
Chapter 10

Image Segmentation

The term image segmentation refers to the partition of an image into a set of regions that
cover it. The goal in many tasks is for the regions to represent meaningful areas of the im-
age, such as the crops, urban areas, and forests of a satellite image. In other analysis tasks,
the regions might be sets of border pixels grouped into such structures as line segments and
circular arc segments in images of 3D industrial objects. Regions may also be de�ned as
groups of pixels having both a border and a particular shape such as a circle or ellipse or
polygon. When the interesting regions do not cover the whole image, we can still talk about
segmentation, into foreground regions of interest and background regions to be ignored.

Figure 10.1: Football image (left) and segmentation into regions (right). Each region is a
set of connected pixels that are similar in color.

Segmentation has two objectives. The �rst objective is to decompose the image into
parts for further analysis. In simple cases, the environment might be well enough controlled
so that the segmentation process reliably extracts only the parts that need to be analyzed
further. For example, in the chapter on color, an algorithm was presented for segmenting
a human face from a color video image. The segmentation is reliable, provided that the
person's clothing or room background does not have the same color components as a human
face. In complex cases, such as extracting a complete road network from a greyscale aerial
image, the segmentation problem can be very di�cult and might require application of a

1

2 Computer Vision: Mar 2000

Figure 10.2: Blocks image (left) and extracted set of straight line segments (right). The line
segments were extracted by the ORT (Object Recognition Toolkit) package.

great deal of domaina building knowledge.

The second objective of segmentation is to perform a change of representation. The pix-
els of the image must be organized into higher-level units that are either more meaningful or
more e�cient for further analysis (or both). A critical issue is whether or not segmentation
can be performed for many di�erent domains using general bottom-up methods that do
not use any special domain knowledge. This chapter presents segmentation methods that
have potential use in many di�erent domains. Both region-based and curve-based units are
discussed in the following sections. The prospects of having a single segmentation system
work well for all problems appear to be dim. Experience has shown that an implementor of
machine vision applications must be able to choose from a toolset of methods and perhaps
tailor a solution using knowledge of the application.

This chapter discusses several di�erent kinds of segmentation algorithms including the

classical region growers, clustering algorithms, and line and circular arc detectors. Figure
10.1 illustrates the segmentation of a colored image of a football game into regions of near-
constant color. Figure 10.2 shows the line segments extracted from an image of toy blocks.
In both cases, note that the results are far from perfect by human standards. However,
these segmentations might provide useful input for higher-level automated processing, for
example, identifying players by number or recognizing a part to be assembled.

10.1 Identifying Regions

� Regions of an image segmentation should be uniform and homogeneous with respect
to some characteristic, such as gray level, color, or texture

� Region interiors should be simple and without many small holes.

� Adjacent regions of a segmentation should have signi�cantly di�erent values with
respect to the characteristic on which they are uniform.

Shapiro and Stockman 3

y

x

Figure 10.3: Set of points in a Euclidean measurement space that can be separated into
three clusters of points. Each cluster consists of points that are in some sense close to one
another. Clusters are designated by the �ll patterns inside the circles.

� Boundaries of each segment should be smooth, not ragged, and should be spatially
accurate.

Achieving all these desired properties is di�cult because strictly uniform and homoge-
neous regions are typically full of small holes and have ragged boundaries. Insisting that
adjacent regions have large di�erences in values can cause regions to merge and boundaries
to be lost. In addition, the regions that humans see as homogeneous may not be homoge-
neous in terms of the low-level features available to the segmentation system, so higher-level
knowledge may have to be used. The goal of this chapter is to develop algorithms that will
apply to a variety of images and serve a variety of higher-level analyses.

10.1.1 Clustering Methods

Clustering in pattern recognition is the process of partitioning a set of pattern vectors into
subsets called clusters. For example, if the pattern vectors are pairs of real numbers as
illustrated by the point plot of Figure 10.3, clustering consists of �nding subsets of points
that are \close" to each other in Euclidean two-space.

The general term clustering refers to a number of di�erent methods. We will look at
several di�erent types of clustering algorithms that have been found useful in image seg-
mentation. These include classical clustering algorithms, simple histogram-based methods,
Ohlander's recursive histogram-based technique, and Shi's graph-partitioning technique.

Classical Clustering Algorithms

The general problem in clustering is to partition a set of vectors into groups having similar
values. In image analysis, the vectors represent pixels or sometimes small neighborhoods
around pixels. The components of these vectors can include:

1. intensity values

2. RGB values and color properties derived from them

4 Computer Vision: Mar 2000

3. calculated properties

4. texture measurements

Any feature that can be associated with a pixel can be used to group pixels. Once pixels
have been grouped into clusters based on these measurement-space values, it is easy to �nd
connected regions using connected components labeling.

In traditional clustering, there areK clusters C1; C2; : : : ; CK with meansm1;m2; : : : ;mK .
A least squares error measure can be de�ned as

D =

KX
k=1

X
xi2Ck

kxi �mkk
2:

which measures how close the data are to their assigned clusters. A least-squares clustering
procedure could consider all possible partitions into K clusters and select the one that mini-
mizes D. Since this is computationally infeasible, the popular methods are approximations.
One important issue is whether or not K is known in advance. Many algorithms expect
K as a parameter from the user. Others attempt to �nd the best K according to some
criterion, such as keeping the variance of each cluster less than a speci�ed value.

Iterative K-Means Clustering The K-means algorithm is a simple, iterative hill-climbing
method. It can be expressed as follows.

Form K-means clusters from a set of n-dimensional vectors.

1. Set ic (iteration count) to 1.

2. Choose randomly a set of K means m1(1);m2(1); : : : ; mK(1).

3. For each vector xi compute D(xi;mk(ic)) for each k = 1; : : : ;K and assign xi to the
cluster Cj with the nearest mean.

4. Increment ic by 1 and update the means to get a new set m1(ic);m2(ic); : : : ;mK(ic).

5. Repeat steps 3 and 4 until Ck(ic) = Ck(ic + 1) for all k.

Algorithm 1: K-Means Clustering

This algorithm is guaranteed to terminate, but it may not �nd the global optimum in
the least squares sense. Step 2 may be modi�ed to partition the set of vectors into K

random clusters and then compute their means. Step 5 may be modi�ed to stop after the
percentage of vectors that change clusters in a given iteration is small. Figure 10.4 illustrates
the application of the K-means clustering algorithm in RGB space to the original football
image of Figure 10.1.

Isodata Clustering Isodata clustering is another iterative algorithm that uses a split-
and-merge technique. Again assume that there are K clusters C1; C2; : : : ; CK with means

Shapiro and Stockman 5

Figure 10.4: Football image (left) and K=6 clusters resulting from a K-means clustering
procedure (right) shown as distinct gray tones. The six clusters correspond to the six main
colors in the original image: dark green, medium green, dark blue, white, silver, and black.

m1;m2; : : : ;mK , and let �k be the covariance matrix of cluster k (as de�ned below). If the
xi's are vectors of the form

xi = [v1; v2; : : : ; vn]

then each mean mk is a vector

mk = [m1k;m2k; : : : ;mnk]

and �k is de�ned by

�k =

2
6664

�11 �12 : : : �1n
�12 �22 : : : �2n
...

...
...

...
�1n �2n : : : �nn

3
7775 (10.1)

where �ii = �2i is the variance of the ith component vi of the vectors and �ij = �ij�i�j is

the covariance between the ith and jth components of the vectors. (�ij is the correlation
coe�cient between the ith and jth components, �i is the standard deviation of the ith

component, and �j is the standard deviation of the jth component.)

Figure 10.5 illustrates the application of the isodata clustering algorithm in RGB space
to the original football image of Figure 10.1. This cluster image was the input to a con-
nected components procedure which produced the segmentation shown in Figure 10.1. The
threshold �v for the isodata clustering was set to a size of 10% of the side of the RGB
color-space cube.

Simple Histogram-based Methods

Iterative partition rearrangement schemes have to go through the image data set many
times. Because they require only one pass through the data, histogram methods probably
involve the least computation time of the measurement{space clustering techniques.

6 Computer Vision: Mar 2000

Form isodata clusters from a set of n-dimensional vectors.

1. assign xi to the cluster l that minimizes

D� = [xi �ml]
0��1

l [xi �ml]:

2. Merge clusters i and j if
j mi �mj j< �v

where �v is a variance threshold.

3. Split cluster k if the maximum eigenvalue of �k is larger than �v.

4. Stop when
j mi(t) �mi(t + 1) j< �

for every cluster i or when the maximum number of iterations has been reached.

Algorithm 2: Isodata Clustering

Exercise 1 Isodata vs. K-means clustering

The isodata algorithmgave better results than the K-means algorithmon the football images
in that it correctly grouped the dark green areas at the top of the image with those near
the bottom. Why do you think the isodata algorithm was able to perform better than the
K-means algorithm?

Histogram mode seeking is a measurement{space clustering process in which it is assumed
that homogeneous objects in the image manifest themselves as the clusters in measurement{
space, i.e. on the histogram. Image segmentation is accomplished by mapping the clusters
back to the image domain where the maximal connected components of the cluster labels
constitute the image segments. For gray-tone images, the measurement{space clustering can
be accomplished by determining the valleys in the histogram and declaring the clusters to
be the interval of values between valleys. A pixel whose value is in the ith interval is labeled

with index i and the segment to which it belongs is one of the connected components of all
pixels whose label is i: The automatic thresholding technique discussed in Chapter 3 is an
example of histogram mode seeking with a bimodal histogram.

Exercise 2 Histogram mode seeking

Write a program that �nds the modes of a multimodal histogram by �rst breaking it into
two parts, as does the Otsu method in Chapter 3, and then recursively trying to break each
part into two more parts, if possible. Test it on gray-tone and color images.

In general, a gray-tone image will have a multimodal histogram, so that any automatic
thresholding technique will have to look for signi�cant peaks in the image and the valleys
that separate them. This task is easier said than done. Figure 10.6 shows the histogram of
the gray-tone blocks image. A naive valley-seeking algorithm might judge it to be bimodal
and place the single threshold somewhere between 39 and 79. Trial-and-error threshold

Shapiro and Stockman 7

Figure 10.5: Football image (left) and K=5 clusters resulting from an isodata clustering
procedure (right) shown as distinct gray tones. The �ve clusters correspond to �ve color
groups: green, dark blue, white, silver, and black.

selection, however, produced three thresholds yielding the four thresholded images of Fig-
ure 10.7, which show some meaningful regions of the image. This motivates the need for
knowledge-directed thresholding techiques where the thresholds chosen depend on both the
histogram and the quality/usefulness of the resulting regions.

