Computer Vision

CSE/ECE 576
Matching and Blending

Linda Shapiro

Professor of Computer Science & Engineering
Professor of Electrical & Computer Engineering

Review

* Descriptors
 Matching
 Computing Transformation

Simple Normalized Descriptor

interest point neighborhood around normalized neighborhood
interest point around interest point
501 45 56 200 156 145 1
46 201 200 155 0 1
85 101 105 116 100 96

The simple descriptor just subtracts the center value from each of
the neighbors, including itself to normalize for lighting and exposure.

 We can store this as a 1D vector to be efficient:
1561451 15501 116 10096

Properties of our Descriptor

Translation Invariant

Not scale invariant

Not rotation invariant

Somewhat invariant to lighting changes

L et’s look at the SIFT descriptor, because it is
neavily used, even without using the SIFT key
point detector.

t already solves the scale problem by computing
at multiple scales and keeping track.

Rotation invariance

Rotate patch according to its dominant gradient
orientation
« This puts the patches into a canonical orientation.

Image from Matthew Brown

Orientation Normalization

« Compute orientation histogram
 Select dominant orientation
« Normalize: rotate to fixed orientation

[Lowe, SIFT, 1999]

!

Once we have found the key points and a dominant orientation for each,

we need to describe the (rotated and scaled) neighborhood about each.

128-dimensional vector

~ SIFT descriptor
Full version

« Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
« Compute an orientation histogram for each cell
« 16 cells * 8 orientations = 128 dimensional descriptor

a0
K

k-

Image gradients Keypoint descriptor

Adapted from slide by David Lowe

| SIFT descriptor
Full version

* Divide the 16x16 window into a 4x4 grid of cells
« Compute an orientation histogram for each cell
« 16 cells * 8 orientations = 128 dimensional descriptor

Matching with Features

*Detect feature points in both images

10

ith Features

ing w

Match
*Detect feature po

Images

in both

INtS

IrS

ing pa

*Find correspond

11

Find the best matches

* For each descriptor ain A, find its best match b in
B

A B M

 And store it in a vector of matches
* Note: this is abstract; see code for details.

12

* Larger Goal: Combine two or more
overlapping images to make one larger image

Slide credit: Vaibhav 1\3/ai5h

http://robots.stanford.edu/cs223b07/notes/CS223B-L11-Panoramas.ppt

Simple case: translations

(x7,¥1)

Displacement of match i = (X; — X, y,; — yz)

Solving for homographies

[z [hoo ho1 hoz | [@i]
Y. hio hi1 hio Yi
1 _hzohzl@__l_

112

N T Y

Why is this now a variable and not just 1?

A homography is a projective object, in that it has no scale.
It is represented by the above matrix, up to scale.

* One way of fixing the scale is to set one of the coordinates to 1,
though that choice is arbitrary.

* But that’s what most people do and your assignment code does.

Solvi

/
Y

2 (hoo; -

N T Y

112

x
Y

| hoo ho1 hoz
hio h11 hio
| 1] | hoo ho1 hoz ||

ng for homog

raphies

Lq
Yq

1 -

hooxi + ho1y; + ho2

hoox; + ho1y; + hoo

hiox; + h11y; + hio

Why the division?

- ho1Yy;

- hoo)

hoo)

yi(hoow;

ho1Y;

hoox;
hiow;

hoox; + ho1y; + hoo

- ho1Y;

- hoo

h11Y;

Solving for homographies

- hoo

z;(hoow; + ho1y; + hoo) = hoow; + ho1¥i -
yi(hoom; + ho1y; + hoo) = hiox; + h119; A
e
ho1
hoo
z, yi 1 0 0 0 —a2la; —aly _x;] Zlo
11
0 0 0 z; vy 1 —ym; —vy; —v his
hoo
ho1
This is just for one pair of points. ho2 |

- hio

Direct Linear Transforms (n points)

hoo
_ _ | Po1 o
1 y1 1 0 0 O —zafzy —zjy; —af hoo 0
0 0 0 w1 y1 1 —viz1 —viy1 -4 h1o 0
: hll — :
Tn yn 1 0 0 O —2lxy —2Lyn —2) h1o 0
0 0 0 zn yn 1 —yp®n —¥Ynp¥n —¥n | | hoo 0
ho1
A
2n X 9 191 2n
Defines a least squares problem: minimize ||[Ah — 0||2

e Since h is only defined up to scale, solve for unit vector fl
e Solution: h = eigenvector of A’ A with smallest eigenvalue
e Works with 4 or more points

