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We live in a moving world

* Perceiving, understanding and predicting motion is an
important part of our daily lives




Motion and perceptual organization

e Even “impoverished” motion data can evoke a
strong percept

G. Johansson, “Visual Perception of Biological Motion and a Model For Its Analysis",
Perception and Psychophysics 14, 201-211, 1973.



Motion and perceptual organization

e Even “impoverished” motion data can evoke a
strong percept

G. Johansson, “Visual Perception of Biological Motion and a Model For Its Analysis",
Perception and Psychophysics 14, 201-211, 1973.



iC picture?

Seeing motion from a stat

http://www.ritsumei.ac.jp/~akitaoka/index-e.html
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The cause of motion

Three factors in imaging process
— Light
— Object

— Camera

Varying either of them causes motion

Static camera, moving objects (surveillance)

Moving camera, static scene (3D capture)

Moving camera, moving scene (sports, movie)

Static camera, moving objects, moving light (time lapse)




Motion scenarios (priors)
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Moving camera, moving scene Static camera, moving scene, moving light



We still don’t touch these areas




How can we recover motion?



Recovering motion

* Feature-tracking

— Extract visual features (corners, textured areas) and “track” them over
multiple frames

* Optical flow

— Recover image motion at each pixel from spatio-temporal image
brightness variations (optical flow)

Two problems, one registration method

B. Lucas and T. Kanade. An iterative image registration techniqgue with an application to
stereo vision. In Proceedings of the International Joint Conference on Artificial Intelligence, pp.
674—-679, 1981.




Feature tracking

* Challenges
— Figure out which features can be tracked
— Efficiently track across frames

— Some points may change appearance over time
(e.g., due to rotation, moving into shadows, etc.)

— Drift: small errors can accumulate as appearance
model is updated

— Points may appear or disappear: need to be able
to add/delete tracked points



What is Optical Flow?



What is Optical Flow? Movement
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What is Optical Flow? Movement
Object




What is Optical Flow? Movement

Pan




What is Optical Flow? Movement

: Forward

B,




What is Optical Flow?  movement



http://www.youtube.com/watch?v=JlLkkom6tWw

Why do we want Optical Flow?



Why do we want Optical Flow?

Motlon Estlmatlon
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Why do we want Optical Flow?

Motlon Estlmatlon Object Tracking




Why do we want Optical Flow?

Motion Estlmatlon Object Tracking
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Estimating the position of a robot.



How do we find the
flow in an image?



Feature Matching



Previously: Features!

- Highly descriptive local regions
- Ways to describe those regions
- Useful for:

CTTT T
- Matching /::\::,?T = %K N
- Recognition : :T;:,.f - , »
- Detection \ :“:E:EE,:/ % >|e

Image gradients Keypoint descriptor




Feature Matching







Feature Matching




Feature Matching

Disadvantages:
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Feature Matching




Feature Matching

Disadvantages:
-Sparse!
-Feature alignment not exact

-Low accuracy



Feature Matching

Disadvantages: Advantages:
-Sparse!
-Feature alignment not exact

-Low accuracy



Feature Matching

Disadvantages: Advantages:
-Sparse! -Scale/rotation invariant
-Feature alignment not exact -*kinda* lighting invariant

-Low accuracy -Can handle large movements



Feature Matching

Disadvantages: Advantages:

-Sparse! -Scale/rotation invariant
-Feature alighnmept=atosaat Flebadak licb+ing jnyariant
-Low accuracy Overall: Doesn’t work e movements

very well for Optical Flow




What do we do
instead?



Feature tracking
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* Given two subsequent frames, estimate the point
translation

e Key assumptions of Lucas-Kanade Tracker

e Brightness constancy: projection of the same point looks the same in
every frame

e Small motion: points do not move very far
e Spatial coherence: points move like their neighbors



The brightness constancy constraint

(z,y)

O\displacement

1(X,y,1)

= (u,v)

(@)
(z +u,y 4+ v)

[(X,y,t+1)

* Brightness Constancy Equation:

(X, y,t)=1(X+U,y+V,t+1)

Take Taylor expansion of I(x+u, y+v, t+1) at (X,y,t) to linearize the right side:

Image denvatlve along x

Difference over frames

| (X+u, y+vt+1)~l(xyt)+l U+l v+:I§

L(x,y) = 1(x,y,t+1) = l(x,y,t)
Difference in intensity at the same pixel between one

image and the previous one.