Ohlander's Recursive Histogram-Based Technique

Ohlander et al (1978) re�ne the histogram-based clustering idea in a recursive way. The
idea is to perform histogram mode seeking �rst on the whole image and then on each of the
regions obtained from the resultant clusters, until regions are obtained that can be decom-
posed no further. They begin by de�ning a mask selecting all pixels in the image. Given any
mask, a histogram of the masked portion of the image is computed. Measurement{space
clustering is applied to this histogram, producing a set of clusters. Pixels in the image are
then identi�ed with the cluster to which they belong. If there is only one measurement{space
cluster, then the mask is terminated. If there is more than one cluster, then the connected
components operator is applied to each cluster, producing a set of connected regions for
each cluster label. Each connected component is then used to generate a new mask which
is placed on a mask stack. The masks on the stack represent regions that are candidates
for further segmentation. During successive iterations, the next mask in the stack selects
pixels in the histogram computation process. Clustering is repeated for each new mask until
the stack is empty. Figure 10.8 illustrates this process which we call recursive histogram{
directed spatial clustering.

For ordinary color images, Ohta, Kanade, and Sakai (1980) suggested that histograms
not be computed individually on the red, green, and blue (RGB) color variables, but on a
set of variables closer to what the Karhunen{Loeve (principal components) transform would
suggest: (R+ G+ B)=3, (R�B)=2, and (2G� R�B)=4.

8 Computer Vision: Mar 2000

0

5

10

15

20

25

220-239

200-219

180-199

160-179

140-159

120-139

100-119

60-79

80-99

40-59

20-39

0-19

Figure 10.6: Histogram of the blocks image of Figure 10.2.

*Shi's Graph-Partitioning Technique

The Ohlander/Ohta algorithms work well on reasonably simple color scenes with man-made
objects and single-color regions, but do not extend well to complex images of natural scenes,
where they give lots of tiny regions in textured areas. Shi developed a method that can use
color, texture, or any combination of these and other attributes. He formulated the seg-
mentation problem as a graph partitioning problem and developed a new graph-partitioning
method that reduced to solving an eigenvector/eigenvalue problem as follows.

Let G = (V;E) be a graph whose nodes are points in measurement space and whose
edges each have a weight w(i; j) representing the similarity between nodes i and j. The goal
in segmentation is to �nd a partition of the vertices into disjoint sets V1; V2; : : : ; Vm so that
the similarity within the sets is high and across di�erent sets is low.

A graph G = (V;E) can be partitioned into two disjoint graphs with node sets A and B
by removing any edges that connect nodes in A with nodes in B. The degree of dissimilarity
between the two sets A and B can be computed as the sum of the weights of the edges that
have been removed; this total weight is called a cut.

cut(A;B) =
X

u2A;v2B

w(u; v) (10.2)

One way of formulating the segmentation problem is to look for the minimum cut in

Shapiro and Stockman 9

Threshold range 0 to 30 Threshold range 31 to 100

Threshold range 101 to 179 Threshold range 180 to 239

Figure 10.7: Four images resulting from three thresholds hand-chosen from the histogram
of the blocks image.

the graph, and to do so recursively until the regions are uniform enough. The minimum
cut criterion, however, favors cutting small sets of isolated nodes, which is not useful in
�nding large uniform color/texture regions. Shi proposed the normalized cut (Ncut) de�ned
in terms of cut(A;B) and the association of A and the full vertex set V de�ned by:

asso(A; V) =
X

u2A;t2V

w(u; t) (10.3)

The de�nition of normalized cut is then

Ncut(A;B) =
cut(A;B)

asso(A; V)
+

cut(A;B)

asso(B; V)
(10.4)

With this de�nition, the cut that partitions out small isolated point sets will not have
small Ncut values, and the partitions that do produce small Ncut values are more likely
to be useful in image segmentation. Furthermore, the related measure for total normalized
association given by

Nasso(A;B) =
asso(A;A)

asso(A; V)
+
asso(B;B)

asso(B; V)
(10.5)

10 Computer Vision: Mar 2000

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

��
��
��
��

��
��
��
��

the whole image.

Image

Stack

Histogram

ClusterPop next mask.

and pop next one.

One cluster.

More than one
cluster.

Push

mask
Current

 masked image.
Compute histogram of

Two
clusters

Terminate current mask

Push

trees
sky

Three
components

Original mask covers

Three resultant masks

Figure 10.8: Recursive histogram-directed spatial-clustering scheme. The original image has
four regions: grass, sky, and two trees. The current mask (shown at upper left) identi�es
the region containing the sky and the trees. Clustering its histogram leads to two clusters
in color space, one for the sky and one for the trees. The sky cluster yields one connected
component, while the tree cluster yields two. Each of the three connected components
become masks that are pushed onto the mask stack for possible further segmentation.

Shapiro and Stockman 11

measures how tightly the nodes within a given set are connected to one another. It is related
to the Ncut by the relationship:

Ncut(A;B) = 2�Nasso(A;B) (10.6)

so that either of them can be used, as convenient, by a partitioning procedure.

Given the de�nitions for Ncut and Nasso, we need a procedure that segments an image
by partitioning the pixel set. Shi's segmentation procedure is as follows.

Shi ran the above algorithm to segment images based on brightness, color, or texture
information. The edge weights w(i; j) were de�ned by

w(i; j) = e
�kF (i)�F (j)k2

�I �

(
e
�kX(i)�X(j)k2

�X if kX(i) �X(j)k2 < r

0 otherwise
(10.11)

where

� X(i) is the spatial location of node i.

� F (i) is the feature vector based on intensity, color, or texture information and is
de�ned by

{ F (i) = I(i), the intensity value, for segmenting intensity images.

{ F (i) = [v; v � s � sin(h); v � s � cos(h)](i), where h, s, and v are the HSV values, for
color segmentation.

{ F (i) = [jI � f1j; : : : ; jI � fnj](i), where the fi are DOOG (di�erence of di�erence
of Gaussian) �lters at various scales and orientations, for texture segmentation.

Note that the weight w(i; j) is set to 0 for any pair of nodes i and j that are more than a
prespeci�ed number r of pixels apart.

The above algorithm leads to very good segmentations of images via color and texture.
Figure 10.9 illustrates the performance of the algorithm on some sample images of natural
scenes. While the segmentations are very good, the complexity of the algorithm makes it
unsuitable for use in a real-time system.

10.1.2 Region Growing

Instead of partitioning the image, a region grower begins at one position in the image (often
the top left corner) and attempts to grow each region until the pixels being compared are
too dissimilar to the region to add them. Usually a statistical test is performed to decide if
this is the case. Haralick proposed the following region-growing technique, which assumes
that a region is a set of connected pixels with the same population mean and variance.

Let R be a region of N pixels neighboring a pixel with gray tone intensity y: De�ne the
region mean X and scatter S2 by

X =
1

N

X
[r;c]2R

I[r; c] (10.12)

12 Computer Vision: Mar 2000

Perform a graph-theoretic clustering on a graph whose nodes are pixels and whose edges
represent the similarities between pairs of pixels.

1. Set up a weighted graph G = (V;E) whose nodeset V is the set of pixels of the image
and whose edgeset E is a set of weighted edges with w(i; j), the weight on the edge
between node i and j, computed as the similarity between the measurement-space
vector of i and the measurement-space vector of j. Let N be the size of nodeset V .
De�ne the vector d with d(i) given by

d(i) =
X
j

w(i; j) (10.7)

so that d(i) represents the total connection from node i to all other nodes. Let D be
an N �N diagnonal matrix with d on its diagonal. Let W be an N �N symmetrical
matrix with W (i; j) = w(i; j).

2. Let x be a vector whose components are de�ned by

xi =

�
1 if node i is in A
�1 otherwise

(10.8)

and let y be the continuous approximation to x de�ned by

y = (1 + x)�

P
xi>0

diP
xi<0

di
(1 � x): (10.9)

Solve the system of equations

(D �W)y = �Dy (10.10)

for the eigenvectors y and eigenvalues �.

3. Use the eigenvector with the second smallest eigenvalue to bipartition the graph to
�nd the splitting point such that Ncut is minimized.1

4. Decide if the current partition should be subdivided further by checking the stability
of the cut and making sure that Ncut is below a pre-speci�ed threshold value.

5. Recursively repartition the segmented parts if necessary.

Algorithm 3: Shi's Clustering Procedure

Shapiro and Stockman 13

(a) (b) (c)

(d) (e) (f)

Figure 10.9: Original gray-tone image (a) and regions produced by the Shi segmentation
method (b)-(f). In result image (b), the selected region is the dark background region , and
it is shown in black. In all other results, the selected region is shown in its original gray
tones, with the remainder of the image shown in black. (Courtesy of Jianbo Shi.)

and
S2 =

X
[r;c]2R

(I[r; c]�X)2: (10.13)

Under the assumption that all the pixels in R and the test pixel y are independent and
identically distributed normals, the statistic

T =

"
(N � 1)N

(N + 1)
(y �X)2=S2

1
2

(10.14)

has a TN�1 distribution. If T is small enough y is added to region R and the mean and
scatter are updated using y: The new mean and scatter are given by

Xnew (NXold + y)=(N + 1) (10.15)

and
S2new S2old + (y �Xnew)

2 + N (Xnew �Xold)
2: (10.16)

If T is too high the value y is not likely to have arisen from the population of pixels in R:
If y is di�erent from all of its neighboring regions then it begins its own region. A slightly
stricter linking criterion can require that not only must y be close enough to the mean of
the neighboring region, but that a neighboring pixel in that region must have a close enough
value to y.

To give a precise meaning to the notion of too high a di�erence, we can use an � level
statistical signi�cance test. The fraction � represents the probability that a T statistic with

14 Computer Vision: Mar 2000

N � 1 degrees of freedom will exceed the value tN�1(�). If the observed T is larger than
tN�1(�), then we declare the di�erence to be signi�cant. If the pixel and the segment really
come from the same population, the probability that the test provides an incorrect answer
is �.

The signi�cance level � is a user-provided parameter. The value of tN�1(�) is higher
for small degrees of freedom and lower for larger degrees of freedom. Thus, region scatters
considered to be equal, the larger a region is, the closer a pixel's value has to be to the
region's mean in order to merge into the region. This behavior tends to prevent already
large regions from attracting to it many other additional pixels and tends to prevent the
drift of the region mean as the region gets larger. Figure 10.10 illustrates the operation of
the Haralick region-growing procedure.

Exercise 3 Region Growing

Implement the Haralick region-growing operator as a program and use it to segment gray-
tone images.

10.2 Representing Regions

Each algorithm that produces a set of image regions has to have a way to store them for
future use. There are several possibilities including overlays on the original images, labeled
images, boundary encodings, quad-tree data structures, and property tables. Labeled images
are the most commonly used representation. We describe each representation below.

10.2.1 Overlays

An overlay is a method of showing the regions computed from an image by overlaying some
color or colors on top of the original image. Many image processing systems provide this
operation as part of their image-output procedures. Usually, the original image is a gray-
tone image and the overlay color is something that stands out well on the gray tones, such
as red or white. To show a region segmentation, one could convert the pixels of the region
borders to white and display the transformed gray tone image. Sometimes more than one
pixel in width is used to make the region borders stand out. Figure 10.11a shows the borders
of selected dark regions, including dark blue referees' jackets and players' numbers, overlayed
on a gray-tone football image. Another use for overlays is to highlight certain features of an
image. Figure 10.11b reprints an industrial part image from Chapter 1 in which projections
of the recognized object models are overlayed on the original gray-tone image.

