
Computer Vision

CSE/ECE 576
Matching and Blending

Linda Shapiro
Professor of Computer Science & Engineering

Professor of Electrical & Computer Engineering

Review

• Descriptors

• Matching

• Computing Transformation

2

Simple Normalized Descriptor

3

interest point neighborhood around normalized neighborhood
interest point around interest point

201
45 56 200
46 201 200
85 101 105

156 145 1
155 0 1
116 100 96

• The simple descriptor just subtracts the center value from each of
the neighbors, including itself to normalize for lighting and exposure.

• We can store this as a 1D vector to be efficient:
156 145 1 155 0 1 116 100 96

Properties of our Descriptor

• Translation Invariant
• Not scale invariant
• Not rotation invariant
• Somewhat invariant to lighting changes

• Let’s look at the SIFT descriptor, because it is
heavily used, even without using the SIFT key
point detector.

• It already solves the scale problem by computing
at multiple scales and keeping track.

4

CSE 576: Computer Vision

Rotation invariance

Image from Matthew Brown

• Rotate patch according to its dominant gradient
orientation

• This puts the patches into a canonical orientation.

T. Tuytelaars, B. Leibe

Orientation Normalization

• Compute orientation histogram

• Select dominant orientation

• Normalize: rotate to fixed orientation

0 2p

[Lowe, SIFT, 1999]

Once we have found the key points and a dominant orientation for each,

we need to describe the (rotated and scaled) neighborhood about each.

128-dimensional vector

SIFT descriptor
Full version

• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)

• Compute an orientation histogram for each cell

• 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David Lowe 8

SIFT descriptor
Full version

• Divide the 16x16 window into a 4x4 grid of cells

• Compute an orientation histogram for each cell

• 16 cells * 8 orientations = 128 dimensional descriptor

8 8 . . . 8

9

Matching with Features

•Detect feature points in both images

10

Matching with Features

•Detect feature points in both images

•Find corresponding pairs

11

Find the best matches

• For each descriptor a in A, find its best match b in
B

• And store it in a vector of matches
• Note: this is abstract; see code for details.

12

i

j

i j

A B M

• Larger Goal: Combine two or more
overlapping images to make one larger image

Add example

Slide credit: Vaibhav Vaish
13

http://robots.stanford.edu/cs223b07/notes/CS223B-L11-Panoramas.ppt

Mean displacement =

Simple case: translations

Displacement of match i =

14

Solving for homographies

15

Why is this now a variable and not just 1?

• A homography is a projective object, in that it has no scale.
It is represented by the above matrix, up to scale.

• One way of fixing the scale is to set one of the coordinates to 1,
though that choice is arbitrary.

• But that’s what most people do and your assignment code does.

Solving for homographies

16

Why the division?

Solving for homographies

17

This is just for one pair of points.

Direct Linear Transforms (n points)

Defines a least squares problem:

• Since is only defined up to scale, solve for unit vector

• Solution: = eigenvector of with smallest eigenvalue

• Works with 4 or more points

2n × 9 9 2n

18

Direct Linear Transforms

• Why could we not solve for the homography
in exactly the same way we did for the affine
transform, ie.

19

Answer from Sameer Agarwal
(Dr. Rome in a Day)

• For an affine transform, we have equations of the form Axi + b
= yi, solvable by linear regression.

• For the homography, the equation is of the form

Hxĩ ̴ ỹi (homogeneous coordinates)

and the ̴ means it holds only up to scale. The affine solution
does not hold.

20

21

Matching features

What do we do about the “bad” matches?

RANSAC for estimating homography

• RANSAC loop:

1. Select four feature pairs (at random)

2. Compute homography H (exact)

3. Compute inliers where ||pi´, H pi|| < ε

• Keep largest set of inliers

• Re-compute least-squares H estimate using all
of the inliers

22

Panorama algorithm:
Find corners in both images

Calculate descriptors

Match descriptors

RANSAC to find homography

Stitch together images with homography

Stitching panoramas:
- We know homography is right choice under certain assumption:

- Assume we are taking multiple images of planar object

homography H

3D

In practice:

In practice:

In practice:

In practice:

In practice:

In practice:

What’s happening?

What’s happening?

What’s happening?

What’s happening?

What’s happening?

What’s happening?

What’s happening?

What’s happening?

What’s happening?

Very bad for big panoramas!

Very bad for big panoramas!

Very bad for big panoramas!

Fails :-(

How do we fix it? Cylinders!

How do we fix it? Cylinders!

How do we fix it? Cylinders!

How do we fix it? Cylinders!

How do we fix it? Cylinders!

How do we fix it? Cylinders!

How do we fix it? Cylinders!

(xc,yc) = center of projection and f = focal length of camera

Dependant on focal length!

f = 300 f = 500

f = 1000

f = 1400

f = 10,000

f = 10,000

Does it work?