The brightness constancy constraint

I(X+u,y+v,t+) = 1(Xy,t)+1 -u+l, -v+1,

@,Hl)—l(x,y,t FL Ul v,

So: [.-u+l, -v+I,~0

> VI-[uv] +1,=0



The brightness constancy constraint

Can we use this equation to recover image motion (u,v) at each
pixel?

VI-uv] +1,=0

* How many equations and unknowns per pixel?

e One equation (this is a scalar equation!), two unknowns (u,v)

The component of the motion perpendicular to the gradient
(i.e., parallel to the edge) cannot be measured



Solving the ambiguity...

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In Proceedings of th
International Joint Conference on Artificial Intelligence, pp. 674—679, 1981.

* How to get more equations for a pixel?
e Spatial coherence constraint
. Assume the pixel’s neighbors have the same (u,v)

— If we use a 5x5 window, that gives us 25 equations per pixel
0 = I;(p;) + VI(p;) - [u v]

- I:(p1) Iy(p1) | - Ii(p1) |
Ia:(Pz) fy(Pz) { U } _ ft(Pz)
i Ia:(I.)25) fy(I.)25) ] i It(1;25) |




Solving the ambiguity...

* Least squares problem:

- L(p1) Iy(p1) - Li(p1)
Le(p2)  Iy(p2) { 0 ] _ | I(p2) | A d=1b
: : v : 25x2 2x1 25x1
| Ie(p25) Iy(p2s) | | Ii(p2s)




Matching patches across images

* Overconstrained linear system

Ix(Pz) Iy(Pz) {U] _

_ Ix(f>25) Iy(I.)25) _

" L(p1) Iy(p1) ] - Li(p1) |

Least squares solution for d given by

S LIy, S Iy || v
Al A

i S ][0 =]

Alp

I;(p2) A d=bD
: 25x2 2x1 25x1
Li(p2s)
(ATA) d= Alh
> Iz 1y
> Iyl

— (ATA)-1 AT
The summations are over all pixels in the K x K window d=(A'A)* A'b




Conditions for solvability

Optimal (u, v) satisfies Lucas-Kanade equation

Sl SELI, | [w] _ [ S
// SLly, SELI, || o]~ | S

Al A Alp

When is this solvable? l.e., what are good points to track?
e ATA should be invertible
e ATA should not be too small due to noise
— eigenvalues A, and A , of ATA should not be too small
e ATA should be well-conditioned
— A 4/ &, should not be too large (1 , = larger eigenvalue)

N Does this remind you of anything?

Criteria for Harris corner detector



Corners

Aperture problem

Lines

Flat regions




o1

S viv?t
— large gradients, all the same
—large A, small A,




Low Texture Region
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S vivnt
— gradients have small magnitude
—small A,, small A,




High Texture Region

S vivi?t
— gradients are different, large magmtudes
— large A,, large A,




Errors in Lukas-Kanade

 What are the potential causes of errors in this procedure?
— Suppose A'A is easily invertible
— Suppose there is not much noise in the image

When our assumptions are violated
« Brightness constancy is not satisfied
* The motion is not small

« A point does not move like its neighbors
— window size is too large
— what is the ideal window size?

54



Revisiting the small motion

L)

|

)
CTA)

Is this motion small enough?
— Probably not—it’s much larger than one pixel (2" order terms dominate)
— How might we solve this problem?

55



Reduce the resolution!




Coarse-to-fine optical flow estimation

A\

Gaussian pyramid of image 1 (t) Gaussian pyramid of image 2 (t+1



. A Few Details
e Top Level

— Apply L-K to get a flow field representing the flow from
the first frame to the second frame.

— Apply this flow field to warp the first frame toward the
second frame.

— Rerun L-K on the new warped image to get a flow field
from it to the second frame.

— Repeat till convergence.

e Next Level

— Upsample the flow field to the next level as the first
guess of the flow at that level.

— Apply this flow field to warp the first frame toward the
second frame.

— Rerun L-K and warping till convergence as above.
o Etc.



Coarse-to-fine optical flow estimation

u=1.25 pixels

u=2.5 pixels

u=5 pixels

Gaussian pyramid of image 1 Gaussian pyramid of image 2



The Flower Garden Video

What should the
optical flow be?

60



Optical Flow Results

L.ucas-Kanade
without pyramids

Fails in areas of large
OO

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Optical Flow Results

[.ucas-Kanade with Pvramids
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* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Flow quality evaluation

N




Flow quality evaluation
T, ¥ .“; v\). &

17



Flow quality evaluation

« Middlebury flow page
— http://vision.middlebury.edu/flow/

Ground Truth

Color encoding
of flow vectors



http://vision.middlebury.edu/flow/

Flow quality evaluation

« Middlebury flow page
— http://vision.middlebury.edu/flow/

Army - PyramidLK flow
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Lucas-Kanade flow Ground Truth

Color encoding
of flow vectors



http://vision.middlebury.edu/flow/

Flow quality evaluation

« Middlebury flow page
— http://vision.middlebury.edu/flow/

Army - Layers++ flow

.