10.2.2 Labeled Images

Labeled images are good intermediate representations for regions that can also be used in
further processing. The idea is to assign each detected region a unique identi�er (usually an
integer) and create an image where all the pixels of a region will have its unique identi�er
as their pixel value. Most connected components operators (see Chapter 3) produce this
kind of output. A labeled image can be used as a kind of mask to identify pixels of a region
in some operation that computes region properties, such as area or length of major axis of

Shapiro and Stockman 15

Figure 10.10: The blocks image (left) and a segmentation (right) resulting from application
of the Haralick region-growing procedure.

a) region-border overlay b) wire-frame-model overlay

Figure 10.11: Examples of overlays. a) overlay of selected region borders onto a football
image. b) overlay of wire-frame 3D object models onto a industrial parts image.

16 Computer Vision: Mar 2000

best-�tting ellipse. It can also be displayed in gray-tone or pseudo-color. If the integer labels
are small integers that would all look black in gray tone, the labeled image can be stretched
or histogram-equalized to get a better distribution of gray tones. The segmentations of
football images earlier in this chapter are labeled images shown in gray tone.

10.2.3 Boundary Coding

Regions can also be represented by their boundaries in a data structure instead of an image.
The simplest form is just a linear list of the border pixels of each region. (See the border

procedure later in this chapter, which extracts the region borders from a labeled image.)
A variation of the list of points is the Freeman chain code, which encodes the information
from the list of points at any desired quantization and uses less space than the original
point list. Conceptually, a boundary to be encoded is overlaid on a square grid whose side
length determines the resolution of the encoding. Starting at the beginning of the curve,
the grid intersection points that come closest to it are used to de�ne small line segments
that join each grid point to one of its neighbors. The directions of these line segments are
then encoded as small integers from zero to the number of neighbors used in the encoding.
Figure 10.12 illustrates this encoding with an eight-neighbor chain code. The line segments
are encoded as 0 for a 0� segment, 1 for a 45� segment, up to 7 for a 315� segment. In
the �gure, a hexagon symbol marks the beginning of the closed curve, and the rest of the
grid intersection points are shown with diamonds. The coordinates of the beginning point
plus the chain code are enough to reproduce the curve at the resolution of the selected grid.
The chain code not only saves space, but can also be used in subseqent operations on the
curve itself, such as shape-based object recognition. When a region has not only an external
boundary, but also one or more hole boundaries, it can be represented by the chain codes
for each of them.

When the boundary does not have to be exact, the boundary pixels can approximated by
straight line segments, forming a polygonal approximation to the boundary, as shown at the
bottom right of Figure 10.12. This representation can save space and simplify algorithms
that process the boundary.

10.2.4 Quad Trees

The quad tree is another space-saving region representation that encodes the whole region,
not just its border. In general, each region of interest would be represented by a quad tree
structure. Each node of a quad-tree represents a square region in the image and can have
one of three labels: full, empty, or mixed. If the node is labeled full, then every pixel of
the square region it represents is a pixel of the region of interest. If the node is labeled
empty, then there is no intersection between the square region it represents and the region
of interest. If the node is labeled mixed, then some of the pixels of the square region are
pixels of the region of interest and some are not. Only the mixed nodes in a quad tree
have children. The full nodes and empty nodes are leaf nodes. Figure 10.13 illustrates a
quad-tree representation of an image region. The region looks blocky, because the resolution
of the image is only 8 � 8, which leads to a four-level quad tree. Many more levels would
be required to produce a reasonably smoothly curved boundary. Quad trees have been used
to represent map regions in geographic information systems.

Shapiro and Stockman 17

* *

5 6 7

04

3 12

encoding scheme

100076543532
chain code representation polygonal approximation

chain code linksoriginal curve

Figure 10.12: Two boundary encodings: chain-code and polygonal approximation. The
chain-code boundary encoding uses an 8-symbol code to represent 8 possible angles of line
segments that approximate the curve on a square grid. The polygonal approximation uses
line segments �t to the original curve; the end points of the line segments have real-valued
coordinates and are not constrainted to the original grid points.

18 Computer Vision: Mar 2000

E

M

E M F E E M E M F E E E E E

M M M M

M

EFEF FEFEEEEF EEFF

1 2

43
image region quad tree representation

Figure 10.13: A quad tree representation of an image region. The four children of each
node correspond to the upper left, upper right, lower left, and lower right quadrants, as
illustrated by the numbers in circles for the �rst level of the tree. M = mixed; E = empty;
F = full.

10.2.5 Property Tables

Sometimes we want to represent a region by its extracted properties rather than by its
pixels. In this case, the representation is called a property table. It is a table in the relational
database sense that has a row for each region in the image and a column for each property of
interest. Properties can represent the size, shape, intensity, color, or texture of the region.
The features described in Chapters 3, 6, and 7 are all possibilities. For example, in a content-
based image retrieval system, regions might be described by area, ratio of minor-to-major
axis of the best-�tting ellipse, two main colors, and one or more texture measures. Property
tables can be augmented to include or to point to the chain-code encoding or quad-tree
representation of the region.

Exercise 4 Computing area and perimeter

Consider an image region represented by (a) a labeled image and (b) a chain code represen-
tation.

1. Give algorithms for computing the area and the perimeter of the region.

2. Give the running times of your algorithms.

10.3 Identifying Contours

While some image analysis applications work directly with regions, others need the borders
of these regions or various other structures, such as line and circular arc segments. This
section discusses the extraction of these structures from images.

Shapiro and Stockman 19

Exercise 5 Testing for pixels in a region

Consider an image region represented by (a) a labeled image and (b) a polygonal approxi-
mation to the boundary.

1. In each case, give an algorithm for testing if an arbitrary pixel [r,c] is in that region.

2. Give the running times of your algorithms in terms of the appropriate parameters, ie.
number of pixels in the region or number of segments in the polygonal approximation.

10.3.1 Tracking Existing Region Boundaries

Once a set of regions has been determined by a procedure such as segmentation or connected
components, the boundary of each region may be extracted. Boundary extraction can be
done simply for small-sized images. Scan through the image and make a list of the �rst
border pixel for each connected component. Then for each region, begin at its �rst border
pixel and follow the border of the connected component around in a clockwise direction until
the tracking returns to the �rst border pixel. For large sized images that do not reside in
memory, this simple border tracking algorithm results in excessive I/O to the mass storage
device on which the image resides.

We will describe an algorithm called border which can extract the boundaries for all
regions in one left-right, top-bottom scan through the image. Border inputs a labeled image
and outputs, for each region, a clockwise ordered list of the coordinates of its border pixels.
The algorithm is
exible in that it can be easily modi�ed to select the borders of speci�ed
regions.

The input to border is a labeled image whose pixel values denote region labels. It is
assumed that there is one background label that designates those pixels in part of a possi-
bly disconnected background region whose borders do not have to be found. Rather than
tracing all around the border of a single region and then moving on to the next region, the
border algorithm moves in a left-right, top-bottom scan down the image collecting chains
of border pixels that form connected sections of the borders of regions. At any given time
during execution of the algorithm, there is a set of current regions whose borders have
been partially scanned, but not yet output, a set of past regions that have been completely
scanned and their borders output, and a set of future regions that have not yet been reached
by the scan.

The data structures contain the chains of border pixels of the current regions. Since there
may be a huge number of region labels in the image, but only at most 2�number of columns

may be active at once, a hash table can be used as the device to allow rapid access to the
chains of a region given the label of the region. (2 � number of columns is a safe upper
bound; the actual number of regions will be smaller.) When a region is completed and
output, it is removed from the hash table. When a new region is encountered during the
scan, it is added to the hash table. The hash table entry for a region points to a linked list
of chains that have been formed so far for that region. Each chain is a linked list of pixel
positions that can be grown from the beginning or the end.

20 Computer Vision: Mar 2000

Find the borders of every region of a labeled image S.
S[R;C] is the input labeled image.
NLINES is the number of rows in the image.
NPIXELS is the number of pixels per row.
NEWCHAIN is a
ag that is true when a pixel starts a new chain
and false when a new pixel is added to an existant chain.

procedure border(S);
f
for R:= 1 to NLINES
f
for C:= 1 to NPIXELS
f
LABEL:= S[R,C];
if new region(LABEL) then add(CURRENT,LABEL);
NEIGHB:= neighbors(R,C,LABEL);
T:= pixeltype(R,C,NEIGHB);
if T == `border'
then for each pixel N in NEIGHB
f
CHAINSET:= chainlist(LABEL);
NEWCHAIN:= true;
for each chain X in CHAINSET while NEWCHAIN
if N==rear(X)
then f add(X,[R,C]); NEWCHAIN:= false g

if NEWCHAIN
then make new chain(CHAINSET,[R,C],LABEL);

g
g

for each region REG in CURRENT
if complete(REG)
then f connect chains(REG); output(REG); free(REG) g

g
g

Algorithm 4: Finding the Borders of Labeled Regions

Shapiro and Stockman 21

The tracking algorithm examines three rows of the labeled image at a time: the current
row being processed; the row above it; and the row below it. Two dummy rows of back-
ground pixels are appended to the image, one on top and one on the bottom, so that all
rows can be treated alike. The algorithm for an NLINES by NPIXELS labeled image S is
as follows.

In this procedure, S is the name of the labeled image; thus S[R,C] is the value (LABEL)
of the current pixel being scanned. If this is a new label, it is added to the set CURRENT of
current region labels. NEIGHB is the list of only neighbors of pixel [R,C] which have label
LABEL. The function pixeltype looks at the values of [R,C] and its neighbors to decide if
[R,C] is a nonbackground border pixel. If so, the procedure searches for a chain of the region
with label LABEL that has a neighbor of [R,C] at its rear, and, if it �nds one, appends [R,C]
to the end of the chain by the procedure add whose �rst argument is a chain and whose
second argument is [R,C]. If no neighbor of [R,C] is at the rear of a chain of this region, then
a new chain is created containing [R,C] as its only element by the procedure make new chain

whose �rst argument is the set of chains in which a new chain is being added whose sole
element is the location [R,C] which is its second argument. Its third argument is the label
LABEL to be associated with the chain.

After each row R is scanned, the chains of those current regions whose borders are now
complete are merged into a single border chain which is output. The hash table entrees
and list elements associated with those regions are then freed. Figure 10.14 shows a labeled
image and its output from the border procedure.

1 2 3 4 5 6 7

1 0 0 0 0 0 0 0

2 0 0 0 0 2 2 0

3 0 1 1 1 2 2 0

4 0 1 1 1 2 2 0

5 0 1 1 1 2 2 0

6 0 0 0 0 2 2 0

7 0 0 0 0 0 0 0

(a) A labeled image with two regions.

Region Length List

1 8 (3,2)(3,3)(3,4)(4,4)(5,4)(5,3)(5,2)(4,2)
2 10 (2,5)(2,6)(3,6)(4,6)(5,6)(6,6)(6,5)(5,5)

(4,5)(3,5)

(b). The output of the border procedure
for the labeled image.

Figure 10.14: Action of the border procedure on a labeled image.