Does it work?

Does it work?

Does it work?

Does it work?

Does it work? Yay!

Where are we?

• We are going to build a panorama from two (or
more) images.

• We need to learn about
– Finding interest points
– Describing small patches about such points
– Finding matches between pairs of such points on two

images, using the descriptors
– Selecting the best set of matches and saving them
– Constructing homographies (transformations) from

one image to the other and picking the best one
– Stitching the images together to make the panorama

63

RANSAC for Homography

Initial Matched Points

RANSAC for Homography

Final Matched Points

RANSAC for Homography

Image Blending

What’s wrong?

Feathering

0
1

0
1

+

=

ramp

Effect of window (ramp-width) size

0

1 left

right

0

1

Effect of window size

0

1

0

1

Good window size

0

1

“Optimal” window: smooth but not ghosted

• Doesn’t always work...

What can we do
instead?

Pyramid blending

Create a Laplacian pyramid, blend each level
• Burt, P. J. and Adelson, E. H., A Multiresolution Spline with Application to Image Mosaics, ACM Transactions on

Graphics, 42(4), October 1983, 217-236. http://persci.mit.edu/pub_pdfs/spline83.pdf

apple
orange

Encoding blend weights: I(x,y) = (αR, αG, αB, α)

color at p =

Implement this in two steps:

1. accumulate: add up the (α premultiplied) RGB values at each pixel

2. normalize: divide each pixel’s accumulated RGB by its α value

Alpha Blending

Optional: see Blinn (CGA, 1994) for details:

http://ieeexplore.ieee.org/iel1/38/7531/00310740.pdf?isNumber

=7531&prod=JNL&arnumber=310740&arSt=83&ared=87&arAut

hor=Blinn%2C+J.F.

I1

I2

I3

p

http://ieeexplore.ieee.org/iel1/38/7531/00310740.pdf?isNumber=7531&prod=JNL&arnumber=310740&arSt=83&ared=87&arAuthor=Blinn,+J.F

Gain Compensation: Getting rid of artifacts

• Simple gain adjustment
– Compute average RGB intensity of each image in

overlapping region

– Normalize intensities by ratio of averages

Blending Comparison

Recognizing Panoramas

Brown and Lowe 2003, 2007Some of following material from Brown and Lowe 2003 talk

Recognizing Panoramas

Input: N images

1. Extract SIFT points, descriptors from all
images

2. Find K-nearest neighbors for each point (K=4)

3. For each image

a) Select M candidate matching images by counting
matched keypoints (m=6)

b) Solve homography Hij for each matched image

Recognizing Panoramas

Input: N images

1. Extract SIFT points, descriptors from all
images

2. Find K-nearest neighbors for each point (K=4)

3. For each image
a) Select M candidate matching images by counting

matched keypoints (m=6)

b) Solve homography Hij for each matched image

c) Decide if match is valid (ni > 8 + 0.3 nf)

inliers
keypoints in

overlapping area

Recognizing Panoramas (cont.)

(now we have matched pairs of images)

4. Make a graph of matched pairs

Find connected components of the graph

Finding the panoramas

Finding the panoramas

Recognizing Panoramas (cont.)

(now we have matched pairs of images)

4. Find connected components

5. For each connected component

a) Solve for rotation and f

b) Project to a surface (plane, cylinder, or sphere)

c) Render with multiband blending

Finding the panoramas

Homework 3

CREATING PANORAMAS!

85

Useful structures (defined in image.h)

• Data structure for an point
typedef struct{

float x, y;

} point;

• Data structure for a descriptor
typedef struct{

point p; <-pixel location

int n; <-size of data

float *data;

} descriptor;

86

• Data structure for a match
typedef struct{

point p, q; <-matching

points

int ai, bi; <-matching
indices of descriptor arrays

float distance; <-dist.

between matching descriptors

} match;

Overall algorithm
image panorama_image(image a, image b, float sigma, float thresh, int
nms, float inlier_thresh, int iters, int cutoff)

{

// Calculate corners and descriptors
descriptor *ad = harris_corner_detector(a, sigma, thresh, nms, &an);

descriptor *bd = harris_corner_detector(b, sigma, thresh, nms, &bn);

// Find matches

match *m = match_descriptors(ad, an, bd, bn, &mn);

// Run RANSAC to find the homography

matrix H = RANSAC(m, mn, inlier_thresh, iters, cutoff);

// Stitch the images together with the homography

image combine = combine_images(a, b, H);

return combine;

} 87

• TODO #1.1: Compute structure matrix S

• TODO #1.2: Compute cornerness response map R
from structure matrix S

• TODO #1.3: Find local maxes in map R using non-
maximum suppression

• TODO #1.4: Compute descriptors for final corners
88

1. Harris corner detection

• Compute Ix and Iy using Sobel filters from HW2

• Create an empty image of 3 channels

– Assign channel 1 to Ix2

– Assign channel 2 to Iy2

– Assign channel 3 to Ix * Iy

• Compute weighted sum of neighbors

– smooth the image with a gaussian of given sigma

89

TODO #1.1: structure matrix

• Decompose a 2D gaussian to 2 1D convolutions.

