
Multi-Class Classification



Solution

• Traditional Method: 1-vs-other method
• Too slow. If we have n-classes, we need to 

train n models

• Performance is not great, because the 
sample size is different for positive and 
negative classes

• Multiple Neurons
• Use n output neuron to correspond n classes.

• Easy, fast, and robust

• Problem: how to model the probability? The 
values in the neural network can be negative 
or greater than 1.



Softmax: normalized exponential

Input: vector of reals

Output: probability distribution

softmax([1,2,7,3,2]):
Calculate ex: [2.72, 7.39, 1096.63, 20.09, 7.39]

Calculate sum(ex): 2.72+7.39+1096.63+20.09+7.39 = 1134.22

Normalize: ex/sum(ex) = [0.002, 0.007, 0.967, 0.017, 0.007]

Result is a vector of reals.



A Simple Example

Here, we will go over a simple 2-layer neural network (no bias).



Mini-batch for Machine Learning

• Let’s say we have S images of size 28x28 
• We use a matrix to represent data. 

• When s is very large RAM overload

• In HW4, we will use a batch size of 128

s

D = 784

s

D = 784
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Neural Network Easy Example
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Neural Network Easy Example
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Neural Network Easy Example
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Neural Network Easy Example
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Neural Network Easy Example
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Neural Network Easy Example
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Neural Network Easy Example
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What to do with this error? 



What to do with this error? 

Backpropagate it to update the weights!

How?



Back to our Neural Network Example
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Back to our Neural Network Example
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Backpropagation [Cont.]
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Backpropagation [Cont.]
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Now we backpropagate with a learning rate of 0.1
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Think: What will happen if we go forward again?
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Tricks for Training Neural 
Networks



Problem: Under and Overfitting

Underfitting: model not powerful enough, too much bias

Overfitting: model too powerful, fits to noise, doesn’t generalize 
well



Weight decay: neural network regularization

Subtract a little bit of 

weight every iteration



Momentum: speeding up SGD

If we keep moving in same direction we should move further every 
round

Before:
Δwt = -∂/∂wt L(wt)

Now:
Δwt = -∂/∂wt L(wt) + mΔwt-1

wt+1 = wt + α Δwt

Side effect: smooths out updates if gradient is in different directions



NN updates with weight decay and momentum

Δw’t = -∂/∂wt L(wt) - λwt + mΔw’t-1

wt+1 = wt + α Δw’t

Gradient of loss Weight 

decay

Momentum

Learning 

rate



Dropout

Randomly eliminate some nodes during training



Activations



Linear Activation

●



Logistic Activation

●



Do you see the problem with Sigmoidal activations?



Do you see the problem with Sigmoidal activations?

Vanishing gradients!



ReLU Activation

●



Visualization with ReLU

https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw

https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw


Why ReLU provides non-linearity?



Why ReLU provides non-linearity?

The function is not linear if it does not satisfy the 
superposition principles: 1) additivity, 2) homogeneity

1) F (x1 + x2) = F(x1) + F(x2)
2) F(ax) = aF(x)



Why ReLU provides non-linearity?

Taken from https://www.blog.dailydoseofds.com/p/a-visual-and-intuitive-guide-to-what#:~:text=The%20core%20point%20to%20understand,of%20a%20non%2Dlinear%20curve.



The Dying ReLU Problem



LeakyReLU Activation

● No information loss (compared to ReLU)
● Solves “dying ReLU” problem (i.e. all neurons output 0)
● Similar to ReLU, pays less attention to less important neurons
● Not always better than ReLU



Do you see any other issues with ReLU?



Do you see any other issues with ReLU?

● Exploding gradients: Exact opposite phenomena we 
had with Sigmoid (vanishing gradients)



Do you see any other issues with ReLU?

● Exploding gradients: Exact opposite phenomena we 
had with Sigmoid (vanishing gradients)
○ Do gradient clipping, or layer-wise normalization



Homework 4
Neural Network



MNIST: Handwriting recognition

50,000 images of handwriting

Input: 28 x 28 x 1 (grayscale)  784 pixel values

Numbers 0-9  10 classes

Train a linear softmax model

> 95% accuracy



Functions You need to Code

Functions You need to Code (classifier.c)
void activate_matrix(matrix m, ACTIVATION a)

void gradient_matrix(matrix m, ACTIVATION a, matrix d)

matrix forward_layer(layer *l, matrix in)

matrix backward_layer(layer *l, matrix delta)

void update_layer(layer *l, double rate, double momentum, double decay)

Run Experiments and Write a Report (hw4.pdf)
Play around with tryhw4.py file, and answer the questions.

Save your question to a PDF file and submit to Canvas for grading.