Direct Linear Transforms

 Why could we not solve for the homography
in exactly the same way we did for the affine
transform, ie.

t=(ATA) ATb

Answer from Sameer Agarwal
(Dr. Rome in a Day)

* For an affine transform, we have equations of the form Ax. + b
=vy,, solvable by linear regression.

* For the homography, the equation is of the form
HX. ~ V¥, (homogeneous coordinates)

and the ~ means it holds only up to scale. The affine solution
does not hold.

Colosseum: 2,097 images, 819,242 points Trevi Fountain: 1,935 images, 1,055,153 points

20

Matching features

=i

amimal S
J{M.x}]ﬁ

1‘1:‘
b
o
RE= Sy
Ll | R 7=

il |

Ilhj uu‘l

J=4
[T 1
I“J; v

'y W
’

N i

What do we do about the “bad” matches?

21

RANSAC for estimating homography

* RANSAC loop:

1. Select four feature pairs (at random)
<2. Compute homography H (exact)

3. Compute inliers where ||p;’, H pi|| < €

* Keep largest set of inliers

* Re-compute least-squares H estimate using all
of the inliers

Panorama algorithm:

Find corners in both images

Calculate descriptors

Match descriptors

RANSAC to find homography

Stitch together images with homography

Stitching panoramas:

- We know homography is right choice under certain assumption:

- Assume we are taking multiple images of planar object

Object Plane

Image 1 Image 2

homography H

In practice:

In practice:

In pra

What’s happening?

What's happening?l\

\ \~

What’s happening:

What’s happening?

T~

N

[]

What’s happening?

T~

What’s happening?

T~

What’s happening?

T~

N

What’s happening?

What’s happening?

T~

Very bad for big panoramas!

Very bad for big panoramas!

Very bad for big panoramas!

How do we fix it? Cylinders!

How do we fix.i

A 6\

Howm

\ /)

How do we fix.i

How do we fix it? Cylinders!

Calculate angle and height: v 2
0=(x-xc)/f *
h=(y-ye)/ft

Find unit cylindrical coords:

X’ = sin(0)

Y =h

Z' = cos(0)

Project to image plane:
x'=tX'/Z' + xc
y' =tY'/Z' + yc

(xc,yc) = center of projection and f = focal length of camera

Dependant on focal length!

L
:
-

f =10,000

e ;:_ -
&

f =10,000

e ;:_ -
&

Does it work?

[—

Does it work?

Does it work?

——

Does it work?

Does it work?

Does it work? Yay!

Where are we?

 We are going to build a panorama from two (or
more) images.

* We need to learn about
— Finding interest points
— Describing small patches about such points

— Finding matches between pairs of such points on two
images, using the descriptors

— Selecting the best set of matches and saving them

— Constructing homographies (transformations) from
one image to the other and picking the best one

— Stitching the images together to make the panorama

63

RANSAC for Homography

RANSAC for Homography

RANSAC for Homography

Image Blending

‘s wrong?

What

Feathering

Effect of window (ramp-width) size

Effect of window size

Good window size

What can we do

€ i instead?
Optimal™ window: smooth but not ghosted

Doesn’ t always work...

Pyramid blending

orange

(d)
Create a Laplacian pyramid, blend each level

. Burt, P. J. and Adelson, E. H., A Multiresolution Spline with Application to Image Mosaics, ACM Transactions on
Graphics, 42(4), October 1983, 217-236. http://persci.mit.edu/pub_pdfs/spline83.pdf

Alpha Blending

I3

I,

Optional: see Blinn (CGA, 1994) for details:
http://ieeexplore.ieee.org/iel1/38/7531/00310740.pdf?isNumber

=7531&prod=JNL&arnumber=310740&arSt=83&ared=87&arAu

hor=Blinn%2C+J.F.

