed by a re
ection about the x-axis. Verify that the matrix is correct by
transforming the three points [1, 1], [1, 0], and [2, 1] and plotting the input and output
points.

Exercise 9
Verify that the product of the matrices Dx0;y0 and D�x0;�y0 is the 3x3 identity matrix.
Explain why this should be the case.
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Figure 11.9: (Left) v-axis shear and (right) u-axis shear.

* General A�ne Transformations

We have already covered a�ne transformation components of rotation, scaling, and
translation. A fourth component is shear. Figure 11.9 shows the e�ect of shear. Using u�v

coordinates, point vectors move along the v-axis in proportion to their distance from the
v-axis. The point [u; v] is transformed to [u; euu + v] with v-axis shear and to [u+ evv; v]
with u-axis shear. The matrix equations are given in Equation 11.12 and Equation 11.13.
Recall that the column vectors of the shear matrix are just the images of the basis vectors
under the transformation.
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Re
ections are a �fth type of component. A re
ection about the u-axis maps the basis
vectors [1; 0]; [0;1] onto [1; 0]; [0;�1] respectively, while a re
ection about the v-axis maps
[1; 0]; [0;1] onto [�1; 0]; [0; 1]. The 2x2 or 3x3 matrix representation is straightforward. Any
a�ne transformation can be constructed as a composition of any of the component types
{ rotations, scaling, translation, shearing, or re
ection. Inverses of these components exist
and are of the same type. Thus, it is clear that the matrix of a general a�ne transformation
composed of any components has six parameters as shown in Equation 11.14. These six
parameters can be determined using 3 sets of noncolinear points known to be in correspon-
dence by solving 3 matrix equations of this type. We have already seen an example using
shear in the case of the slanted grid in Figure 11.6.
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11.4 * A Best 2D A�ne Transformation

A general a�ne transformation from 2D to 2D as in Equation 11.15 requires six parameters
and can be computed from only 3 matching pairs of points ([xj; yj ]; [uj; vj])j=1;3).2

4 u

v
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3
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3
5
2
4 x

y

1

3
5 (11.15)

Error in any of the coordinates of any of the points will surely cause error in the transfor-
mation parameters. A much better approach is to use many more pairs of matching control
points to determine a least-squares estimate of the six parameters. We can de�ne an error
criteria function similar to that used for �tting a straight line in Chapter 10.

"(a11; a12; a13; a21; a22; a23) =

nX
j=1

((a11xj + a12yj + a13� uj)
2 + (a21xj + a22yj + a23� vj)

2)

(11.16)
Taking the six partial derivatives of the error function with respect to each of the six variables
and setting this expression to zero gives us the six equations represented in matrix form in
Equation 11.17 .

2
6666664

�xj
2 �xjyj �xj 0 0 0

�xjyj �y2j �yj 0 0 0

�xj �yj �1 0 0 0
0 0 0 �xj

2 �xjyj �xj
0 0 0 �xjyj �y2j �yj
0 0 0 �xj �yj �1

3
7777775

2
6666664

a11
a12
a13
a21
a22
a23

3
7777775

=

2
6666664

�ujxj
�ujyj
�uj
�vjxj
�vjyj
�vj

3
7777775

(11.17)

Exercise 10

Solve Equation 11.17 using the following three pairs of matching control points: ([0,0],[0,0]),
([1,0],[0,2]), ([0,1],[0,2]). Do your computations give the same answer as reasoning about
the transformation using basis vectors?

Exercise 11

Solve Equation 11.17 using the following three pairs of matching control points: ([0,0],[1,2]),
([1,0],[3,2]), ([0,1],[1,4]). Do your computations give the same answer as reasoning about
the transformation using basis vectors?

It is common to use many control points to put an image and map or two images into
correspondence. Figure 11.10 shows two images of approximately the same scene. Eleven
pairs of matching control points are given at the bottom of the �gure. Control points are
corners of objects that are uniquely identi�able in both images (or map). In this case, the
control points were selected using a display program and mouse. The list of residuals shows
that, using the derived transformation matrix, no u or v coordinate in the right image will
be o� by 2 pixels from the transformed value. Most residuals are less than one pixel. Better
results can be obtained by using automatic feature detection which locates feature points
with subpixel accuracy: control point coordinates are often o� by one pixel when chosen
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using a computer mouse and the human eye. Using the derived a�ne transformation, the
right image can be searched for objects known to be in the left image. Thus we have reached
the point of understanding how the tax-collectors map can be put into correspondence with
an aerial image for the purpose of updating its inventory of objects.

Exercise 12

Take three pairs of matching control points from Figure 11.10 (for example, ([288, 210, 1],
[31, 160, 1]) ) and verify that the a�ne tranformation matrix maps the �rst into the second.

11.5 2D Object Recognition via A�ne Mapping

In this section we study a few methods of recognizing 2D objects through mappings of
model points onto image points. We have already introduced one method of recognition-by-
alignment in the section on a�ne mappings. The general methods work with general point
features; however, each application domain will present distinguishing features which allow
labels to be attached to feature points. Thus we might have corners or centers of holes in
a part sorting application, or intersections and high curvature land/water boundary points
in a land use application.

Figure 11.11 illustrates the overall model-matching paradigm. Figure 11.11a) is a bound-
ary model of an airplane part. Feature points that may be used in matching are indicated
with small black circles. Figure 11.11b) is an image of the real airplane part in approxi-
mately the same orientation as the model. Figure 11.11c) is a second image of the real part
rotated about 45 degrees. Figure 11.11d) is a third image of the real part in which the cam-
era angle causes a large amount of skewing in the resultant image. The methods described
in this section are meant to determine if a given image, such as those of Figures 11.11b),
11.11c), and 11.11d) contains an instance of an object model such as that of Figure 11.11a)
and to determine the pose (position and orientation) of the object with respect to the camera.

Local Feature Focus Method

The local-feature-focus method uses local features of an object and their 2D spatial re-
lationships to recognize the object. In advance, a set of object models is constructed, one
for each object to be recognized. Each object model contains a set of focus features, which
are major features of the object that should be easily detected if they are not occluded by
some other object. For each focus feature, a set of its nearby features is included in the
model. The nearby features can be used to verify that the correct focus feature has been
found and to help determine the pose of the object.

In the matching phase, feature extraction is performed on an image of one or more ob-
jects. The matching algorithm looks �rst for focus features. When it �nds a focus feature
belonging to a given model, it looks for a cluster of image features near the focus feature
that match as many as possible of the required nearby features for that focus feature in
that model. Once such a cluster has been found and the correspondences between this
small set of image features and object model features have been determined, the algorithm
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======Best 2D Affine Fit Program======

Matching control point pairs are:

288 210 31 160 232 288 95 205 195 372 161 229 269 314 112 159

203 424 199 209 230 336 130 196 284 401 180 124 327 428 198 69

284 299 100 146 337 231 45 101 369 223 38 64

The Transformation Matrix is:

[ -0.0414 , 0.773 , -119

-1.120 , -0.213 , 526 ]

Residuals (in pixels) for 22 equations are as follows:

0.18 -0.68 -1.22 0.47 -0.77 0.06 0.34 -0.51 1.09 0.04 0.96

1.51 -1.04 -0.81 0.05 0.27 0.13 -1.12 0.39 -1.04 -0.12 1.81

======Fitting Program Complete======

Figure 11.10: Images of same scene and best a�ne mapping from the left image into the
right image using 11 control points. [x,y] coordinates for the left image with x increasing
downward and y increasing to the right; [u,v] coordinates for the right image with u in-
creasing downward and v toward the right. The 11 clusters of coordinates directly below
the images are the matching control points x,y,u,v.
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a) Part Model b) Horizontal Image

c) Rotated Image d) Rotated and Skewed Image

Figure 11.11: A 2D model and 3 matching images of an airplane part.

hypothesizes that this object is in the image and uses a veri�cation technique to decide if
the hypothesis is correct.