90

TODO #1.1.1: make a fast smoother

Separable kernel
• Factors into product of two 1D Gaussians
• Discrete example:

• For each pixel of the given structure matrix S:

– Get Ix2, Iy2 and IxIy from the 3 channels

– Compute Det(S) = Ix2 * Iy2 – IxIy * IxIy

– Compute Tr(S) = Ix2 + Iy2

– Compute R = Det(S) – 0.06 * Tr(S) * Tr(S)

91

TODO #1.2: response map

• For each pixel ‘p’ of the given response map R

– get value(p)

– loop over all neighboring pixels ‘q’ in a 2w+1 window

• +/- w around the current pixel location

• if value(q) > value (p), value(p) = -999999 (very low)

– set ‘p’ to value(p)

92

TODO #1.3: NMS

• Given: Response map after NMS

• Initialize count; loop over each pixel

– if pixel value > threshold, increment count

• Initialize descriptor array of size ‘count’

• Loop over each pixel again

– if pixel value > threshold, create descriptor for that pixel

• use describe_index() defined in harris_image.c

– add this new descriptor to the array

93

TODO #1.4: corner descriptors

2. Matching descriptors

• TODO #2.1: Implement L1 distance

• TODO #2.2.1: Find best matches from
descriptor array “a” to descriptor array “b”

• TODO #2.2.2: Eliminate duplicate matches to
ensure one-to-one match between “a” and “b”

• TODO #2.3: Project points given a homography
and compute inliers from an array of matches

• TODO #2.4: Implement RANSAC algorithm

• TODO #2.5: Combine images

94

95

TODO #2.1: Distance Metrics

• For comparing patches we'll use L1
distance.

• For each descriptor ‘ar’ in array ‘a’:

– initialize min_distance and best_index

– for each descriptor ‘bs’ in array ‘b’:

– compute L1 distance between ar and bs

• sum of absolute differences

– if distance < min_distance:

• update min_distance and best_index

96

TODO #2.2.1: best matches

• Sort the matches based on distance (shortest is
first)

• Initialize an array of 0s called ‘seen’

• Loop over all matches:

– if b-index of current match is ≠1 in ‘seen’

• set the corresponding value in ‘seen’ to 1

• retain the match

– else, discard the match

97

TODO #2.2.2: remove duplicates

• Given point p, set matrix c3x1 = [x-coord, y-coord,1]

• Compute M3x1 = H3x3* c3x1 with given Homography

• Compute x,y coordinates of a point ’q’:
– x-coord: M[0] / M[2]

– y-coord: M[1] / M[2]

• Return point ‘q’

98

TODO #2.3.1: point projection

• Loop over each match from array of matches
(starting from end):

– project point ‘p’ of match using given ‘H’

– compute L2 distance between point ‘q’ of match and
the projected point

– if distance < given threshold:

• it is an inlier; bring match to the front of array (swap)

• update inlier count

99

TODO #2.3.2, 2.3.3: L2 distance and
model inliers

• Use the matrix operations discussed in class to solve
equations like M*a = b.

• Most of this is already implemented

– you just have to fill in the matrices M and b with our match
information.

100

TODO #2.3.4:Fitting the homography

• For each iteration:

– compute homography with 4 random matches
• call compute_homography() with argument 4

– if homography is empty matrix, continue
– else compute inliers with this homography

– if #inliers > max_inliers:
• compute new homography with all inliers
• update best_homography with this new homography
• update max_inliers with #inliers computed with this new homography

unless new homography is empty
• if updated max_inliers > given cutoff: return best_homography

• Return best_homography
101

TODO #2.4-2.5: implement RANSAC

TODO #2.6: combine images

• Project corners of image ‘b’ and create a big empty
image ‘c’ to place image ‘a’ and projected ‘b’. This part is
given in the code.

• For each pixel in image ‘a’, get pixel value and assign it to
‘c’ after proper offset

• For each pixel in image ’c’ within projected bounds:

– project to image ‘b’ using given homography

– get pixel value at projected location using bilinear interpolation

– assign the value to ’c’ after proper offset
102

103

3. Cylindrical Projection

• Implement cylindrical projection for an image

– See lecture slides for the formulas

– See Tryhw3, which will call the panorama code to do the
stitching.

– See code for the code stub you will fill in to cylinderize an
image.

104

105

Have Fun