22 Computer Vision: Mar 2000

Exercise 6 Limitations of the border tracking algorithm.

The border tracking algorithmmakes certain assumptions about the regions that it is track-
ing. Under what conditions could it fail to properly identify the border of a region?

Figure 10.15: (Top left) Image of headlight of a black car; (top center) results of Canny
operator with � = 1; (top right) results of Canny operator with � = 4; (bottom left) image
of car wheel; (bottom center) results of Canny operator with � = 1; (bottom right) results
of Roberts operator. Note in the top row how specular re
ection at the top left distracts
the edge detector from the boundary of the chrome headlight rim. In the bottom row, note
how the shadow of the car connects to the tire which connects to the fender: neither the
tire nor the spokes are detected well.

10.3.2 The Canny Edge Detector and Linker

The Canny edge detector and linker extracts boundary segments of an intensity image. It
was brie
y introduced in Chapter 5 along with other edge detectors. The Canny operator is
often used and recent work comparing edge operators justi�es its popularity. Examples of its
were provided in Chapter 5: Figure 10.15 shows two examples of images of car parts taken
from a larger image shown in Chapter 2. Both of these show well-known problems with all
edge detection and boundary following algorithms: the contour segments from actual object
parts erroneously merge with contour segments from illumination or re
ectance boundaries.
Such contours are di�cult to analyze in a bottom-up manner by a general object recognition
system. However, top-down matching of such representations to models of speci�c objects
can be done successfully, as we shall see in subsequent chapters. Thus, the quality of these
edge representations of images depends upon their use in the overall machine vision system.

The Canny edge detection algorithm de�ned in Algorithm 5 produces thin fragments of
image contours and is controlled by the single smoothing parameter �. The image is �rst
smoothed with a Gaussian �lter of spread � and then gradient magnitude and direction are
computed at each pixel of the smoothed image. Gradient direction is used to thin edges by

Shapiro and Stockman 23

Figure 10.16: Identifying regions corresponding to symbols on surfaces is often easy because
they are created with good contrast. These results were obtained by applying only the Canny
operator: (left set) character carefully written with ink on paper; (right set) weathered
signage on a brick wall.

Figure 10.17: Contours from an aerial image of farm �elds de�ned using the Canny operator
with � = 2 and � = 1 respectively. Note that �ve major structures are well represented {
three �elds and two straight horizontal bands in the bottom of the image (a canal and a
road alongside it).

suppressing any pixel response that is not higher than the two neighboring pixels on either
side of it along the direction of the gradient. This is called nonmaximum suppression, a
good operation to use with any edge operator when thin boundaries are wanted. The two
8-neighbors of a pixel [x; y] that are to be compared are found by rounding o� the computed
gradient direction to yield one neighbor on each side of the center pixel. Once the gradient
magnitudes are thinned, high magnitude contours are tracked. In the �nal aggregation

phase, continuous contour segments are sequentially followed. Contour following is initiated
only on edge pixels where the gradient magnitude meets a high threshold; however, once
started, a contour may be followed through pixels whose gradient magnitude meet a lower
threshold, usually about half of the higher starting threshold.

Image regions can sometimes be detected when boundary segments close on themselves.
Examples of this are shown in Figures 10.16 and 10.17. Such segments can be further
analyzed by segmenting the set of boundary pixels into straight or circular sides, etc. For
example, the boundary of a rectangular building might result in four straight line segments.
Straight line segments can be identi�ed by the Hough transform or by direct �tting of a
parameteric line model.

10.3.3 Aggregating Consistent Neighboring Edgels into Curves

The border-tracking algorithm in Section 10.3.1 required as input a labeled image denoting
a set of regions. It tracked along the border of each region as it scanned the image, row by

24 Computer Vision: Mar 2000

Compute thin connected edge segments in the input image.

I[x;y] : input intensity image; � : spread used in Gaussian smoothing;
E[x;y] : output binary image;
IS[x;y] : smoothed intensity image;
Mag[x;y] : gradient magnitude; Dir[x;y] : gradient direction;
Tlow is low intensity threshold; Thigh is high intensity threshold;

procedure Canny(I[]; �);
f

IS[] = image I[] smoothed by convolution with Gaussian G�(x; y);
use Roberts operator to compute Mag[x; y] and Dir[x; y] from IS[];
Suppress Nonmaxima(Mag[];Dir[]; Tlow; Thigh);
Edge Detect(Mag[]; Tlow; Thigh;E[]);

g
procedure Suppress Nonmaxima(Mag[];Dir[]);
f

de�ne +Del[4] = (1,0), (1,1), (0,1) (-1,1);
de�ne -Del[4] = (-1,0), (-1-,1), (0,-1) (1,-1);
for x := 0 to MaxX-1;
for y := 0 to MaxY-1;
f
direction := (Dir[x; y] + �=8) modulo �=4;
if (Mag[x; y] �Mag[(x; y) +Del[direction]]) then Mag[x; y] := 0;
if (Mag[x; y] �Mag[(x; y) +�Del[direction]]) then Mag[x; y] := 0;

g
g procedure Edge Detect(Mag[]; Tlow; Thigh;E[]);
f

for x := 0 to MaxX - 1;
for y := 0 to MaxY - 1;
f
if (Mag[x; y] � Thigh) then Follow Edge(x; y;Mag[]; Tlow; Thigh;E[]);

g ;
g
procedure Follow Edge(x; y;Mag[]; Tlow; Thigh;E[]);
f

E[x; y] := 1;
while Mag[u; v] > Tlow for some 8-neighbor [u; v] of [x; y]
f
E[u; v] := 1;
[x; y] := [u; v];

g ;
g

Algorithm 5: Canny Edge Detector

Shapiro and Stockman 25

Exercise 7
Consider the contour following phase of the Canny edge detection algorithm. When following
an image contour by tracing pixels of high gradient magnitude, would it be a good idea to
select the next possible pixel only from the two neighbors that are perpendicular to the
gradient direction? Why or why not? Show speci�c cases to support your answer.

Exercise 8 Measuring across Canny edges

Perform the following experiment. Obtain a program for the Canny edge detector or some
image tool that contains it. Obtain some
at objects with precise parallel edges, such as razor
blades, and some rounded objects, such as the shanks of drill bits. Image several of these
objects in several di�erent orientations: use high resolution scanning, if possible. Apply the
Canny edge detector and study the quality of edges obtained, including the repeatability
of the distance across parallel edges. Is there any di�erence between measuring the razor
blades, which have \sharp edges" and measuring the drill bits, which may have \soft edges"
in the image.

row. Because of the assumption that each border bounded a closed region, there was never
any point at which a border could be split into two or more segments. When the input is
instead a labeled edge image with a value of 1 for edge pixels and 0 for non-edge pixels, the
problem of tracking edge segments is more complex. Here it is not necessary for edge pixels
to bound closed regions and the segments consist of connected edge pixels which go from end
point, corner, or junction to endpoint, corner, or junction with no intermediate junctions
or corners. Figure 10.18 illustrates such a labeled edge image. Pixel (3,3) of the image is
a junction pixel where three di�erent edge (line) segments meet. Pixel (5,3) is a corner
pixel and may be considered a segment end point as well, if the application requires ending
segments at corners. An algorithm that tracks segments like these has to be concerned with
the following tasks:

1. starting a new segment

2. adding an interior pixel to a segment

3. ending a segment

4. �nding a junction

5. �nding a corner

As in border tracking, e�cient data structure manipulation is needed to manage the in-
formation at each step of the procedure. The data structures used are very similar to those
used in the border algorithm. Instead of past, current, and future regions, there are past,
current, and future segments. Segments are lists of edge points that represent straight or
curved lines on the image. Current segments are kept in internal memory and accessed by a
hash table. Finished segments are written out to a disk �le and their space in the hash table
freed. The main di�erence is the detection of junction points and the segments entering
them from above or the left and the segments leaving them from below or the right. We
will assume an extended neighborhood operator called pixeltype that determines if a pixel is
an isolated point, the starting point of a new segment, an interior pixel of an old segment,
an ending point of an old segment, a junction or a corner. If the pixel is an interior or end

26 Computer Vision: Mar 2000

1 2 3 4 5

1 1 0 0 0 1

2 0 1 0 1 0

3 0 0 1 0 0

4 0 0 1 0 0

5 0 0 1 1 1

Figure 10.18: Labeled edge image containing a junction of three line segments at pixel (3,3)
and a potential corner at pixel (5,3).

point of an old segment, the segment id of the old segment is also returned. If the pixel
is a junction or a corner point, then a list (INLIST) of segment ids of incoming segments
plus a list (OUTLIST) of pixels representing outgoing segments are returned. A procedure
for tracking edges in a labeled image is given below. Figure 10.19 gives the results of its
application on the labeled image of Figure 10.18.

Segment ID Length List

1 3 (1,1)(2,2)(3,3)
2 3 (1,5)(2,4)(3,3)
3 3 (3,3)(4,3)(5,3)
4 3 (5,3)(5,4)(5,5)

Figure 10.19: Output of the edge track procedure on the image of Fig. 10.18, assuming
the point (5,3) is judged to be a corner point. If corner points are not used to terminate
segments, then segement 3 would have length 5 and list ((3,3)(4,3)(5,3)(5,4)(5,5)).

The details of keeping track of segment ids entering and leaving segments at a junction
have been supressed. This part of the procedure can be very simple and assume every pixel
adjacent to a junction pixel is part of a di�erent segment. In this case, if the segments are
more than one-pixel wide, the algorithm will detect a large number of small segments that
are really not new line segments at all. This can be avoided by applying a connected shrink
operator to the edge image. Another alternative would be to make the pixeltype operator
even smarter. It can look at a larger neighborhood and use heuristics to decide if this is just
a thick part of the current segment, or a new segment is starting. Often the application will
dictate what these heuristics should be.

10.3.4 Hough Transform for Lines and Circular Arcs

The Hough transform is a method for detecting straight lines and curves in gray-tone (or
color) images. The method is given the family of curves being sought and produces the set
of curves from that family that appear on the image. In this section we describe the Hough
transform technique, and show how to apply it to �nding straight line segments and circular
arcs in images.

Shapiro and Stockman 27

Find the line segments of binary edge image S.
S[R;C] is the input labeled image.
NLINES is the number of rows in the image.
NPIXELS is the number of pixels per row.
IDNEW is the ID of the newest segment.
INLIST is the list of incoming segment IDs returned by pixeltype.
OUTLIST is the list of outgoing segment IDs returned by pixeltype.

procedure edge track(S);
f
IDNEW := 0;
for R:= 1 to NLINES
for C := 1 to NPIXELS
if S[R,C] 6= background pixel
f
NAME := address[R,C]; NEIGHB := neighbors[R,C];
T := pixeltype(R,C,NEIGHB,ID,INLIST,OUTLIST);
case

T = isolated point : next;
T = start point of new segment: f
IDNEW := IDNEW + 1;
make new segment(IDNEW,NAME); g ;

T = interior point of old segment : add(ID,NAME);
T = end point of old segment : f
add(ID,NAME);
output(ID); free(ID) g ;

T = junction or corner point:
for each ID in INLIST f
add(ID,NAME);
output(ID); free(ID); g ;

for each pixel in OUTLIST f
IDNEW := IDNEW + 1;
make new segment(IDNEW,NAME); g ;

g g

Algorithm 6: Tracking Edges of a Binary Edge Image

Exercise 9 Determining the type of a pixel

Give the code for the operator pixeltype, using a 3 � 3 neighborhood about a pixel to classify
it as one of the types: isolated, start or end, interior, junction, and corner.