The veri�cation procedure must determine whether there is enough evidence in the im-
age that the hypothesized object is in the scene. For polyhedral objects, the boundary of
the object is often used as suitable evidence. The set of feature correspondences is used
to determine a possible a�ne transformation from the model points to the image points.
This transformation is then used to transform each line segment of the boundary into the
image space. The transformed line segments should approximately line up with image line
segments wherever the object is unoccluded. Due to noise in the image and errors in feature
extraction and matching, it is unlikely that the transformed line segments will exactly align
with image line segments, but a rectangular area about each transformed line segment can
be searched for evidence of possibly matching image segments. If su�cient evidence is found,
that model segment is marked as veri�ed. If enough model segments are veri�ed, the object
is declared to be in the image at the location speci�ed by the computed transformation.

The local-feature-focus algorithm for matching a given model F to an image is given
below. The model has a set fF1; F2; : : : ; FMg of focus features. For each focus feature Fm,
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there is a set S(Fm) of nearby features that can help to verify this focus feature. The image
has a set fG1; G2; : : : ; GIg of detected image features. For each image feature Gi, there is
a set of nearby image features S(Gi).

Find the transformation from model features to image features
using the local-feature-focus approach.
Gi; i = 1; I is the set of the detected image features.
Fm;m = 1;M is the set of focus features of the model.
S(f) is the set of nearby features for any feature f .

procedure local feature focus(G,F);
f

for each focus feature Fm
for each image feature Gi of the same type as Fm
f

Find the maximal subgraph Sm of S(Fm) that
matches a subgraph Si of S(Gi);

Compute the transformation T that maps the points of
each feature of Sm to the corresponding feature of Si;

Apply T to the boundary segments of the model;
if enough of the transformed boundary segments �nd
evidence in the image then return(T );

g ;
g

Algorithm 1: Local-Feature-Focus Method

Figure 11.12 illustrates the local-feature-focus method with two models, E and F, and
an image. The detected features are circular holes and sharp corners. Local feature F1 of
model F has been hypothesized to correspond to feature G1 in the image. Nearby features
F2, F3, and F4 of the model have been found to correspond well to nearby features G2, G3,
and G4, respectively, of the image. The veri�cation step will show that model F is indeed
in the image. Considering the other model E, feature E1 and the set of nearby features E2,
E3, and E4 have been hypothesized to correspond to features G5, G6, G7, and G8 in the
image. However, when veri�cation is performed, the boundary of model E will not line up
well with the image segments, and this hypothesis will be discarded.

Pose Clustering

We have seen that an alignment between model and image features using an RST trans-
formation can be obtained from two matching control points. The solution can be obtained
using Equations 11.6 once two control points have been matched between image and model.
Obtaining the matching control points automatically may not be easy due to ambiguous
matching possibilities. The pose clustering approach computes an RST alignment for all
possible control point pairs and then checks for a cluster of similar parameter sets. If indeed
there are many matching feature points between model and image, then a cluster should
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Figure 11.12: The Local Feature Focus Method

exist in the parameter space. A pose-clustering algorithm is sketched below.

9 Definition Let T be a spatial transformation aligning model M to an object O in image

I. The pose of object O is its location and orientation as de�ned by the parameters � of T .

Using all possible pairs of feature points would provide too much redundancy. An ap-
plication in matching aerial images to maps can use intersection points detected on road
networks or at the corners of regions such as �elds. The degree of the intersection gives it a
type to be used in matching; for example, common intersections have type 'L','Y','T', 'Ar-

row', and 'X'. Assume that we use only the pairs of combined type LX or TY. Figure 11.14
shows an example with 5 model pairs and 4 image pairs. Although there are 4 � 5 = 20

junctionjunctionjunctionjunctionjunction
’Arrow’’L’ ’Y’ ’T’ ’X’ 

Figure 11.13: Common line-segment junctions used in matching.
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Find the transformation from model features to image features
using pose clustering.
Pi; i = 1; D is the set of detected image features.
Lj ; j = 1;M is the set of stored model features.

procedure pose clustering(P,L);
f

for each pair of image feature points (Pi; Pj)
for each pair of model feature points (Lm; Ln) of same type
f

compute parameters � of RST mapping
pair (Lm; Ln) onto (Pi; Pj);

contribute � to the cluster space;
g ;

examine space of all candidates � for clusters;
verify every large cluster by mapping all
model feature points and checking the image;

return(veri�ed f�k g);
g

Algorithm 2: Pose-Clustering Algorithm

possible pairings, only 10 of them have matching types for both points. The transformations
computed from each of those are given in Table 11.3. The 10 transformations computed
have scattered and inconsistent parameter sets, except for 3 of them indicated by '* in the
last column of the table. These 3 parameter sets form a cluster whose average parameters
are � = 0:68; s = 2:01; u0 = 233; v0 = �41. While one would like less variance than this for
correct matches, this variance is typical due to slight errors in point feature location and
small nonlinear distortions in the imaging process. If the parameters of the RST mapping
are inaccurate, they can be used to verify matching points which can then be used as control
points to �nd a nonlinear mapping or a�ne mapping (with more parameters) that is more
accurate in matching control points.

Pose clustering can work using low level features; however, both accuracy and e�ciency
are improved when features can be �ltered by type. Clustering can be performed by a simple
O(n2) algorithm: for each parameter set �, count the number of other parameter sets �i
that are close to it using some permissible distance. This requires n� 1 distance computa-
tions for each of the n parameter sets in cluster space. A faster, but less 
exible, alternative
is to use binning. Binning has been the traditional approach reported in the literature and
was discussed in Chapter 10 with respect to the Hough transform. Each parameter set
produced is contributed to a bin in parameter space, after which all bins are examined for
signi�cant counts. A cluster can be lost when a set of similar�i spread over neighboring bins.

The clustering approach has been used to detect the presence of a particular model of
airplane from an aerial image, as shown in Figure 11.15. Edge and curvature features are
extracted from the image using the methods of Chapters 5 and 10. Various overlapping
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Figure 11.14: Example pose detection problem with 5 model feature point pairs and 4 image
feature point pairs.