Encoding blend weights: 1(x,y) = (aR, aG, aB, a)

(a1R1, a1G1, a1B1) 4 (asRo, asGo, asBo) + (a3R3, a3G3, azB3)

coloratp =

Implement this in two steps:

a1+ ax + a3z

1. accumulate: add up the (a premultiplied) RGB values at each pixel

2. normalize: divide each pixel’ s accumulated RGB by its a value

http://ieeexplore.ieee.org/iel1/38/7531/00310740.pdf?isNumber=7531&prod=JNL&arnumber=310740&arSt=83&ared=87&arAuthor=Blinn,+J.F

Gain Compensation: Getting rid of artifacts

* Simple gain adjustment

— Compute average RGB intensity of each image in
overlapping region

— Normalize intensities by ratio of averages

Blending Comparison

S S

(d) With gain compensation and multi-band blending

Recognizing Panoramas

Ehe I

M,
~

Some of following material from Brown and Lowe 2003 talk Brown and Lowe 2003, 2007

Recognizing Panoramas

Input: N images

1. Extract SIFT points, descriptors from all
images

2. Find K-nearest neighbors for each point (K=4)

3. For each image

a) Select M candidate matching images by counting
matched keypoints (m=6)

b) Solve homography H;; for each matched image

Recognizing Panoramas

Input: N images

1. Extract SIFT points, descriptors from all
images

2. Find K-nearest neighbors for each point (K=4)

3. For each image

a) Select M candidate matching images by counting
matched keypoints (m=6)

b) Solve homography H; for each matched image
c) Decide if match is vaIid/pni >8 + 0.3.n¢)

keypoints in

inliers .
overlapping area

Recognizing Panoramas (cont.)

(now we have matched pairs of images)
4. Make a graph of matched pairs
Find connected components of the graph

A

Finding the panoramas

Finding the panoramas

Recognizing Panoramas (cont.)

(now we have matched pairs of images)
4. Find connected components

5. For each connected component
a) Solve for rotation and f
b) Project to a surface (plane, cylinder, or sphere)
c) Render with multiband blending

Finding the panoramas

Homework 3

CREATING PANORAMAS!

85

Useful structures (defined in image.h)

* Data structure for an point
typedef struct{

float x, y;
} point;

* Data structure for a descriptor

typedef struct{
point p; <-pixel location
int n; <-size of data
float *data;

} descriptor;

* Data structure for a match
typedef struct{

point p, g; <-matching
points

int ai, bi; <-matching
indices of descriptor arrays

float distance; <-dist.
between matching descriptors
} match;

86

Overall algorithm

image panorama_image(image a, image b, float sigma, float thresh, int
nms, float inlier_thresh, int iters, int cutoff)

{

// Calculate corners and descriptors
descriptor *ad = harris_corner_detector(a, sigma, thresh, nms, &an);

descriptor *bd = harris_corner_detector(b, sigma, thresh, nms, &bn);

// Find matches
match *m = match_descriptors(ad, an, bd, bn, &mn);

// Run RANSAC to find the homography
matrix H = RANSAC(m, mn, inlier_thresh, iters, cutoff);

// Stitch the images together with the homography
image combine = combine images(a, b, H);

return combine;

}

1. Harris corner detection

TODO #1.1: Compute structure matrix S

TODO #1.2: Compute cornerness response map R
from structure matrix S

TODO #1.3: Find local maxes in map R using non-
maximum suppression

TODO #1.4: Compute descriptors for final corners

TODO #1.1: structure matrix

 Compute Ix and ly using Sobel filters from HW2

* Create an empty image of 3 channels
— Assign channel 1 to Ix?
— Assign channel 2 to ly?
— Assign channel 3to Ix * ly

* Compute weighted sum of neighbors

— smooth the image with a gaussian of given sigma

TODO #1.1.1: make a fast smoother

 Decompose a 2D gaussian to 2 1D convolutions.

Separable kernel
e Factors into product of two 1D Gaussians
* Discrete example:

Gaussian

2.2 2 2
'_‘|_ _u“—+v X B y
ho(u,v) = e 20° = ! exp 20 1 exp 2072
2702 ' vV

90

TODO #1.2: response map

* For each pixel of the given structure matrix S:

— Get Ix?, ly? and Ixly from the 3 channels
— Compute Det(S) = Ix? * ly?— Ixly * Ixly

— Compute Tr(S) = Ix% + Iy?