28 Computer Vision: Mar 2000

The Hough Transform Technique

The Hough transform algorithm requires an accumulator array whose dimension corresponds
to the number of unknown parameters in the equation of the family of curves being sought.
For example, �nding line segments using the equation y = mx + b requires �nding two
parameters for each segment: m and b: The two dimensions of the accumulator array for
this family would correspond to quantized values for m and quantized values for b: The ac-
cumulator array accumlates evidence for the existence of the line y = mx+b in bin A[M;B]
where M and B are quantizations of m and b, respectively.

Using an accumulator array A; the Hough procedure examines each pixel and its neigh-
borhood in the image. It determines if there is enough evidence of an edge at that pixel,
and if so calculates the parameters of the speci�ed curve that passes through this pixel. In
the straight line example with equation y = mx + b; it would estimate the m and the b of
the line passing through the pixel being considered if the measure of edge strength (such
as gradient) at that pixel were high enough. Once the parameters at a given pixel are esti-
mated, they are quantized to corresponding values M and B and the accumulator A[M;B]
is incremented. Some schemes increment by one and some by the strength of the gradient
at the pixel being processed. After all pixels have been processed, the accumulator array
is searched for peaks. The peaks indicate the parameters of the most likely lines in the image.

Although the accumulator array tells us the parameters of the in�nite lines (or curves), it
does not tell us where the actual segments begin and end. In order to have this information,
we can add a parallel structure called PTLIST: PTLIST [M;B] contains a list of all the
pixel positions that contributed to the sum in accumulator A[M;B]: From these lists the
actual segments can be determined.

The above description of the Hough method is general; it leaves out the details needed
for an implementation. We will now discuss algorithms for straight line and circle �nding
in detail.

Finding Straight Line Segments

The equation y = mx+ b for straight lines does not work for vertical lines. A better model
is the equation d = x cos � + y sin � where d is the perpendicular distance from the line to
the origin and � is the angle the perpendicular makes with the x-axis. We will use this
form of the equation but convert to row (r) and column (c) coordinates. Since the column
coordinate c corresponds to x and the row coordinate r corresponds to �y, our equation
becomes

d = c cos � � r sin � (10.17)

where d is the perpendicular distance from the line to the origin of the image (assumed to
be at upper left), and � is the angle this perpendicular makes with the c (column) axis.
Figure 10.20 illustrates the parameters of the line segment. Suppose the point where the
perpendicular from the origin intersects the line is (50,50) and that � = 315�. Then we have

d = 50cos(315)� 50sin(315) = 50(:707)� 50(�:707) � 70

The accumulator A has subscripts that represent quantized values of d and �: O'Gorman
and Clowes quantized the values of d by 3's and � by 10� increments in their experiments

Shapiro and Stockman 29

(0,0)

r

c

d

0

line

Figure 10.20: illustrates the parameters d and � used in the equation d = �r sin � + c cos �
of a straight line.

on gray level images of puppet objects. An accumulator array quantized in this fashion is
illustrated in Fig. 10.21. The O'Gorman and Clowes algorithm for �lling the accumulator
A and parallel list array PTLIST is given in procedure accumulate lines below.

The algorithm is expressed in (row,column) space. The functions row gradient and col-

umn gradient are neighborhood functions that estimate the row and column components
of the gradient, while the function gradient combines the two to get the magnitude. The
function atan2 is the standard scienti�c library function that returns the angle in the cor-
rect quadrant given the row and column components of the gradient. We assume here that
atan2 returns a value between 0� and 359�: Many implementations return the angle in radi-
ans which would have to be converted to degrees. If the distance d comes out negative (i.e.
for � = 135�), its absolute value gives the distance to the line. The actions of the procedure
are illustrated in Fig. 10.22. Notice that with a 3 � 3 gradient operator, the lines are two
pixels wide. Notice also that counts appear in other accumulators than the two correct ones.

Procedure accumulate lines is O'Gorman and Clowes' version of the Hough method.
Once the accumulator and list arrays are �lled, though, there is no standard method for
extracting the line segments. Their ad hoc procedure, which illustrates some of the prob-
lems that come up in this phase of the line segment extraction process, is expressed as follows:

The function pick greatest bin returns the value in the largest accumulator while setting
its last two parameters, DQ and THETAQ, to the quantized d and � values for that bin. The
reorder function orders the list of points in a bin by column coordinate for � < 45 or � > 135
and by row coordinate for 45 � � � 135: The arrays D and THETA are expected to hold the
quantized D and THETA values for a pixel that were computed during the accumulation.
Similarly the array GRADIENT is expected to contain the computed gradient magnitude.
These can be saved as intermediate images. The merge procedure merges the list of points
from a neighbor of a pixel in with the list of points for that pixel, keeping the spatial

30 Computer Vision: Mar 2000

Accumulate the straight line segments in gray-tone image S to accumulator A.
S[R;C] is the input gray-tone image.
NLINES is the number of rows in the image.
NPIXELS is the number of pixels per row.
A[DQ;THETAQ] is the accumulator array.
DQ is the quantized distance from a line to the origin.
THETAQ is the quantized angle of the normal to the line.

procedure accumulate lines(S,A);
f
A := 0;
PTLIST := NIL;
for R := 1 to NLINES
for C := 1 to NPIXELS
f
DR := row gradient(S,R,C);
DC := col gradient(S,R,C);
GMAG := gradient(DR,DC);
if GMAG > gradient threshold
f
THETA := atan2(DR,DC);
THETAQ := quantize angle(THETA);
D := abs(C*cos(THETAQ) - R*sin(THETAQ));
DQ := quantize distance(D);

A[DQ,THETAQ] := A[DQ,THETAQ]+GMAG;
PTLIST(DQ,THETAQ) := append(PTLIST(DQ,THETAQ),[R,C])
g

g
g

Algorithm 7: Hough Transform for Finding Straight Lines

Shapiro and Stockman 31

Find the point lists corresponding to separate line segments.
A[DQ;THETAQ] is the accumulator array from accumulate lines.
DQ is the quantized distance from a line to the origin.
THETAQ is the quantized angle of the normal to the line.

procedure �nd lines;
f
V := pick greatest bin(A,DQ,THETAQ);
while V > value threshold
f
list of points := reorder(PTLIST(DQ,THETAQ));
for each point [R,C] in list of points
for each neighbor (R',C') of [R,C] not in list of points
f
DPRIME := D(R',C');
THETAPRIME := THETA(R',C');
GRADPRIME := GRADIENT(R',C');
if GRADPRIME > gradient threshold
and abs(THETAPRIME{THETA)� 10

then f
merge(PTLIST(DQ,THETAQ),PTLIST(DPRIME,
THETAPRIME));

set to zero(A,DPRIME,THETAPRIME);
g

g
�nal list of points := PTLIST(DQ,THETAQ);
create segments(�nal list of points);
set to zero(A,DQ,THETAQ);
V := pick greatest bin(A,DQ,THETAQ);
g

g

Algorithm 8: O'Gorman/Clowes Method for Extracting Straight Lines

32 Computer Vision: Mar 2000

360

d
... : : :

...

6

3

0

0 10 20 � � � 340 350
�

Figure 10.21: illustrates the accumulator array for �nding straight line segments in images
of size 256� 256:

ordering. The set to zero procedure zeroes out an accumulator so that it will not be reused.
Finally, the procedure create segments goes through the �nal ordered set of points searching
for gaps longer than one pixel. It creates and saves a set of line segments terminating at
gaps. For better accuracy, a least squares procedure can be used to �t lists of points to line
segments. It is important to mention that the Hough procedure can gather strong evidence
from broken or virtual lines such as a row of stones or a road broken by overhanging trees.

Exercise 10
This exercise follows the work of R. Kasturi: the problem is to apply the Hough transform
to identify lines of text. Apply existing programs or tools and write new ones as needed to
perform the following experiment. (a) Type or print a few lines of text in various directions
and binarize the image. Add some other objects, such as blobs or curves. (b) Apply
connected components processing and output the centroids of all objects whose bounding
boxes are appropriate for characters. (c) Input the set of all selected centroids to a Hough
line detection procedure and report on how well the text lines can be detected.

Finding Circles

The Hough transform technique can be extended to circles and other parametrized curves.
The standard equation of a circle has three parameters. If a point [R;C] lies on a circle
then the gradient at [R;C] points to the center of that circle as shown in Fig. 10.23. So if
a point [R;C] is given, a radius d is selected, and the direction of the vector from [R;C]
to the center is computed, the coordinates of the center can be found. The radius, d; the
row-coordinate of the center, ro; and the column-coordinate of the center, co; are the three
parameters used to vote for circles in the Hough algorithm. In row-column coordinates,
circles are represented by the equations

r = ro + d sin � (10.18)

c = co � d cos � (10.19)

Shapiro and Stockman 33

1 2 3 4 5

1 0 0 0 100 100

2 0 0 0 100 100

3 0 0 0 100 100

4 100 100 100 100 100

5 100 100 100 100 100

gray level image

1 2 3 4 5

1 0 0 300 300 0

2 0 0 300 300 0

3 0 0 200 200 0

4 0 0 0 100 0

5 0 0 0 0 0

column gradient

1 2 3 4 5

1 0 0 0 0 0

2 0 0 0 0 0

3 300 300 200 100 0

4 300 300 200 100 0

5 0 0 0 0 0

row gradient

1 2 3 4 5

1 - - 0 0 -

2 - - 0 0 -

3 90 90 45 26.6 -

4 90 90 90 45 -

5 - - - - -

THETA

1 2 3 4 5

1 - - 0 0 -

2 - - 0 0 -

3 90 90 40 20 -

4 90 90 90 40 -

5 - - - - -

THETAQ

1 2 3 4 5

1 3 4

2 3 4

3 3 3 4.2 4.8

4 4 4 4 5.6

5

D

1 2 3 4 5

1 3 3

2 3 3

3 3 3 3 3

4 3 3 3 3

5

DQ

360

DQ
...

6

3 4 1 2 5

0

0 10 20 30 40 � � � 90
THETAQ

accumulator A

360

DQ
...

6

3 | } � ~
0

0 10 20 30 40 � � � 90
THETAQ
PTLIST

| (1,3)(1,4)(2,3)(2,4)
} (3,4)
� (3,3)(4,4)
~ (3,1)(3,2)(4,1)(4,2)(4,3)

Figure 10.22: The results of the operation of procedure accumulate on a simple gray level
image using Prewitt masks. For this small example, the evidence for correct detections is
not much larger than that for incorrect ones, but in real images with long segments, the
di�erence will be much more pronounced.