Table 11.3: Cluster space formed from 10 pose computations from Figure 11.14

Model Pair Image Pair � s u0 v0

L(170,220),X(100,200) L(545,400),X(200,120) 0.403 6.10 118 -1240

L(170,220),X(100,200) L(420,370),X(360,500) 5.14 2.05 -97 514

T(100,100),Y( 40,150) T(260,240),Y(100,245) 0.663 2.05 225 -48 *

T(100,100),Y( 40,150) T(140,380),Y(300,380) 3.87 2.05 166 669

L(200,100),X(220,170) L(545,400),X(200,120) 2.53 6.10 1895 200

L(200,100),X(220,170) L(420,370),X(360,500) 0.711 1.97 250 -36 *

L(260, 70),X( 40, 70) L(545,400),X(200,120) 0.682 2.02 226 -41 *

L(260, 70),X( 40, 70) L(420,370),X(360,500) 5.14 0.651 308 505

T(150,125),Y(150, 50) T(260,240),Y(100,245) 4.68 2.13 3 568

T(150,125),Y(150, 50) T(140,380),Y(300,380) 1.57 2.13 407 60
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(a) original air�eld image

(b) model of object
(c) detections matching model

Figure 11.15: Pose-clustering applied to detection of a particular airplane. (a) Aerial image
of an air�eld; (b) object model in terms of real edges and abstract edges subtending one
corner and one curve tip point; (c) image window containing detections that match many
model parts via the same transformation.
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windows of these features are matched against the model shown in part (b) of the �gure.
Part (c) of the �gure shows the edges detected in one of these windows where many of the
features aligned with the model features using the same transformation parameters.

Geometric Hashing

Both the local-feature-focus method and the pose clustering algorithm were designed to
match a single model to an image. If several di�erent object models were possible, then these
methods would try each model, one at a time. This makes them less suited for problems in
which a large number of di�erent objects can appear. Geometric hashing was designed to
work with a large database of models. It trades a large amount of o�ine preprocessing and a
large amount of space for a potentially fast online object recognition and pose determination.

Suppose we are given

1. a large database of models

2. an unknown object whose features are extracted from an image and which is known
to be an a�ne transformation of one of the models.

and we wish to determine which model it is and what transformation was applied.

Consider a model M to be an ordered set of feature points. Any subset of three non-
collinear points E = fe00, e01, e10g of M can be used to form an a�ne basis set, which
de�nes a coordinate system on M , as shown in Figure 11.16a). Once the coordinate system
is chosen, any point x 2M can be represented in a�ne coordinates (�; �) where

x = �(e10 � e00) + �(e01 � e00) + e00

Furthermore, if we apply an a�ne transform T to point x, we get

Tx = �(Te10 � Te00) + �(Te01 � Te00) + Te00

Thus Tx has the same a�ne coordinates (�; �) with respect to (Te00; T e01; T e10) as x has
with respect to (e00; e01; e10). This is illustrated in Figure 11.16b).

O�ine Preprocessing: The o�ine preprocessing step creates a hash table containing all
of the models in the database. The hash table is set up so that the pair of a�ne coordinates
(�; �) indexes a bin of the hash table that stores a list of model-basis pairs (M;E) where
some point x of model M has a�ne coordinates (�; �) with respect to basis E. The o�ine
preprocessing algorithm is given below.

Online Recognition: The hash table created in the preprocessing step is used in the
online recognition step. The recognition step also uses an accumulator array A indexed by
model-basis pairs. The bin for each (M;E) is initialized to zero and used to vote for the
hypothesis that there is a transformation T that places (M;E) in the image. Computation
of the actual transformations is done only for those model-basis pairs that achieve a high
number of votes and is part of the veri�cation step that follows the voting. The online
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Figure 11.16: The a�ne transformation of a point with respect to an a�ne basis set.

recognition and pose estimation algorithm is given below.

Suppose that there are s models of approximately n points each. Then the preprocessing
step has complexityO(sn4) which comes from processing s models, O(n3) triples per model,
and O(n) other points per model. In the matching, the amount of work done depends
somewhat on how well the feature points can be found in the image, how many of them are
occluded, and how many false or extra feature points are detected. In the best case, the �rst
triple selected consists of three real feature points all from the same model, this model gets a
large number of votes, the veri�cation procedure succeeds, and the task is done. In this best
case, assuming the average list in the hash table is of a small constant size and that hashing
time is approximately constant, the complexity of the matching step is approximatelyO(n).
In the worst case, for instance when the model is not in the database at all, every triple is
tried, and the complexity is O(n4). In practice, although it would be rare to try all bases,
it is also rare for only one basis to succeed. A number of di�erent things can go wrong:

1. feature point coordinates have some error

2. missing and extra feature points

3. occlusion, multiple objects

4. unstable bases

5. weird a�ne transforms on a subset of the points

In particular, the algorithm can \halucinate" a transformation based on a subset of the
points that passes the point veri�cation tests, but gives the wrong answer. Figure 11.17
illustrates this point. Pose clustering and focus feature methods are also susceptible to this
same phenomenon.
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Set up the hash table for matching to a database of models
using geometric hashing.
D is the database of models.
H is an initially empty hash table.

procedure GH Preprocessing(D,H);
f

for each model M
f

Extract the feature point set FM of M ;
for each noncollinear triple E of points from FM
for each other point x of FM
f

Calculate (�; �) for x with respect to E;
Store (M;E) in hash table H at index (�; �);
g ;

g ;
g

Algorithm 3: Geometric Hashing O�ine Preprocessing

11.6 2D Object Recognition via Relational Matching

We have previously described three useful methods for matching observed image points to
model points: these were local-feature-focus, pose clustering, and geometric hashing. In
this section, we examine three simple general paradigms for object recognition within the
context given in this chapter. All three paradigms view recognition as a mapping from
model structures to image structures: a consistent labeling of image features is sought in
terms of model features, recognition is equivalent to mapping a su�cient number of features
from a single model to the observed image features. The three paradigms di�er in how the
mapping is developed.

Four concepts important to the matching paradigms are parts, labels, assignments, and

relations.

� A part is an object or structure in the scene such as region segment, edge segment,
hole, corner or blob.

� A label is a symbol assigned to a part to identify/recognize it at some level.

� An assignment is a mapping from parts to labels. If P1 is a region segment and L1 is
the lake symbol and L2 the �eld symbol, an assignmentmay include the pair (P1; L2) or
perhaps (P1; fL1; L2g) to indicate remaining ambiguity. A pairing (P1; NIL) indicates
that P1 has no interpretation in the current label set. An interpretation of the scene
is just the set of all pairs making up an assignment.

� A relation is the formal mathematical notion. Relations will be discovered and
computed among scene objects and will be stored for model objects. For example,
R4(P1; P2) might indicate that region P1 is adjacent to region P2
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Use the hash table to �nd the correct model and transformation
that maps image features to model features.
H is the hash table created by the preprocessing step.
A is an accumulator array indexed by (M;E) pairs.
I is the image being analyzed.

procedure GH Recognition(H,A,I);
f

Initialize accumulator array A to all zeroes;
Extract feature points from image I;
for each basis triple F
f

for each other point v
f

Calculate (�; �) for v with respect to F ;
Retrieve the list L of model-basis pairs from the
hash table H at index (�; �);

for each pair (M;E) of L
A[M;E] = A[M;E] + 1;

g ;
Find the peaks in accumulator array A;
for each peak (M;E)
f

Calculate T such at F = TE;
if enough of the transformed model points of M �nd
evidence on the image then return(T );

g ;
g ;

g

Algorithm 4: Geometric Hashing Online Recognition
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a) image points b) halucinated object

Figure 11.17: The geometric hashing algorithm can halucinate that a given model is present
in an image. In this example, 60% of the feature points (left) led to the veri�ed hypothesis
of an object (right) that was not actually present in the image.