Important Data Structure (image.h)

typedef enum{LINEAR, LOGISTIC, RELU, LRELU, SOFTMAX} ACTIVATION;

typedef struct {

matrix in; // Saved input to a layer

matrix w; // Current weights for a layer

matrix dw; // Current weight updates

matrix v; // Past weight updates (for use with momentum)

matrix out; // Saved output from the layer

ACTIVATION activation; // Activation the layer uses

} layer;

typedef struct {

layer *layers;

int n;

} model;



Useful Matrix manipulation functions (matrix.c)

matrix matrix_mult_matrix(matrix a, matrix b);

matrix transpose_matrix(matrix m);

matrix axpy_matrix(double a, matrix x, matrix y); // a * x + y



forward_layer

Output

Input: model m, data X

forward_model

X = in * l->w

Output

Input: layer l, data in

forward_layer

activation_matrix
(X, l->activation)

Forward Pass in Homework



Backward Pass in Homework

backward_layer

Output

Input: model m, matrix d

backward_model

gradient_matrix

Input: layer l, matrix delta

backward_layer



Weight Update in Homework

update_layer

update_layer

Output

update_model



TODO void activate_matrix(matrix m, ACTIVATION a)

for(i = 0; i < m.rows; ++i){

double sum = 0;

for(j = 0; j < m.cols; ++j){

double x = m.data[i][j];

if(a == LOGISTIC){

// TODO  m.data[i][j] should equals 1 / (1 + exp(-x));

} else if (a == RELU){

// TODO  m.data[i][j] should equals x if x > 0; otherwise, it should equal 0

} else if (a == LRELU){

// TODO  m.data[i][j] should equals x if x > 0; otherwise, it should equal 0.1 * x.

} else if (a == SOFTMAX){

// TODO  m.data[i][j] should equals exp(x) here, and we will normalize it later.

}

sum += m.data[i][j];

}

if (a == SOFTMAX) {

// TODO: have to normalize by sum if we are using SOFTMAX

// for all the possible j, we should normalize it as m.data[i][j] /= sum;

}

}

Apply activation “a” to the matrix “m”



TODO void gradient_matrix(matrix m, ACTIVATION a, matrix d)

int i, j;

for(i = 0; i < m.rows; ++i){

for(j = 0; j < m.cols; ++j){

double x = m.data[i][j];

// TODO: multiply the correct element of d by the gradient

// if a is SOFTMAX or a is LINEAR, we should do nothing (multiply by 1)

// if a is LOGISTIC,  d.data[i][j] should times x * (1.0 - x);

// if a is RELU and x <= 0, d.data[i][j] should be zero

// if a is LRELU and x <= 0, d.data[i][j] should multiple 0.1

}

}



TODO matrix forward_layer(layer *l, matrix in)

l->in = in;  // Save the input for backpropagation

// TODO: multiply input by weights and apply activation function.

// Calculate out = in * l->w (note: matrix multiplication here)

// Then, apply activate_matrix function to out with l->activation

free_matrix(l->out);// free the old output

l->out = out;       // Save the current output for gradient calculation

return out;

Given the input data “in” and layer “l”, calculate the output data.



TODO matrix backward_layer(layer *l, matrix delta)

// delta is Δout

// TODO: modify it in place to be “g'(out) * delta” out with // gradient_matrix function.

// You can use gradient_matrix function with “l->out” and “l->activation” to “delta”

// TODO: then calculate dL/dw and save it in l->dw

free_matrix(l->dw);

// Calculate xt as the transpose matrix of “l->in”

// Calculate dw as xt times delta (matrix multiplication)

// free matrix xt to avoid memory leak

l->dw = dw;

// TODO: finally, calculate dL/dx and return it. (Similar to 1.4.2. Care memory leak)

// Calculate dx = delta * (l->w)^T,   where * is matrix multiplication and ^T is matrix transpose

return dx;



TODO void update_layer(layer *l, double rate, double

momentum, double decay)

// Calculate Δw_t = dL/dw_t - λw_t + mΔw_{t-1}

// save it to l->v

// Note that You can use axpy_matrix to perform the matrix summation/subtraction

// Update l->w

// l->w = rate * l->v + l->w

Note the multiplication and summation in this slides all mean matrix multiplication or matrix summation.

Given a layer “l”,  learning rate, momentum, and decay rate,
Update the weight (i.e. l->w)



Functions You Need to Know before 
ExperimentsFor simplicity, we already filled the following functions for you. You should 
read and understand these functions (classifier.c) before running 
experiments.

layer make_layer(int input, int output, ACTIVATION activation)

matrix forward_model(model m, matrix X)

void backward_model(model m, matrix dL)

void update_model(model m, double rate, double momentum, double decay)

double accuracy_model(model m, data d)

double cross_entropy_loss(matrix y, matrix p)

void train_model(model m, data d, int batch, int iters, double rate, double momentum, double decay)



Get the Data

1. Download, Unzip, and Prepare the MNIST Dataset

wget https://pjreddie.com/media/files/mnist_train.tar.gz

wget https://pjreddie.com/media/files/mnist_test.tar.gz

tar xzf mnist_train.tar.gz

tar xzf mnist_test.tar.gz

find train -name \*.png > mnist.train

find test -name \*.png > mnist.test

2. Download, Unzip, and Prepare the CIFAR-10 Dataset

wget http://pjreddie.com/media/files/cifar.tgz

tar xzf cifar.tgz

find cifar/train -name \*.png > cifar.train

find cifar/test -name \*.png > cifar.test



Experiments (Write Your Answers to hw4.pdf)

1. Coding and Data prepare
2. MNIST Experiments

1. Linear Softmax Model (1-layer)
1. Run the basic model
2. Tune the learning rate
3. Tune the decay

2. Neural Network (2-layer NNs and 3-layer NNs)
1. Find the best activation
2. Tune the learning rate
3. Tune the decay
4. Tune the decay for 3-layer Neural Network

3. Experiments for CIFAR-10
1. Neural Network (3-layer NNs)

1. Tune the learning rate and decay