34 Computer Vision: Mar 2000

Figure 10.23: illustrates the direction of the gradient at the boundary points of a circle.
The inward pointing gradients are the ones that will accumulate evidence for the center of
the circle.

(10.20)

With these equations, the accumulate algorithm for circles becomes algorithm accumu-
late circles on the next page.

This procedure can easily be modi�ed to take into account the gradient magnitude as
did the procedure for line segments. The results of applying it to a technical document
image are shown in Figure 10.24.

Extensions

The Hough transform method can be extended to any curve with analytic equation of the
form f(x; a) = 0 where x denotes an image point and a is a vector of parameters. The
procedure is as follows:

1. Initialize accumulator array A[a] to zero.

2. For each edge pixel x determine each a such that f(x; a) = 0 and set A[a] := A[a]+1.

3. Local maxima in A correspond to curves of f in the image.

If there are m parameters in a, each havingM discrete values, then the time complexity
is O(Mm�2): The Hough transform method has been further generalized to arbitrary shapes
speci�ed by a sequence of boundary points (Ballard, 1981). This is known as the generalized
Hough transform.

The Burns Line Finder

A number of hybrid techniques exist that use some of the principles of the Hough transform.
The Burns line �nder (Burns et al, 1986) was developed to �nd straight lines in complex
images of outdoor scenes. The Burns method can be summarized as follows:

Shapiro and Stockman 35

Accumulate the circles in gray-tone image S to accumulator A.
S[R;C] is the input gray-tone image.
NLINES is the number of rows in the image.
NPIXELS is the number of pixels per row.
A[R;C;RAD] is the accumulator array.
R is the row index of the circle center.
C is the column index of the circle center.
RAD is the radius of the circle.

procedure accumulate circles(S,A);
f
A := 0;
PTLIST := 0;
for R := 1 to NLINES
for C := 1 to NPIXELS
for each possible value RAD of radius
f
THETA := compute theta(S,R,C,RAD);
R0 := R { RAD*cos(THETA);
C0 := C + RAD*sin(THETA);
A[R0,C0,RAD] := A[R0,C0,RAD]+1;

PTLIST(R0,C0,RAD) := append(PTLIST(R0,C0,RAD),[R,C])
g

g

Algorithm 9: Hough Transform for Finding Circles

36 Computer Vision: Mar 2000

Figure 10.24: Circles detected by the Hough transform on a section of an technical drawing,
shown by overlaying an extra circle of slightly larger radius on each detected circle.

1. Compute the gradient magnitude and direction at each pixel.

2. For points with high enough gradient magnitude, assign two labels representing two
di�erent quantizations of the gradient direction. (For example, for eight bins, if the
�rst quantization is 0 to 44, 45 to 90, 91 to 134, etc., then the second can be {22 to
22, 23 to 67, 68 to 112, etc.) The result is two symbolic images.

3. Find the connected components of each symbolic image and compute line length for
each component.

� Each pixel is a member of two components, one from each symbolic image.

� Each pixel votes for its longer component.

� Each component receives a count of pixels that voted for it.

� The components (line segments) that receive the majority support are selected.

The Burns line �nder takes advantage of two powerful algorithms: the Hough trans-
form and the connected components algorithm. It attempts to get rid of the quantization
problems that forced O'Gorman and Clowes to search neighboring bins by the use of two
separate quantizations. In practice, it su�ers from a problem that will a�ect any line �nder
that estimates angle based on a small neighborhood around a pixel. Digital lines are not
straight. Diagonal lines are really a sequence of horizontal and vertical steps. If the angle
detection technique uses too small a neighborhood, it will end up �nding a lot of tiny hor-
izontal and vertical segments instead of a long diagonal line. Thus in practice, the Burns
line �nder and any other angle-based line �nder can break up lines that a human would like
to detect as a connected whole.

Shapiro and Stockman 37

Exercise 11 Burns compared to Hough

Implement both the Hough transform and the Burns operator for line �nding and compare
the results on real-world images having a good supply of straight lines.

Exercise 12 Line Detection

Implement the following approach to detecting lines in a gray-tone image I.

for all image pixels I[R,C]
f
compute the gradient Gmag and Gdir

if Gmag > threshold
then output [Gmag,Gdir] to set H
g

detect clusters in the set H;

The signi�cant clusters will correspond to the signi�cant line segments in I.

10.4 Fitting Models to Segments

Mathematical models that �t data not only reveal important structure in the data, but also
can provide e�cient representations for further analysis. A straight line model might be
used for the edge pixels of a building or a planar model might apply to surface data from the
face of a building. Convenient mathematical models exist for circles, cylinders, and many
other shapes.

Below, we present the method of least squares for determining the parameters of the
best mathematical model �tting observed data. This data might be obtained using one of
the region or boundary segmentation methods described previously; for example, we have
already mentioned that we could �t a straight line model to all the pixels [r; c] voting for a
particular line hypothesis A[THETAQ;DQ] in the Hough accumulator array. In order to
apply least squares, there must be some way of establishing which model or models should
be tried out of an in�nite number of possibilities. Once a model is �t and its parameters
determined, it is possible to determine whether or not the model �ts the data acceptably. A
good �t might mean that an object of some speci�ed shape has been detected; or, it might
just provide a more compact representation of the data for further analysis.

Fitting a Straight Line

We introduce the least-squares theory by way of a simply example. One straight line
model is a function with two parameters: y = f(x) = c1x + c0. Suppose we want to test
whether or not a set of observed points f(xj ; yj); j = 1; ng form a line. To do this, we
determine the best parameters c1 and c0 of the linear function and then examine how close
the observed points are to the function. Di�erent criteria can be used to quantify how close
the observations are to the model. Figure 10.25 shows the �tting of a line to six data points.
Surely, we could move the line slightly and we would have a di�erent line that still �ts well.

38 Computer Vision: Mar 2000

X

Y

X

Y

linear fit is biased

circular fit is unbiased

y = c x + c
model is

e = y - y
error is

1 0

j j

Figure 10.25: (Left) Fit of model y = f(x) to six data points; (right) competing straight
line and circular models: the signs of the residual errors show that the line �t is biased and
the circular �t is unbiased.

The least-squares criteria de�nes a best line according to the de�nition below.

1 Definition Least-Squares Error Criteria: The measure of how well a model y = f(x)
�ts a set of n observations f(xj ; yj); j = 1; ng is

LSE =

nX
j=1

(f(xj)� yj)
2

The best model y = f(x) is the model with the parameters minimizing this criteria.

2 Definition The root-mean-square error, or RMSE, is the average di�erence of

observations from the model:

RMSE = [

nX
j=1

(f(xj)� yj)
2)=n]1=2

Note that for the straight line �t, this di�erence is not the Euclidean distance of the observed

point from the line, but the distance measured parallel to the y-axis as Figure 10.25.

3 Definition Max-Error Criteria: The measure of how well a model y = f(x) �ts a set

of n observations f(xj; yj); j = 1; ng is

MAXE = max(fj (f(xj)� yj) jgj=1;n)

Note that this measure depends only on the worst �t point, whereas the RMS error depends

on the �t of all of the points.

Shapiro and Stockman 39

Table 10.1: Least-squares �t of data generated using y = 3x�7 plus noise gives �tted model
y = 2:971x� 6:962.

Data Pts (xj; yj) (0.0, -6.8) (1.0, -4.1) (2.0, -1.1) (3.0, 1.8) (4.0, 5.1) (5.0, 7.9)

Residuals y � yj: -0.162 0.110 0.081 0.152 -0.176 -0.005

Closed Form Solutions for Parameters

The least-squares criteria is popular for two reasons; �rst, it is a logical choice when a
Gaussian noise model holds, second, derivation of a closed form solution for the parameters
of the best model is easy. We �rst derive the closed form solution for the parameters of
the best �tting straight line. Development of other models follows the same pattern. The
least-squares error for the straight line model can be explicitly written as follows: note that
the observed data xj; yj are regarded as constants in this formula.

LSE = "(c1; c0) =

nX
j=1

(c1xj + c0 � yj)
2

(10.21)

The error function " is a smooth non-negative function of the two parameters c1 and c0 and
will have a global minimum at the point (c1; c0) where @"=@c1 = 0 and @"=@c0 = 0.
Writing out these derivatives from the formula in Equation 10.21 and using the fact that
the derivative of a sum is the sum of the derviatives yields the following derivation.

@"=@c1 =

nX
j=1

2(c1xj + c0 � yj)xj = 0 (10.22)

= 2(

nX
j=1

x2j)c1 + 2(

nX
j=1

xj)c0 � 2

nX
j=1

xjyj (10.23)

@"=@c0 =

nX
j=1

2(c1xj + c0 � yj) = 0 (10.24)

= 2(

nX
j=1

xj)c1 + 2

nX
j=1

c0 � 2

nX
j=1

yj (10.25)

These equations are nicely represented in matrix form. The parameters of the best line are
found by solving the equations. The general case representing an arbitrary polynomial �t
results in a highly patterned set of equations called the normal equations.� Pn

j=1 x
2
j

Pn
j=1 xjPn

j=1 xj
Pn

j=1 1

� �
c1
c0

�
=

� Pn
j=1 xjyjPn
j=1 yj

�
(10.26)

Exercise 13 Fitting a line to 3 points

Using Equation 10.26, compute the parameters c1 and c0 of the best line through the points
(0, -7), (2, -1) and (4, 5).

40 Computer Vision: Mar 2000

Exercise 14 normal equations

(a) Derive the matrix form for the equations constraining the 4 parameters for �tting a
cubic polynomial c3x

3 + c2x
2 + c1x + c0 to observed data (xj; yj); j = 1; n. (b) From the

pattern of the matrix elements, predict the matrix form for �tting a polynomial of degree
four.

Empirical Interpretation of the Error

Empirical interpetation of the error and individual errors is often straightforward in ma-
chine vision problems. For example, we might accept the �t if all observed points are within
a pixel or two of the model. In a controlled 2D imaging environment, one could image many
straight-sided objects and study the variation of detected edge points o� the ideal line. If
individual points are far from the �tted line (these are called outliers), they could indicate
feature detection error, an actual defect in the object, or that a di�erent object or model
exists. In these cases, it is appropriate to delete the outliers from the set of observations and
repeat the �t so that the model is not pulled o� by points which it should not model. All the
original points can still be interpreted relative to the updated model. If the model �tting
is being used for curve segmentation, it is typically the extreme points that are deleted,
because they are actually part of a di�erent shaped object or part.

*Statistical Interpretation of the Error

Error can be interpreted relative to a formal statistical hypothesis. The common as-
sumption is that the observed value of yj is just the model value f(xj) plus (Gaussian)
noise from the normal distribution N (0; �), where � is known from the analysis of measure-
ment error, which could be done empirically as above. It is also assumed that the noise in
any individual observation j is independent of the noise in any other observation k. It follows
that the variable Ssq =

Pn
j=1((f(xj) � yj)

2)=�2) is �2 distributed, so its likelihood can be
determined by formula or table lookup. The number of degrees of freedom is n� 2 for the
straight line �t since two parameters are estimated from the n observations. If 95% of the
�2 distribution is below our observed Ssq , then perhaps we should reject the hypothesis that
this model �ts the data. Other con�dence levels can be used. The �2 test is not only useful
for accepting/rejecting a given hypothsis, but it is also useful for selecting the most likely
model from a set of competing alternatives. For example, a parabolic model may compete
with the straight line model. Note that in this case, the parabolic model y = c2x

2+ c1x+ c0
has three parameters so the �2 distribution would have n� 3 degrees of freedom.