Given these four concepts, we can de�ne a consistent labeling.

10 Definition Given a set of parts P , a set of labels for those parts L, a relation RP over

P , and a second relation RL over L, a consistent labeling f is an assignment of labels to

parts that satis�es:

If (pi; pi0) 2 RP , then (f(pi); f(pi0)) 2 RL.

For example, suppose we are trying to �nd a match between two images: for each image
we have a set of extracted line segments and a connection relation that indicates which pairs
of line segments are connected. Let P be the set of line segments and RP be the set of pairs
of connecting line segments from the �rst image, RP � P �P . Similarly, let L be the set of
line segments and RL be the set of pairs of connecting line segments from the second image,
RL � L � L. Figure 11.18 illustrates two sample images and the sets P , RP , L, and RL.
Note that both RP and RL are symmetric relations; if (Si; Sj) belongs to such a relation,
then so does (Sj; Si). In our examples, we list only tuples (Si; Sj) where i < j, but the
mirror image tuple (Sj; Si) is implicitly present.

A consistent labeling for this problem is the mapping f given below:

f(S1) = Sj f(S7) = Sg
f(S2) = Sa f(S8) = Sl
f(S3) = Sb f(S9) = Sd
f(S4) = Sn f(S10) = Sf
f(S5) = Si f(S11) = Sh
f(S6) = Sk

For another example, we return to the recognition of the kleep object shown in Fig-
ure 11.8 and de�ned in the associated tables. Our matching paradigms will use the distance
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P = fS1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11g.

L = fSa,Sb,Sc,Sd,Se,Sf,Sg,Sh,Si,Sj,Sk,Sl,Smg.

RP = f (S1,S2), (S1,S5), (S1,S6), (S2,S3), (S2,S4), (S3,S4), (S3,S9), (S4,S5), (S4,S7),
(S4,S11), (S5,S6), (S5,S7), (S5,S11), (S6,S8), (S6,S11), (S7,S9), (S7,S10), (S7,S11), (S8,S10),
(S8,S11), (S9,S10) g.

RL = f (Sa,Sb), (Sa,Sj), (Sa,Sn), (Sb,Sc), (Sb,Sd), (Sb,Sn), (Sc,Sd), (Sd,Se), (Sd,Sf),
(Sd,Sg), (Se,Sf), (Se,Sg), (Sf,Sg), (Sf,Sl), (Sf,Sm), (Sg,Sh), (Sg,Si), (Sg,Sn), (Sh,Si), (Sh,Sk),
(Sh,Sl), (Sh,Sn), (Si,Sj), (Si,Sk), (Si,Sn), (Sj,Sk), (Sk,Sl), (Sl,Sm) g.

Figure 11.18: Example of a Consistent Labeling Problem

Exercise 13 Consistent Labeling Problem

Show that the labeling f given above is a consistent labeling. Because the relations are
symmetric, the following modi�ed constraint must be satis�ed:

If (pi; pi0) 2 RP , then (f(pi); f(pi0)) 2 RL or (f(pi0 ); f(pi)) 2 RL.

\relation" de�ned for any two points: each pair of holes is related by the distance between
them. Distance is invariant to rotations and translations but not scale change. Abusing
notation, we write 12(A;B) and 12(B;C) to indicate that points A and B are distance 12
apart in the model, similarly for points B and C. 12(C;D) does NOT hold, however, as we
see from the distance tables. To allow for some distortion or detection error, we might allow
that 12(C;D) is true even when the distance between C and D is actually 12 + = � � for
some small amount �.

The Interpretation Tree

11 Definition An interpretation tree (IT) is a tree that represents all possible assignments

of labels to parts. Every path in the tree is terminated either because it represents a complete

consistent assignment, or because the partial assignment it represents fails some relation.

A partial interpretation tree for the image data of Figure 11.8 is shown in Figure 11.19.
The tree has three levels, each to assign a label to one of the three holes H1;H2;H3 ob-
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Figure 11.19: Partial interpretation tree search for a consistent labeling of the kleep parts
in Figure 11.8 (right).

served in the image. No inconsistencies occur at the �rst level since there are no distance
constraints to check. However, most label possibilities at level 2 can be immediately ter-
minated using one distance check. For example, the partial assignment f(H1; A); (H2; A)g
is inconsistent because the relation 21(H1;H2) is violated by 0(A;A). Many paths are not
shown due to lack of space. The path of labels denoted by the boxes yields a complete and
consistent assignment. The path of labels denoted by ellipses is also consistent; however, it
contains one NIL label and thus has fewer constraints to check. This assignment has the
�rst two pairs of the complete (boxed) assignment reversed in labels and the single distance
check is consistent. Multiple paths of an IT can succeed due to symmetry. Although the
IT potentially contains an exponential number of paths, it has been shown that most paths
will terminate by level 3 due to the relational constraints. Use of the label NIL allows for
detection of artifacts or the presence of features from another object in the scene.

The IT can easily be developed using a recursive backtracking process that develops
paths in a depth-�rst fashion. At any instantiation of the procedure, the parameter f ,
which is initially NIL, contains the consistent partial assignment. Whenever a new labeling
of a part is consistent with the partial assignment, the algorithm goes deeper in the tree
by hypothesizing another label for an unlabeled part; if an inconsistency is detected, then
the algorithm backs up to make an alternate choice. As coded, the algorithm returns the
�rst completed path, which may include NIL labels if that label is explicitly included in L.
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An improvement would be to return the completed path with the most nonNIL pairs, or
perhaps all completed paths.

The recursive interpretation tree search algorithm is given below. It is de�ned to be gen-
eral and to handle arbitary N-ary relations, RP and RL, rather than just binary relations.
RP and RL can be single relations, such as the connection relation in our �rst example,
or they can be unions of a number of di�erent relations, such as connection, parallel, and
distance.

Find the mapping from model features to image features that
satis�es the model relationships by a tree search.
P is the set of detected image features.
L is the set of stored model features.
RP is the relationship over the image features.
RL is the relationship over the model features.
f is the consistent labeling to be returned, initially NIL.

procedure Interpretation Tree Search(P;L;RP ; RL; f);
f

p := �rst(P );
for each l in L
f

f 0 = f [ f(p; l)g; /* add part-label to interpretation */
OK = true;
for each N-tuple (p1; : : : ; pN ) in RP containing component p
and whose other components are all in domain(f)
/* check on relations */
if (f(p1); : : : ; f(pN )) is not in RL then

f

OK: = false;
break;

g

if OK then

f

P 0 = rest(P );
if isempty(P 0) then output(f 0);
else Interpretation Tree Search(P 0; L;RP ; RL; f

0);
g

g

g

Algorithm 5: Interpretation Tree Search

Discrete Relaxation
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Relaxation uses only local constraints rather than all the constraints available; for ex-
ample, all constraints from matches on a single path of the IT. After N iterations, local
constraints from one part neighborhood can propagate across the object to another part on
a path N edges distant. Although the constraints used in one iteration are weaker than
those available using the IT search, they can be applied in parallel, thus making faster and
simpler processing possible.