— Compute R = Det(S) — 0.06 * Tr(S) * Tr(S)

TODO #1.3: NMS

* For each pixel ‘p’ of the given response map R

— get value(p)

— loop over all neighboring pixels ‘q" in a 2w+1 window
* +/-w around the current pixel location
* if value(q) > value (p), value(p) =-999999 (very low)

— set ‘p’ to value(p)

TODO #1.4: corner descriptors

Given: Response map after NMS
Initialize count; loop over each pixel

— if pixel value > threshold, increment count

Initialize descriptor array of size ‘count’
Loop over each pixel again

— if pixel value > threshold, create descriptor for that pixel

» use describe_index() defined in harris_image.c

— add this new descriptor to the array

2. Matching descriptors

TODO #2.1: Implement L1 distance

TODO #2.2.1: Find best matches from
descriptor array “a” to descriptor array “b”

TODO #2.2.2: Eliminate duplicate matches to
ensure one-to-one match between “a” and “b”

TODO #2.3: Project points given a homography
and compute inliers from an array of matches

TODO #2.4: Implement RANSAC algorithm
TODO #2.5: Combine images

TODO #2.1: Distance Metrics

* For comparing patches we'll use L1
distance.

// Calculates L1 distance between to floating point arrays.
// float xa, *b: arrays to compare.
// int n: number of values in each array.
// returns: 11 distance between arrays (sum of absolute differences).
float 11_distance(float *a, float *b, int n)
{
// TODO: return the correct number.
return 0;

95

TODO #2.2.1: best matches

* For each descriptor ‘a.’ in array ‘a”:

— initialize min_distance and best_index

— for each descriptor ‘b.” in array ‘b’:
— compute L1 distance between a,and b,

 sum of absolute differences

— if distance < min_distance:

* update min_distance and best_index

TODO #2.2.2: remove duplicates

e Sort the matches based on distance (shortest is
first)

* |nitialize an array of Os called ‘seen’

* Loop over all matches:

— if b-index of current match is #1 in ‘seen’

» set the corresponding value in ‘seen’ to 1
* retain the match

— else, discard the match

TODO #2.3.1: point projection

Given point p, set matrix c,,, = [x-coord, y-coord,1]
Compute M,,, = H3, 5™ c3,, With given Homography

Compute x,y coordinates of a point 'q’:
— x-coord: M[0] / M[2]
— y-coord: M[1] / M[2]

Return point ‘g’

TODO #2.3.2, 2.3.3: L2 distance and
model inliers

* Loop over each match from array of matches
(starting from end):

— project point ‘p’ of match using given ‘H’

— compute L2 distance between point ‘q" of match and
the projected point

— if distance < given threshold:
 itis aninlier; bring match to the front of array (swap)
e update inlier count

TODO #2.3.4:Fitting the homography

* Use the matrix operations discussed in class to solve
equations like M*a = b.

* Most of this is already implemented

— you just have to fill in the matrices M and b with our match
information.

TODO #2.4-2.5: implement RANSAC

For each iteration:

— compute homography with 4 random matches
e call compute_homography() with argument 4

— if homography is empty matrix, continue
— else compute inliers with this homography

— if #inliers > max_inliers:
e compute new homography with all inliers
* update best_homography with this new homography

e update max_inliers with #inliers computed with this new homography
unless new homography is empty

* if updated max_inliers > given cutoff: return best_homography

Return best_homography

TODO #2.6: combine images

Project corners of image ‘b’ and create a big empty
image ‘c’ to place image ‘@’ and projected ‘b’. This part is
given in the code.

For each pixel in image ‘@’, get pixel value and assign it to
‘c’ after proper offset

For each pixel in image 'c’ within projected bounds:

— project to image ‘b’ using given homography

— get pixel value at projected location using bilinear interpolation
— assign the value to 'c’ after proper offset

3. Cylindrical Projection

* Implement cylindrical projection for an image
— See lecture slides for the formulas

— See Tryhw3, which will call the panorama code to do the
stitching.

— See code for the code stub you will fill in to cylinderize an
image.

Have Fun