Intuitively, we should not be too comfortable in assuming that error in observation j is
independent of the error in observations j � 1 or j + 1. For example, an errant manufac-
turing process might distort an entire neighborhood of points from the ideal model. The
independence hypothesis can be tested using a run-of-signs test, which can detect system-
atic bias in the error, which in turn indicates that a di�erent shape model will �t better. If
the noise is truly random, then the signs of the error should be random and hence
uctuate
frequently. Figure 10.25 (right) shows a biased linear �t competing with an unbiased circular
�t. The signs of the errors indicate that the linear �t is biased. Consult the references at the
end of the chapter for more reading on statistical hypothesis-testing for evaluating �t quality.

Shapiro and Stockman 41

Exercise 15 �tting a planar equation to 3D points

(a) Solve for the parameters a; b; c of the model z = f(x; y) = ax + by + c of the least
squares plane through the �ve surface points (20, 10, 130), (25, 20, 130), (30, 15, 145), (25,
10, 140), (30, 20, 140). (b) Repeat part (a) after adding a random variation to each of the
three coordinates of each of the �ve points. Flip a coin to obtain the variation: if the coin
shows heads, then add 1, if it shows tails then subtract 1.

Exercise 16 Prewitt operator is \optimal"

Show that the Prewitt gradient operator from Chapter 5 can be obtained by �tting the
least squares plane through the 3x3 neighborhood of the intensity function. To compute the
gradient at I[x; y], �t the nine points (x + �x; y + �y; I[x + �x; y + �y]) where �x and
�y range through -1, 0, +1. Having the planar model z = ax + by + c that best �ts the
intensity surface, show that using the two Prewitt masks actually compute a and b.

Problems in Fitting

It is important to consider several kinds of problems in �tting.

outliers Since every observation a�ects the RMS error, a large number of outliers may
render the �t worthless: the initial �t may be so far o� the ideal that it is impossible
to identify and delete the real outliers. Methods of robust statistics can be applied in
such cases: consult the Boyer et al (1994) reference cited at the end of the chapter.

error de�nition The mathematical de�nition of error as a di�erence along the y-axis is not
a true geometric distance; thus the least squares �t does not necessarily yield a curve
or surface that best approximates the data in geometric space. The rightmost data
point at the right of Figure 10.25 illustrates this problem { that point is geometrically
very close to the circle, but the functional di�erence along the y-axis is rather large.
This e�ect is even more pronounced when complex surfaces are �t to 3D points.
While geometric distance is usually more meaningful than functional di�erence, it
is not always easy to compute. In the case of �tting a straight line, when the line
gets near to vertical, it is better to use the best axis computation given in Chapter

3 rather than the least squares method presented here. The best axis computation is
formulated based on minimizing the geometric distances between line and points.

nonlinear optimization Sometimes, a closed form solution to the model parameters is
not available. The error criteria can still be optimized, however, by using a technique
that searches parameter space for the best parameters. Hill-climbing, gradient-
based search, or even exhaustive search can be used for optimization. See the works
by Chen and Medioni and Ponce et al, which address this and the previous issue.

high dimensionality When the dimensionality of the data and/or the number of model
parameters is high, both empirical and statistical interpretation of a �t can be di�cult.
Moreover, if a search technique is used to �nd parameters it may not even be known
whether or not these parameters are optimal or just result from a local minima of the
error criteria.

�t constraints Sometimes, the model being �t must satisfy additional constraints. For
example, we may need to �nd the best line through observations that is also perpen-

42 Computer Vision: Mar 2000

dicular to another line. Techniques for constrained optimization can be found in the
references.

Segmenting Curves via Fitting

The model �tting method and theory presented above assumes that both a model hy-
pothesis and set of observations are given. Boundary tracking can be done in order to obtain
long strings of boundary points which can then be segmented as follows. First, high curva-
ture points or cusps can be detected in the boundary sequence in order to segment it. Then,
model hypotheses can be tested against the segments between breakpoints. The result of
this process is a set of curve segments and the mathematical model and parameters which
characterize the shape of each segment. An alternative method is to use the model-�tting
process in order to segment the original boundary curve. In the �rst stage, each subsequence
of k consecutive points is �t with each model. The �2 value of the �t is stored in a set with
each acceptable �t. The second stage attempts to extend acceptable �ts by repetitively
adding another endpoint to the subsequence. Fitted segments are grown until addition of
an endpoint decreases the �2 value of the �t. The result of this process is a set of possibly
overlapping subsequences, each with a model and the �2 value of the model �t. This set is
then passed to higher level processes which can construct domain objects from the available
detected parts. This process is similar in spirit to the region-grower described in Section
10.1.2, which has been successfully used to grow line segments using the direction estimate
at each edge pixel as the critical property instead of the grey tone property used in growing
regions.

10.5 Identifying Higher-level Structure

Analysis of images often requires the combination of segments. For example, quadrilateral
regions and straight edge segments might be combined as evidence of a building or intersect-
ing edge segments might accurately de�ne the corner of a building, or a green region inside
a blue region might provide evidence of an island. The methods for combining segments
are limitless. Below, we look at just two general cases of combining edge segments to form
more informative structures: these are the ribbon and the corner.

10.5.1 Ribbons

A very general type of image segment is the ribbon. Ribbons are commonly produced by
imaging elongated objects in 2D or in 3D; for example, by imaging a conduction path on a
printed circuit board, the door of a house, a pen on a table, or a road through �elds. In these
examples, the sides of the ribbons are approximately parallel to each other, but not nec-
essarily straight. Although we limit ourselves to straight-sided ribbons below, ribbons can
have more general shape, such as that of a wine bottle or ornate lampost, where the shape
of the silhouette is some complex curve with re
ective symmetry relative to the axis of the
ribbon. An electric cord, a rope, a meandering stream or road each produce a ribbon in an
image, as will the shadow of a rope or lampost. Chapter 14 discusses 3D object parts called
generalized cylinders, which produce ribbons when viewed. At the right in Figure 10.16 is a
symbol that is well represented by four ribbons, two of which are highly curved. We leave

Shapiro and Stockman 43

extraction of general ribbons to future study and concentrate on those with straight sides.

4 Definition A ribbon is an elongated region that is approximately symmetrical about its

major axis. Often, but not always, the edges of a ribbon contrast symmetrically with its

background.

Figure 10.26 shows how the Hough Transform can be extended slightly to encode the
gradient direction across an edge in addition to its orientation and location. As was shown
in Chapter 5, and earlier in this chapter, gradient direction � at a pixel [r; c] that has
signi�cant gradient magnitude can be computed in the interval [0; 2�) using operators such
as the Sobel operator. The vector from the image origin to the pixel is [r; c]: we project this
vector onto the unit vector in the direction � to obtain a signed distance d.

d = [r; c] � [�sin�; cos�] = �r sin� + c cos� (10.27)

A positive value for d is the same as that obtained in the usual polar coordinate represen-
tation for pixel [r; c]. However, a negative d results when the direction from the origin to the
edge is opposite to the gradient direction: this will result in two separate clusters for every
\line" on a checkboard for example. Figure 10.26 illustrates this idea. Consider the edge
P1P2 in the �gure. Pixels along this edge should all have gradient direction approximately
315 degrees. The perpendicular direction from the origin to P1P2 is in the same direction,
so pixels along P1P2 will transform to (approximately) [d1; 315

�] in the Hough parameter
space. Pixels along line segment P2P3 however, have a gradient direction of 135 degrees,
which is opposite to the direction of the perpendicular from the origin to P2P3. Thus, pixels
along segment P2P3 will transform to (approximately) [�d1; 135

�].

Exercise 17
Figure 10.27 shows a dark ring on a light background centered at the image origin. Sketch
the parameter space that would result when such an image is transformed using the Hough
Transform as shown in Figure 10.26

Detecting Straight Ribbons

By using the Hough parameters along with the point lists obtained by Algorithm accu-

mulate lines, more complex image structure can be detected. Two edges whose directions
di�er by 180� provide evidence of a possible ribbon. If in addition, the point lists are located
near each other, then there is evidence of a larger linear feature that reverses gradient, such
as a road through farm �elds as in Figure 10.17.

Figure 10.28 shows an image of part of a white house containing a downspout. The
image was taken in strong sunlight and this resulted in hard shadows. By using a gradient
operator and then collecting pixels on edge segments using accumulate lines, there is strong
evidence of a bright ribbon on a dark background corresponding to the downspout (sides
are AB and ED). The shadow of the downspout s also creates evidence of a dark ribbon on
a bright background.

44 Computer Vision: Mar 2000

region

dark

light

region

d1

P1

P2

P3

(0,0)
C

R

dark

light

region

region

Figure 10.26: The Hough transform can encode the location and orientation of an edge and
its gradient direction. The transition from a dark region to a lighter one gives the opposite
gradient direction from the transition from the lighter region to the darker one, along the
same image line.

Exercise 18

Write a computer program to study the use of the Hough Transform to detect ribbons. (a)
Use the Sobel operator to extract the gradient magnitude and direction at all pixels. Then
transform only pixels of high magnitude. (b) Detect any clusters in [d; �]-space. (c) Detect
pairs of clusters, ([d1; �1]; [d2; �2]), where �1 and �2 are � apart. (d) Delete pairs that are
not approximately symmetrical across an axis between them.

10.5.2 Detecting Corners

Signi�cant region corners can be detected by �nding pairs of detected edge segments E1 and
E2 in the following relationship.

1. Lines �t to edge point sets E1 and E2 intersect at point [u; v] in the real image
coordinate space.

2. Point [u; v] is close to extreme points of both sets E1 and E2.

3. The gradient directions of E1 and E2 are symmetric about their axis of symmetry.

This de�nition models only corners of type 'L': constraint (2) rules outs those of type 'T',
'X' and 'Y'. The computed intersection [u; v] will have subpixel accuracy. Figure 10.29
sketches the geometry of a corner structure. Edge segments can be identi�ed intitially by
using the Hough transform or by boundary following and line �tting or by any other appro-
priate algorithm. For each pair ([d1; �1]; [d2; �2]) satifying the above criteria, add the quad
([d1; �1]; [d2; �2]; [u; v]; �) to a set of candidate corners. The angle � is formed at the corner.

Shapiro and Stockman 45

r
r2

light

dark
light

1

Figure 10.27: Dark ring centered at the origin on light background. Dark region is outside
the smaller circle and inside the larger one.

C

B

A

D

E

s

Figure 10.28: (Left) Region of an image of a house showing a downspout and strong shadows;
(center) the highest 10% gradient magnitudes computed by the Prewitt 3x3 operator; (right)
sketch of ribbons and corners evident.