Initially, a part can be labeled by any label permitted by its type; suppose we assign
it a set of all these possible labels. Discrete relaxation examines the relations between a
particular part and all others, and by doing so, reduces the possible labels for that particular
part. In the related problem of character recognition, if it is known that the following letter
cannot be \U", then we can conclude that the current letter cannot be \Q". In yet a di�erent
domain, if it is known that an image region is not water, then an object in it is not a ship.
Discrete relaxation was popularized by David Waltz, who used it to constrain the labels
assigned to edges of line drawings. (Waltz �ltering is discussed in the text by Winston.)
Waltz used an algorithmwith some sequential character; here we present a parallel approach.

Each part Pi is initially assigned the entire set of possible labels Lj according to its
type. Then, all relations are checked to see if some labels are impossible: inconsistent labels
are removed from the set. The label sets for each part can be processed in parallel through
passes. If, after any pass some labels have been �ltered out of some sets, then another
pass is executed; if no labels have changed, then the �ltering is completed. There may be
no interpretations left possible, or there may be several. The following example should be
instructive. To keep it simple, we assume that there are no extra features detected that are
not actual parts of the model; as before, we assume that some features may have been missed.

We now match the data in Tables 11.1 and 11.2. The �ltering process begins with all 5
labels possible for each of the 3 holes H1;H2;H3. To add interest and to be more practical,
we will allow a tolerance of �1 on distance matches. Table 11.4 shows the 3 label sets at
some point midway through the �rst pass. Each cell of the table gives the reason why a label
must be deleted or why it survives. A is deleted from the label set forH1 because the relation
26(H1;H3) cannot be explained by any label for H3. The label A survives for H2 because
there is label E 2 L(H1) to explain the relation 21(H2;H1) and label B 2 L(H3) to explain
relation 12(H2;H3). The label C survives for H2, because d(H2;H1) = 21 � 22 = d(C;D).

At the end of the �rst pass, as Table 11.5 shows, there are only two labels possible for
H2, only label E remains for H1, and only label B remains for H3. At the end of pass 1 the
reduced label sets are made available for the parallel processing of pass 2, where each label
set is further �ltered in asynchronous parallel order.

Exercise 14
Give detailed justi�cation for each of the labels being in or out of each of the label sets after
pass 1 as shown in Table 11.5.

Pass 2 deletes label C from L(H2) because the relation 21(H1;H2) can no longer be
explained by using D as a label for H1. After pass 3, additional passes cannot change any
label set so the process has converged. In this case, the label sets are all singletons repre-
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Table 11.4: Midway through �rst pass of relaxation labeling

A B C D E

H1 no N 3 no N 3 no N 3 no N 3 21(H1;H2)
d(A;N ) = 26 d(B;N ) = 21 d(C;N ) = 26 d(D;N ) = 26 A 2 L(H2)

26(H1;H3)
B 2 L(H3)

H2 21(H2;H1) no N 3 21(H2;H1)
E 2 L(H1) d(B;N ) = 21 D 2 L(H1)
12(H2;H3) 12(H2;H3)
B 2 L(H3) B 2 L(H3)

H3 no N 3 12(H3;H2)
d(A;N ) = 26 A 2 L(H2)

26(H3;H1)
E 2 L(H1)

Table 11.5: After completion of the �rst pass of relaxation labeling

A B C D E

H1 no no no no possible

H2 possible no possible no no

H3 no possible no no no

senting a single assignment and interpretation. A high-level sketch of the algorithm is given
below. Although a simple and potentially fast procedure, relaxation labeling sometimes
leaves more ambiguity in the interpretation than does IT search because constraints are
only applied pairwise. Relaxation labeling can be applied as preprocessing for IT search: it
can substantially reduce the branching factor of the tree search.

Continuous Relaxation

In exact consistent labeling procedures, such as tree search and discrete relaxation, a
label l for a part p is either possible or impossible at any stage of the process. As soon
as a part{label pair (p; l) is found to be incompatible with some already instantiated pair,
the label l is marked as illegal for part p. This property of calling a label either possible
or impossible in the preceding algorithms makes them discrete algorithms. In contrast, we
can associate with each part{label pair (p; l) a real number representing the probability or

Table 11.6: After completion of the second pass of relaxation labeling

A B C D E

H1 no no no no possible

H2 possible no no no no

H3 no possible no no no
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Table 11.7: After completion of the third pass of relaxation labeling

A B C D E

H1 no no no no possible

H2 possible no no no no

H3 no possible no no no

Remove incompatible labels from the possible labels for a set
of detected image features.
Pi; i = 1; D is the set of detected image features.
S(Pi); i = 1; D is the set of initially compatible labels.
R is a relationship over which compatibility is determined.

procedure Relaxation Labeling(P, S, R);
f

repeat

for each (Pi; S(Pi))
f

for each label Lk 2 S(Pi)
for each relation R(Pi; Pj) over the image parts
if 9 Lm 2 S(Pj) with R(Lk; Lm) in model
then keep Lk in S(Pi)
else delete Lk from S(Pi)

g

until no change in any set S(Pi)
return(S);
g

Algorithm 6: Discrete Relaxation Labeling



Shapiro and Stockman 35

certainty that part p can be assigned label l. In this case the corresponding algorithms
are called continuous. In this section we will look at a labeling algorithm called continuous

relaxation for symmetric binary relations.

A continuous relaxation labeling problem is a 6{tuple CLRP = (P;L;RP ; RL; PR;C).
As before, P is a set of parts, L is a set of labels for those parts, RP is a relationship over the
parts, and RL is a relationship over the labels. L is usually given as the union over all parts
i of Li, the set of allowable labels for part i. Suppose that jP j = n. Then PR is a set of n
functions PR = fpr1 : : : ; prng where pri(l) is the a priori probability that label l is valid for
part i. C is a set of n2 compatibility coe�cients C = fcijg; i = 1; : : : ; n; j = 1; : : : ; n: cij
can be thought of as the in
uence that part j has on the labels of part i. Thus, if we view
the constraint relation RP as a graph, we can view cij as a weight on the edge between part
i and part j.

Instead of using RP and RL directly, we combine them to form a set R of n2 functions
R = frijg; i = 1; : : : ; n; j = 1; : : : ; n; where rij(l; l

0) is the compatibility of label l for part
i with label l0 for part j. In the discrete case, rij(l; l

0) would be 1, meaning ((i; l); (j; l0))
is allowed or 0, meaning that combination is incompatible. In the continuous case, rij(l; l

0)
can be any value between 0 and 1, indicating how compatible the relationship between parts
i and j is with the relationship between labels l and l0. This information can come from
RP and RL, which may be themselves simple, binary relations or may be attributed binary
relations, where the attribute associated with a pair of parts (or pair of labels) represents
the likelihood that the required relationship holds between them. The solution of a contin-
uous relaxation labeling problem, like that of a consistent labeling problem, is a mapping
f : P ! L that assigns a label to each unit. Unlike the discrete case, there is no external def-
inition stating what conditions such a mapping f must satisfy. Instead, the de�nition of f is
implicit in the procedure that produces it. This procedure is known as continuous relaxation.