Best-in-class alg Ground Truth

Color encoding
of flow vectors



http://vision.middlebury.edu/flow/

Video stabilization




Video denoising




Video super resolution

Low-Res




Robust Visual Motion Analysis:
Piecewise-Smooth Optical Flow

Ming Ye
Electrical Engineering
University of Washington

71



Estimating Piecewise-Smooth Optical Flow
with Global Matching and Graduated Optimization

Problem Statement:

Assuming only brightness conservation and
piecewise-smooth motion, find the optical flow
to best describe the intensity change in three

frames.

72



Approach: Matching-Based Global
Optimization

« Step 1. Robust local gradient-based method for
high-quality initial flow estimate.
Uses least median of squares instead of regular least squares.

« Step 2. Global gradient-based method to improve the
flow-field coherence.
Minimizes a global energy function E = Z (Eg(V;) + Eg(V;)) where
Eg is the brightness difference and Eg is the smoothness at flow vector V,

« Step 3. Global matching that minimizes energy by a
greedy approach.
Visits each pixel and updates it to be consistent with neighbors, iteratively.

73



TT: Translating Tree

e ——————
150x150 (Barron 94)
e, (") e,(x) &) i@
BA | 260 0.128 0.0724
S3 | 0.248 0.0167 0.00984

=

e: error in pixels, cdf: culmulative distribution function for all pixels

74



DT: Diverging Tree

R Ihi
150x150 (Barron 94)

e, (") &, (pix) € (pix)
BA | 6.36 0.182 0.114
S3 | 260 0.0813 0.0507

1F

09r

|
0.2

|
0.4
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316x252 (Barron, cloud excluded) *4

YOS: Yosemite Fly-Through

G

'-'.
L= _

e, (") &q(x) (o)
BA | 271 0.185 0.118
S3 | 1.92 0.120 0.0776

031

0.2

BA
S3

0.1ﬁ
0

0

|
0.5

76



TAXI: Hamburg Taxi

ox190, (Barron 94 LMS
max speed 3.0 pix/frame

Ours Error map Smoothness error
77



Traffic

512x512

(Nagel)
max speed.:
6.0 pix/frame

Error map

Smoothness error




Flower Garden

FG




Representing Moving Images
with Layers

J.Y. Wang and E. H. Adelson
MIT Media Lab



Goal

* Represent moving images with sets of
overlapping layers

* Layers are ordered in depth and occlude each
other

* Velocity maps indicate how the layers are to
be warped over time




Simple Domain:
Gesture Recognition




More Complex:
What are the layers?




Motion Analysis Example

velocity

PSRN m—

(a) velocity estimates

VB D

POSITION  —

(b) velocity smoothing

velooity —=

POSITION  —

() regularization

VEIDCITY m—

......

PR L

position —s

(d) robust estimation

2 separate layers
shown as 2 affine
models (lines);

The gaps show
the occlusion.



Motion Estimation Steps

1. Conventional optical flow algorithm and
representation (uses multi-scale, coarse-to-
fine Lucas-Kanade approach).

2. From the optical flow representation,
determine a set of affine motions. Segment
into regions with an affine motion within
each region.



Results
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Figure 11: {a) The optic flow from multi-scale gradient method. (b)) Segmentation obtained by clustering optic flow into
affine motion regions. (c) Segmentation from consistency checking by image warping. Hepresenting moving images with

layers.

L
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Figure 12: The layers corresponding to the tree, the flower bed, and the house shown in figures {a-c), respectively. The

affine How field for each layer is superimposed.



Results

Figure 14: The sequence reconstructed without the tree layer shown in figures (a-c). respectively.



Results

(a)
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Figure 16: The layers corresponding to the ball, the train, and the background shown in figures (a-c), respectively.



Summary

* Major contributions from Lucas, Tomasi, Kanade
— Tracking feature points
— Optical flow
— Stereo
— Structure from motion

* Key ideas

— By assuming brightness constancy, truncated Taylor expansion
leads to simple and fast patch matching across frames

— Coarse-to-fine registration
— Global approach by former EE student Ming Ye
— Motion layers methodology by Wang and Adelson



Homework 6

Optical Flow
WILL NOT BE ASSIGNED
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