This set of corner features can be used for building higher level descriptions, or can be used
directly in image matching or warping methods as shown in Chapter 11.

Several corners can easily be extracted from the blocks image in Figure 10.2; however,
most of them are due to viewpoint dependent occlusions of one object crease by another
and not by the joining of two actual 3D object creases. Four actual corners are evident
for the top of the arch. The corners of triangle ABC in Figure 10.28 are all artifacts of
the lighting and viewpoint. We conclude this discussion by making the point that although
representations using edge segments are often used in speci�c problem domains they may be
highly ambiguous in when used in general. Usually, problem-speci�c knowledge is needed
in order to interpret higher-level structure.

10.6 Segmentation using Motion Coherence

As we have seen, motion is important for determining scene content and action. Chapter 9
presented methods for detecting change in a scene and for tracking motion over many frames.

46 Computer Vision: Mar 2000

Exercise 19

Describe how to change the ribbon detection algorithm so that (a) it only detects ribbons
that are nearly vertical, (b) it detects ribbons that are no wider than W .

lighter

darker

darker

lighter

α
2π−α α

1

E 2

E

E 2

1E

[u, v] [u, v]. .

Figure 10.29: Corners are detected as pairs of detected edge segments appropriately related.

10.6.1 Boundaries in Space-Time

The contours of moving objects can be identi�ed by using both spatial and temporal con-
trast. Our previous examples have used only spatial contrast of some property such as
intensity or texture in a single image. Spatial and temporal gradients can be computed and
combined if we have two images I[x; y; t] and I[x; y; t + �t] of the scene. We can de�ne a
spatio-temporal gradient magnitude as the product of the spatial gradient magnitude and
the temporal gradient magnitude as in Equation 10.28. Once an image STG[] is computed,
it is amenable to all the contour extraction methods already discussed. The contours that
are extracted will be the boundaries of moving objects and not static ones, however.

STG[x; y; t] = Mag[x; y; t] (jI[x; y; t]� I[x; y; t+ �t]j) (10.28)

10.6.2 Aggregrating Motion Trajectories

Assume that motion vectors are computed across two frames of an image sequence. This
can be done using special interest points or regions as described in Chapter 9. Region
segmentation can be performed on the motion vectors by clustering according to image po-
sition, speed, and direction as shown in Figure 10.30. Clustering should be very tight for
a translating object, because points of the object should have the same velocity. Through
more complex analysis, objects that rotate and translate can also be detected.

Figure 10.31 shows processing from an application where the purpose of motion is com-
munication: the goal is to input to a machine via American Sign Language (ASL). The
�gure shows only a sample of frames from a sequence representing about two seconds of
gesturing by the human signer. The results shown in Figure 10.31 were produced using
both color segmentation within a single frame and motion segmentation across pairs of
frames. A sketch of steps of an algorithm is given in Algorithm 10: for details of the actual
algorithm producing Figure 10.31, consult the reference by Yang and Ahuja (1999). The

Shapiro and Stockman 47

Exercise 20

Given two lines parameterized by ([d1; �1]; [d2; �2]), (a) derive a formula for their intersection
point [x; y] and (b) derive a formula for their axis of symmetry [da; �a].

Exercise 21
Obtain two successive images of a scene with moving objects and compute a spatio-temporal
image from them using Equation 10.28. (Two frames from a Motion JPEG video would be
good. Or, one could digitize some dark cutouts on a
atbed scanner, moving them slightly
for the second image.)

�rst several steps of the algorithm can be generally applied to many di�erent kinds of se-
quences. Color segmentation is done for each image and the segments are matched across
frames. These matches are used to guide the computation of a dense motion �eld for each
pair of consecutive images, which is then segmented to derive motion trajectories at the
individual pixel level. This motion �eld is then segmented into regions of uniform motion.
Only at this point do we add domain knowledge to identify hands and face: a skin color
model, as seen in Chapter 6, identi�es skin regions, the largest of which is taken to be the
face. The center of each hand region is then tracked over all frames: the two trajectories
can then be used to recognize the sign made. Yang and Ahuja reported recognition rates
of over 90% in experiments with many instances of a set of 40 American Sign Language signs.

Exercise 22
Describe how Algorithm 10 can be modi�ed to make it simpler and faster by specializing
all of its steps for the ASL application.

10.7 References

Segmentation is one of the oldest, and still unsolved, areas of computer vision. The 1985
survey by Haralick and Shapiro gives a good overview of the early work, most of which
worked with gray-tone images. The �rst useful segmentation work with natural color im-
ages was done by Ohlander, Price, and Reddy in 1978. Only in recent years has the area
become fruitful again. The work of Shi and Malik on normalized cuts, starting in 1997, can
be credited with being the catalyst for newer work in which segmentations of arbitrary color
images from large image collections is being undertaken. In line-drawing analysis, Free-
man �rst proposed his chain code in the 1960's; his 1974 article discusses its use. While the
Hough Transform was published only as a patent, it was popularized and expanded by Duda
and Hart, and its use is nicely illustrated for line segments in O'Gorman and Clowes' 1976
paper and for circles in Kimme, Ballard, and Sklansky's 1975 work. The Burns line �nder,
published ten years later is an improvement to the technique to make it more robust and
reliable. Samet's 1990 book on spatial data structures is an excellent reference on quad trees.

Bowyer et al (1994) show how to use robust statistics to �t models to data for segmen-
tation. Any anticipated model can be �t to all of the image: robust �tting can eliminate a
huge number of outliers, resulting in a segment of the image where the particular model �ts

48 Computer Vision: Mar 2000

Exercise 23
Suppose we have two motion trajectories Pj; j = 1; N and Qk; k = 1;M , where Pj and
Qk are points in 2D in proper time sequence. Devise an algorithm for matching two such
trajectories, such that 1.0 is output when both trajectories are identical and 0.0 is output
when they are very di�erent. Note the M and N may not be equal.

Input a video sequence of a person signing in ASL.

Output motion trajectories of the two palms.

1. Segment each frame It of the sequence into regions using color.

2. Match the regions of each pair of images (It; It+1) by color and neighborhood.

3. Compute the a�ne transformation matching each region of It to the corresponding
region of It+1.

4. Use the transformation matching regions to guide the computation of motion vectors
for individual pixels.

5. Segment the motion �eld derived above using motion coherence and image location.

6. Identify two hand regions and the face region using a skin color model.

7. Merge adjacent skin colored regions that were fragmented previously.

8. Find an ellipse approximating each hand and the face.

9. Create motion trajectories by tracking each ellipse center over the entire sequence.

10. (Recognize the gesture using the trajectories of the two hands.)

Algorithm 10: Algorithm using color and motion to track ASL gestures (Motivated by
Yang and Ahuja (1999)).

Shapiro and Stockman 49

A
B

C

Figure 10.30: Aggregation of vectors from the motion �eld via compatible location, velocity
and direction: translating objects (A,B) are easier to detect than rotating objects (C).

well. An image can be said to be segmented when all anticipated models have been �tted:
the segments are comprised of the points that have been �tted.

1. K. Boyer, K. Mirza and G. Ganguly (1994), \ The Robust Sequential Estimator: A
General Approach and its Application to Surface Organization in Range Data", IEEE
Trans. on Pattern Analysis and Machine Intelligence, Vol. 16, No. 10 (Oct 1994),
pp. 987-1001.

2. J. R. Burns, A. R. Hanson, and E. M. Riseman, \Extracting Straight Lines," IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-8, 1986, pp.
425-455.

3. Y. Chen and G. Medioni, Surface Description of Complex Object from Multiple Range

Images, Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition, Seattle, WA (June 1994)513-518.

4. R. O. Duda and P. E. Hart, \Use of the Hough Transform to Detect Lines and Curves
in Pictures," Communications of the ACM, Vol. 15, 1972, pp. 11-15.

5. H. Freeman, \Computer Processing of Line-Drawing Images," Computing Surveys,
Vol. 6, 1974, pp. 57-97.

6. R. M. Haralick and L. G. Shapiro, \Image Segmentation Techniques," Computer Vi-

sion, Graphics, and Image Processing, Vol. 29, No. 1, January 1985, pp. 100-132.

7. C. Kimme, D. Ballard, and J. Sklansky, \Finding Circles by an Array of Accumula-
tors," Communications of the ACM, VOl. 18, 1975, pp. 120-122.

8. F. O'Gorman and M. B. Clowes, \Finding Pciture Edges through Collinearity of Fea-
ture Points, " IEEE Transactions on Computers, VOl. C-25, 1976, pp. 449-454.

9. R. Ohlander, K. Price, and D. R. Reddy, \Picture Segmentation Using a Recursive
Region Splitting Method," Computer Graphics and Image Processing, Vol. 8, 1978,
pp. 313-333.

50 Computer Vision: Mar 2000

(a) frame 14 (b) frame 16 (c) frame 19 (d) frame 22

(I) Four video frames of a 55-frame sequence of ASL sign \cheerleader".

(e) frame 14 (f) frame 16 (g) frame 19 (h) frame 22

(II) Motion segmentation of the image sequence \cheerleader".
(pixels of the same motion region are displayed with same gray level and
di�erent regions are displayed with di�erent gray levels)

(i) frame 14 (j) frame 16 (k) frame 19 (l) frame 22

(III) Extracted head and palm regions from image sequence \cheerleader".

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160

Y
-a

xi
s

X-axis

Gestural Motion Trajectories

palm1
palm2

(m) #14-#16

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160

Y
-a

xi
s

X-axis

Gestural Motion Trajectories

palm1
palm2

(n) #16-#19

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160

Y
-a

xi
s

X-axis

Gestural Motion Trajectories

palm1
palm2

(o) #19-#22

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160

Y
-a

xi
s

X-axis

Gestural Motion Trajectories

palm1
palm2

(p) #22-#25

(IV) Extracted gestural motion trajectories from segments of ASL sign \cheerleader"
(since all pixel trajectories are shown, they form a thick blob)

Figure 10.31: Extraction of motion trajectories from image sequence. (I) Sample frames
from video sequence; (II) frames segmented using motion; (III) head and palm regions
extracted by color and size; (IV) motion trajectories for points on the palms. (Figures
courtesy of Ming-Hsuan Yang and Narendra Ahuja.)

Shapiro and Stockman 51

10. K. Rao, PhD Thesis

11. H. Samet, Design and Analysis of Spatial Data Structures, Addison-Wesley, Reading,
MA, 1990.

12. J. Shi and J. Malik (1997), Normalized Cuts and Image Segmentation, IEEE Confer-

ence on Computer Vision and Pattern Recognition, 1997, pp. 731-737.

13. S. Sullivan, L. Sandford and J. Ponce (1994), Using Geometric Distance for 3D Object

Modeling and Recognition, IEEE Trans. on Pattern Analysis and Machine

Intelligence, Vol. 16, No. 12 (Dec 1994)1183-1196.

14. M.-H. Yang and N. Ahuja (1999), Recognizing Hand Gesture Using Motion Trajecto-

ries, Proceedings IEEE Conf. on Computer Vison and Pattern Recognition

1999, Ft. Collins, CO (23-25 June 99)466-472.