As discrete relaxation algorithms iterate to remove possible labels from the label set Li
of a part i, continuous relaxation iterates to update the probabilities associated with each
part{label pair. The initial probabilities are de�ned by the set PR of functions de�ning a

priori probabilities. The algorithm starts with these initial probabilities at step 0. Thus we
de�ne the probabilities at step 0 by

pr0i (l) = pri(l) (11.18)

for each part i and label l. At each iteration k of the relaxation, a new set of probabilities
fprki (l)g is computed from the previous set and the compatibility information. In order to
de�ne prki (l) we �rst introduce a piece of it, q

k
i (l) de�ned by

qki (l) =
X

fjj(i;j)2RPg

cij [
X
l02Lj

rij(l; l
0)prkj (l

0)] (11.19)

The function qki (l) represents the in
uence that the current probabilities associated with
labels of other parts constrained by part i have on the label of part i: With this formulation,
the formula for updating the prki 's can be written as

prk+1i (l) =
prki (l)(1 + qki (l))P

l02Li

prki (l
0)(1 + qki (l

0))
(11.20)
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Figure 11.20: A model and image for continuous relaxation.

The numerator of the expression allows us to add to the current probability prki (l) a term
that is the product prki (l)q

k
i (l) of the current probability and the opinions of other related

parts, based on the current probabilities of their own possible labels. The denominator
normalizes the expression by summing over all possible labels for part i.

Exercise 15 Continous Relaxation
Figure 11.20 shows a model and an image, each composed of line segments. Two line
segments are said to be in the relationship closadj if their endpoints either coincide or are
close to each other. a) Construct the attributed relation RP over the parts of the model
de�ned by RP = f(pi; pj; d)jpi closadj pjg and the attributed relation RL over the labels
of the image de�ned by RL = f(li; lj)jli closadj ljg. b) De�ne the compatibility coe�cients
by cij = 1 if (pi; pj) 2 RP else 0. Use RP and RL together to de�ne R in a manner of
your choosing. Let pri(lj) be given as 1 if pi has the same orientation as lj , 0 if they are
perpendicular, and .5 if one is diagonal and the other is horizontal or vertical. De�ne pr for
the parts of the model and labels of the image. c) Apply several iterations of continuous
relaxation to �nd a probable labeling from the model parts to the image labels.

Relational Distance Matching

A fully-consistent labeling is unrealistic in many real applications. Due to feature ex-
traction errors, noise, and occlusion of one object by another, an image may have missing
and extra parts, and required relationships may not hold. Continous relaxation may be
used in these cases, but it is not guaranteed to �nd the best solution. In problems where
�nding an optimal solution is important, we can perform a search to �nd the best mapping
f from P to L, in the sense that it preserves the most relationships and/or minimizes the
number of NIL labels. The concept of relational distance as originally de�ned by Haralick
and Shapiro [1981] allows us to de�ne the best mapping in the general case where there may
be any number of relations with possibly di�erent dimensions. To do this we �rst need the
concept of a relational description of an image or object.
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12 Definition A relational description DP is a sequence of relations DX = fR1; : : : ; RIg

where for each i = 1; : : : ; I, there exists a positive integer ni with Ri � Pni for some set

P . P is a set of the parts of the entity being described and the relations Ri indicate various

relationships among the parts.

A relational description is a data structure that may be used to describe two{dimensional
shape models, three-dimensional object models, regions on an image, and so on.

LetDA = fR1; : : : ; RIg be a relational description with part set A andDB = fS1; : : : ; SIg

be a relational description with part set B. We will assume that j A j=j B j; if this is not
the case, we will add enough dummy parts to the smaller set to make it the case. The
assumption is made in order to guarantee that the relational distance is a metric.

Let f be any one-one, onto mapping fromA to B. For any R � AN , N a positive integer,
the composition R � f of relation R with function f is given by

R � f = f(b1; : : : ; bN ) 2 BN j there exists(a1; : : : ; aN) 2 R

with f(an) = bn; n = 1; : : : ; Ng

This composition operator takes N{tuples of R and maps them, component by component,
into N{tuples of BN .

The function f maps parts from set A to parts from set B. The structural error of f for
the ith pair of corresponding relations (Ri and Si) in DA and DB is given by

Ei
S(f) =j Ri � f � Si j + j Si � f

�1 �Ri j :

The structural error indicates how many tuples in Ri are not mapped by f to tuples in Si
and how many tuples in Si are not mapped by f�1 to tuples in Ri. The structural error is
expressed with respect to only one pair of corresponding relations.

The total error of f with respect to DA and DB is the sum of the structural errors for
each pair of corresponding relations. That is,

E(f) =

IX
i=1

Ei
S(f):

The total error gives a quantitative idea of the di�erence between the two relational descrip-
tions DA and DB with respect to the mapping f .

The relational distance GD(DA; DB) between DA and DB is then given by

GD(DA; DB) = min
1�1

f:A!B
onto

E(f):

That is, the relational distance is the minimal total error obtained for any one{one, onto
mapping f fromA to B. We call a mapping f that minimizes total error a best mapping from
DA to DB . If there is more than one best mapping, additional information that is outside
the pure relational paradigm can be used to select the preferred mapping. More than one
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Figure 11.21: Two digraphs whose relational distance is 3.

best mapping will occur when the relational descriptions involve certain kinds of symmetries.

We illustrate the relational distance with several examples. Figure 11.21 shows two di-
graphs, each having four nodes. A best mapping from A = f1; 2; 3; 4g to B = fa; b; c; dg is
ff(1) = a; f(2) = b; f(3) = c; f(4) = dg: For this mapping we have

jR � f � Sj = jf(1; 2)(2; 3)(3; 4)(4;2)g� f � f(a; b)(b; c)(c; b)(d; b)gj

= jf(a; b)(b; c)(c; d)(d; b)g� f(a; b)(b; c)(c; b)(d; b)gj

= jf(c; d)gj

= 1

jS � f�1 � Rj = jf(a; b)(b; c)(c; b)(d; b)g � f�1 � f(1; 2)(2; 3)(3; 4)(4; 2)gj

= jf(1; 2)(2; 3)(3; 2)(4;2)g� f(1; 2)(2; 3)(3; 4)(4; 2)gj

= jf(3; 2)gj

= 1

E(f) = jR � f � Sj+ jS � f�1 � Rj

= 1 + 1

= 2

Since f is a best mapping, the relational distance is also 2.

Figure 11.22 gives a set of object models M1;M2;M3; and M4 whose primitives are im-
age regions. Two relations are shown in the �gure: the connection relation and the parallel
relation. Both are binary relations over the set of primitives. Consider the �rst two models,
M1 and M2: The best mapping f maps primitive 1 to 10; 2 to 20; and 3 to 30: Under this
mapping the connection relations are isomorphic. The parallel relationship (2; 3) in model
M1 does not hold between 20 and 30 in model M2: Thus the relational distance between M1

and M2 is exactly 1. Now consider models M1 and M3: The best mapping maps 1 to 100; 2
to 200; 3 to 300; and a dummy primitive to 400: Under this mapping, the parallel relations are
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Figure 11.22: Four object models. The relational distance of model M1 to M2 and M1 to
M3 is 1. The relational distance of model M3 to M4 is 6.

now isomorphic but there is one more connection in M3 than in M2: Again the relational
distance is exactly 1.

Finally consider modelsM3 andM4: The best mapping maps 100 to 1�; 200 to 2�; 300 to 3�;
400 to 4�; 5d to 5

�; and 6d to 6
�: (5d and 6d are dummyprimitives.) For this mapping we have
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jR1 � f � S1j = jf(100; 200)(100; 300)(100; 400)g � f �

f(4�; 5�)(4�; 6�)(1�; 5�)(1�; 6�)(1�; 2�)(1�; 3�)gj

= jf(1�; 2�)(1�; 3�)(1�; 4�)g �

f(4�; 5�)(4�; 6�)(1�; 5�)(1�; 6�)(1�; 2�)(1�; 3�)gj

= jf(1�; 4�)gj

= 1

jS1 � f
�1R1j = jf(4�; 5�)(4�; 6�)(1�; 5�)(1�; 6�)(1�; 2�)(1�; 3�)g � f�1 �

f(100; 200)(100; 300)(100; 400)gj

= jf(400; 5d)(4
0; 6d)(1

00; 5d)(1
00; 6d)(1

00; 200)(100; 300)g �

f100; 200)(100; 300)(100; 400)gj

= jf(400; 5d)(4
00; 6d)(1

00; 5d)(1
00; 6d)gj

= 4

jR2 � f � S2j = jf(200; 300)g � f � f2�; 3�)(5�; 6�)gj

= jf(2�; 3�)g � f(2�; 3�)(5�; 6�)gj

= j;j

= 0

jS2 � f
�1 � R2j = jf(2�; 3�)(5�; 6�)g � f�1 � f(200; 300)gj

= jf(200; 300)(5d; 6d)g � f(200; 300)gj

= jf(5d; 6d)gj

= 1

E1
S(f) = 1 + 4 = 5

E2
S(f) = 0 + 1 = 1

E(f) = 6

Exercise 16 Relational Distance Treesearch
Modify the algorithm for Interpretation Tree Search to �nd the relational distance between
two structural descriptions and to determine the best mapping in the process of doing so.

Exercise 17 One-Way Relational Distance

The above de�nition of relational distance uses a two-way mapping error, which is useful
when comparing two objects that stand alone. When matching a model to an image, we
often want to use only a one-way mapping error, checking how many relationships of the
model are in the image, but not vice versa. De�ne a modi�ed one-way relational distance
that can be used for model-image matching.
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Exercise 18 NIL mappings in Relational Distance

The above de�nition of relational distance does not handle NIL labels explicitly. Instead,
if part j has a NIL label, then any relationship (i; j) will cause an error, since (f(i); NIL)
will not be present. De�ne a modi�ed relational distance that counts NIL labels as errors
only once and does not penalize again for missing relationships caused by NIL labels.

Exercise 19 Attributed Relational Distance
The above de�nition also does not handle attributed relations in which each tuple, in addi-
tion to a sequence of parts, contains one or more attributes of the relation. For example,
a connection relation for line segments might have as an attribute the angle between the
connecting segments. Formally, an attributed n-relation R over part set P and attribute
set A is a set R � Pn � Am for some nonnegative integer m that speci�es the number
of attributes in the relation. De�ne a modi�ed relational distance in terms of attributed
relations.

Relational Indexing

Sometimes a tree search even with relaxation �ltering is too slow, especially when an im-
age is to be compared to a large database of models. For structural descriptions in terms of
labeled relations, it is possible to approximate the relational distance with a simpler voting
scheme. Intuitively, suppose we observe two coincentric circles and two 90 degree corners
connected by an edge. We would like to quickly �nd all models that have these structures
and match them in more detail. To achieve this, we can build an index that allows us to look
up the models given the partial graph structure. Given two coincentric circles, we look up
all models containing these related features and give each of those models one vote. Then,
we look up all models having connected 90 degree corners: any models repeating from the
�rst test will now have two votes. These lookups can be done rapidly provided that an index
is built o�ine before recognition by extracting signi�cant binary relations from each model
and recording each in a lookup table.

Let DB = fM1;M2; : : : ;Mtg be a database of t object models. Each object model Mt

consists of a set of attributed parts PT plus a labeled relation RT . For simplicity of explana-
tion, we will assume that each part has a single label, rather than a vector of attributes and
that the relation is a binary relation, also with a single label attached to each tuple. In this
case, a model is represented by a set of two-graphs each of which is a graph with two nodes
and two directed edges. Each node represents a part, and each edge represents a directed
binary relationship. The value in the node is the label of the part, rather than a unique
identi�er. Similarly, the value in an edge is the label of the relationship. For example, one
node could represent an ellipse and another could represent a pair of parallel lines. The edge
from the parallel lines node to the ellipse node could represent the relationship \encloses",
while the edge in the opposite direction represents the relationship \is enclosed by".

Relational indexing requires a preprocessing step in which a large hash table is set up.
The hash table is indexed by a string representation of a two-graph. When it is completed,
one can look up any two-graph in the table and quickly retrieve a list of all models containing
that particular two-graph. In our example, all models containing an ellipse between two
parallel line segments can be retrieved. During recognition of an object from an image, the



42 Computer Vision: Mar 2000

Figure 11.23: (Left) Regular grid of lines; (right) grid warped by wrapping it around a
cylinder.

Figure 11.24: (Left) Image of center of US$20 bill; (center) image of Andrew Jackson
wrapped around a cylinder of circumference 640 pixels; (right) same as center except cir-
cumference is 400 pixels.

features are extracted and all the two-graphs representing the image are computed. A set of
accumulators, one for each model in the database are all set to zero. Then each two-graph
in the image is used to index the hash table, retrieve the list of associated models, and vote
for each one. The discrete version of the algorithm adds one to the vote; a probabilistic
algorithm would add a probability value instead. After all two-graphs have voted, the
models with the largest numbers of votes are candidates for veri�cation.

11.7 Nonlinear Warping

Nonlinear warping functions are also important. We may need to rectify nonlinear distortion
in an image; for example, radial distortion from a �sheye lens. Or, we may want to distort
an image in creative ways. Figure 11.23 shows a nonlinear warp which maps a regular grid
onto a cylinder. The e�ect is the same as if we wrapped a 
at image around a cylinder and
then viewed the cylinder from afar. This same warp applied to a twenty dollar bill is shown
in Figure 11.24. Intuitively, we need to choose some image axis corresponding to the center
of a cylinder and then use a formula which models how the pixels of the input image will
\compress" o� the cylinder axis in the output image. Figure 11.24 shows two warps; the
rightmost one uses a cylinder of smaller radius than the center one.

Figure 11.25 shows how to derive the cylindrical warp. We choose an axis for the warp
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Figure 11.25: The output image at the right is created by \wrapping" the input image at
the left around a cylinder (center): distance d in the input image becomes distance d' on
output.

(determined by x0) and a width W . W corresponds to one quarter of the circumference
of the cylinder. Any length d in the input image is \wrapped around the cylinder" and
then projected to the output image. Actually, d corresponds to the length x� x0 where x0
is the x-coordinate of the axis of the cylinder. The y coordinate of the input image point
is preserved by the warp, so we have v = y. From the �gure, the following equations are
seen to hold. First, W = (�=2)r since W accounts for one quarter of the circumference. d
accounts for a fraction of that: d=W = �=(�=2) and sin� = d0=r. Combining these yields
d = x� x0 = (2W=�) arcsin((�=2W )(u� u0)). Of course, d

0 = u� u0 = u� x0.

We now have a formula for computing input image coordinates [x; y] from output coor-
dinates [u; v] and the warp parameters x0 and W . This seems to be backwards; why not

take each pixel from the input image and transform it to the output image? Were we to
do this, there would be no guarantee that the output image would have each pixel set. For
a digital image, we would like to generate each and every pixel of output exactly once and
obtain the pixel value from the input image as the following algorithm shows. Moreover,
using this approach it is easily possible for the output image to have more or fewer pixels
than the input image. The concept is that in generating the output image, we map back

into the input image and sample it.
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Perform a cylindrical warp operation.
1I[x; y] is the input image.
x0 is the axis speci�cation.
W is the width.
2I[u; v] is the output image.

procedure Cylindrical Warp(1I[x; y])
f

r = 2W=�;
for u:=0, Nrows-1
for v:=0, Ncols-1
f

2I[u; v] = 0; // set as background
if (ju� u0j � r)
f

x = x0 + r arcsin((u� x0)=r) ;
y = v;
2I[u; v] = 1I[round(x); round(y)];

g

g

return(2I[u; v]);
g

Algorithm 7: Cylindrical Warp of Image Region

Exercise 20

(a) Determine the transformation that maps a circular region of an image onto a hemisphere
and then projects the hemisphere onto an image. The circular region of the original image
is de�ned by a center (xc; yc) and radius r0. (b) Develop a computer program to carry out
the mapping.
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Figure 11.26: Two types of radial distortion, barrel (left) and pincushion (center) which can
be removed by warping to produce a recti�ed image (right).

Rectifying Radial Distortion

Radial distortion is present in most lenses: it might go unnoticed by human interpreters,
but sometimes can produce large errors in photometric measurements if not corrected. Phys-
ical arguments deduce that radial distortion in the location of an imaged point is propor-
tional to the distance from that point to the optical axis. Figure 11.26 shows two common
cases of radial distortion along with the desirable recti�ed image. If we assume that the
optical axis passes near the image center, then the distortion can be corrected by displacing
all image points either toward or away from the center by a displacement proportional to
the square of the distance from the center. This is not a linear transformation since the
displacement varies across the image. Sometimes, more even powers of the radial distance
are used in the correction, as the mathematical model below shows. Let [xc; yc] be the image
center which we are assuming is also where the optical axis passes through the image. The
corrections for the image points are as follows, assuming we need the �rst two even powers
of the radial distance to compute the radial distortion. The best values for the constants c2
and c4 can be found by empirical study of the radial displacements of known control points
or by formally using least-squares �tting in a calibration process.

R =
p
((x� xc)2 + (y � yc)2) (11.21)

Dr = (c2R
2 + c4R

4)

x = xc + (x� xc)Dr

y = yc + (y � yc)Dr

Polynomial Mappings

Many small global distortion factors can be recti�ed using polynomial mappings of max-
imum degree two in two variables as de�ned in Equation 11.22. Twelve di�erent coe�cients
must be estimated in order to adapt to the di�erent geometric factors. To estimate these
coe�cients, we need the coordinates of at least six control points before and after mapping;
however, many more points are used in practice. ( Each such control point yields two equa-
tions.) Note that if only the �rst three terms are used in Equation 11.22 the mapping is an
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a�ne mapping.

u = a00 + a10x+ a01y + a11xy + a20x
2 + a02y

2 (11.22)

v = b00 + b10x+ b01y + b11xy + b20x
2 + b02y

2

Exercise 21
Show that radial distortion in Equation 11.21 with c4 = 0 can be modeled exactly by a
polynomial mapping of the form shown in Equation 11.22.

11.8 Summary

Multiple concepts have been discussed in this chapter under the theme of 2D matching. One
major theme was 2D mapping using transformations. These could be used as simple image
processing operations which could extract or sample a region from an image, register two
images together in the same coordinate system, or remove or creatively add distortion to 2D
images. Algebraic machinery was developed for these transformations and various methods
and applications were discussed. This development is continued in Chapter 13 as it relates
to mapping points in 3D scenes and 3D models. The second major theme of this chapter
was the interpretation of 2D images through correspondences with 2D models. A general
paradigm is recognition-by-alignment: the image is interpreted by discovering a model and
an RST transformation such that the transformation maps known model structures onto
image structures. Several di�erent algorithmic approaches were presented, including pose-
clustering, interpretation tree search, and the feature focus method. Discrete relaxation
and relational matching were also presented: these two methods can be applied in very
general contexts even though they were introduced here within the context of constrained
geometric relationships. Relational matching is potentially more robust than rigid alignment
when the relations themselves are more robust than those depending on metric properties.
Image distortions caused by lens distortions, slanted viewing axes, quanti�cation e�ects, etc,
can cause metric relations to fail; however, topological relationships such as cotermination,
connectivity, adjacency, and insideness are usually invariant to such distortions. A successful
match using topological relationships on image/model parts might then be used to �nd a
large number of matching points, which can then be used to �nd a mapping function with
many parameters that can adapt to the metric distortions. The methods of this chapter
are directly applicable to many real world applications. Subsequent chapters extend the
methods to 3D.

11.9 References

The paper by Van Wie and Stein (1977) discusses a system to automatically bring satellite
images into registration with a map. An approximate mapping is known using the time at
which the image is taken. This mapping is used to do a re�ned search for control points
using templates: the control points are then used to obtain a re�ned mapping. The book by
Wolberg gives a complete account of image warping including careful treatment of sampling
the input image and lessening aliasing by smoothing. The treatment of 2D matching via
pose clustering was drawn from Stockman et al (1982), which contained the airplane detec-
tion example provided. A more general treatment handling the 3D case is given in Stockman
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1987. The paper by Grimson and Lozano-Perez demonstrates how distance constraints can
be used in matching model points to observed data points. Least squares �tting is treated
very well in other references and is a topic of much depth. Least squares techniques are
in common use for the purpose of estimating transformation parameters in the presence of
noise by using many more than the minimal number of control points. The book by Wolberg
(1990) treats several least squares methods within the context of warping while the book
by Daniel and Wood (1971) treats the general �tting problem. In some problems, it is not
possible to �nd a good geometric transformation that can be applied globally to the entire
image. In such cases, the image can be partitioned into a number of regions, each with
its own control points, and separate warps can be applied to each region. The warps from
neighboring regions must smoothly agree along the boundary between them. The paper by
Gostasby (1988) presents a 
exible way of doing this.

Theory and algorithms for the consistent labeling problems can be found in the papers
by Haralick and Shapiro (1979,1980). Both discrete and continuous relaxation are de�ned
in the paper by Rosenfeld, Hummel, and Zucker (1976), and continuous relaxation is further
analyzed in the paper by Hummel and Zucker (1983). Methods for matching using structural
descriptions have been derived from Shapiro (1981); relational indexing using 2-graphs can
be found in Costa and Shapiro (1995). Use of invariant attributes of structural parts for
indexing into models can be found in Chen and Stockman (1996).
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