
Multi-Class Classification

Solution

• Traditional Method: 1-vs-other method
• Too slow. If we have n-classes, we need to

train n models

• Performance is not great, because the
sample size is different for positive and
negative classes

• Multiple Neurons
• Use n output neuron to correspond n classes.

• Easy, fast, and robust

• Problem: how to model the probability? The
values in the neural network can be negative
or greater than 1.

Softmax: normalized exponential

Input: vector of reals

Output: probability distribution

softmax([1,2,7,3,2]):
Calculate ex: [2.72, 7.39, 1096.63, 20.09, 7.39]

Calculate sum(ex): 2.72+7.39+1096.63+20.09+7.39 = 1134.22

Normalize: ex/sum(ex) = [0.002, 0.007, 0.967, 0.017, 0.007]

Result is a vector of reals.

A Simple Example

Here, we will go over a simple 2-layer neural network (no bias).

Mini-batch for Machine Learning

• Let’s say we have S images of size 28x28
• We use a matrix to represent data.

• When s is very large RAM overload

• In HW4, we will use a batch size of 128

s

D = 784

s

D = 784

Neural Network Easy Example

3

2

4

Input

3 2 4

. . .

. . .

First pixel

Second pixel

Third pixel

Bsz = 3

First Batch

Neural Network Easy Example

3

2

4

Output Layer
with Softmax

First pixel

Second pixel

Third pixel

Input

A

B

C

D

Neural Network Easy Example

3

2

4

Input

1-st Layer (ReLU)

1

0.1
-2.3

0.5
1

-0.5

3 2 4

. . .

. . .

1 0.5

0.1 1

-2.3 -0.5

First pixel

Second pixel

Third pixel

A

B

A B

Weights for level 1

Neural Network Easy Example

3

2

4

1-st Layer (ReLU)
Output Layer
with Softmax

1

0.1
-2.3

0.5
1

-0.5

0.7

-2.1

-0.2

0.7 -2.1

0.1 -0.2

0.1
First pixel

Second pixel

Third pixel

1 0.5

0.1 1

-2.3 -0.5

Input

3 2 4

. . .

. . .

A

B

C

D

3

2

4

1

0.1
-2.3

First pixel

Second pixel

Third pixel

A

RELU

1st Layer with ReLU

Neural Network Easy Example

3

2

4

1

0.1
-2.3

0.5
1

-0.5

First pixel

Second pixel

Third pixel

A

B

0 1.5

. .

. .

1-st Layer (ReLU)

1 0.5

0.1 1

-2.3 -0.5

Input

3 2 4

. . .

. . .

O1 is outputs from layer 1

Neural Network Easy Example

3

2

4

1

0.1
-2.3

0.5
1

-0.5

0.7

-2.1

-0.2

0.1

A

B

C

D

0

1.5

0.15

-0.3

1-st Layer (ReLU)
Output Layer
with Softmax

Input

Softmax function applied to output

Neural Network Easy Example

3

2

4

1

0.1
-2.3

0.5
1

-0.5

0.7

-2.1

-0.2

0.1

A

B

C

D

0

1.5

0.15

-0.3

1-st Layer (ReLU)
Output Layer
with Softmax

Input

0.61 0.39

. .

. .

Output O2 at layer 2

Neural Network Easy Example

3

2

4

1-st Layer (ReLU)
Output Layer
with Softmax

1

0.1
-2.3

0.5
1

-0.5

0.7

-2.1

-0.2

0.7 -2.1

0.1 -0.2

0.1
First pixel

Second pixel

Third pixel

1 0.5

0.1 1

-2.3 -0.5

Input

3 2 4

. . .

. . .

A

B

C

D

0 1.5

. .

. .

0.61 0.39

. .

. .

0

1.5

Key:

wi is weights at layer i

oi is outputs at layer i

Neural Network Easy Example

3

2

4

1-st Layer (ReLU)
Output Layer
with Softmax

1

0.1
-2.3

0.5
1

-0.5

0.7

-2.1

-0.2

0.7 -2.1

0.1 -0.2

0.1
First pixel

Second pixel

Third pixel

1 0.5

0.1 1

-2.3 -0.5

Input

3 2 4

. . .

. . .

A

B

C

D

0 1.5

. .

. .

0.61 0.39

. .

. .

1

0

Ground Truth

0

1.5

Neural Network Easy Example

C

D

1

0

Ground Truth

0.61 0.39

. .

. .

This is the Error or Loss

What to do with this error?

What to do with this error?

Backpropagate it to update the weights!

How?

Back to our Neural Network Example

C

D

1

0

Ground Truth

0.61 0.39

. .

. .

Back to our Neural Network Example

C

D

1

0

Ground Truth

0.39

0.61 0.39

. .

. .

-0.39

Assume g’(.) = 1

We need to compute this for t=1 and t-2

Neural Network Easy Example

C

D

1

0

Ground Truth

0.39

0.61 0.39

. .

. .

-0.39

Assume g’(.) = 1

0.39 -0.39

. .

. .

0 0

0.585 -0.585

1.092 0.117

. .

. .

Backpropagation [Cont.]

3

2

4

0

1.5

1

0.1
-2.3

0.5
1

-0.5

0.7

-2.1

-0.2

1.092

0.117

.61

.39

0.15

-0.3

0.39

-0.39

0.1

0.39 -0.39

. .

. .

0 0

0.585 -0.585

1-st Layer (ReLU)

Output Layer
with Softmax

0.7 -2.1

0.1 -0.2

1 0.5

0.1 1

-2.3 -0.5

Input

3 2 4

. . .

. . .

0 1.5

. .

. .

0.61 0.39

. .

. .

1.092 0.117

. .

. .

Backpropagation [Cont.]

3

2

4

0

1.5

1

0.1
-2.3

0.5
1

-0.5

0.7

-2.1

-0.2

1.092

0.117

0 0.351

0 0.234

0 0.468

0 0.117

. .

. .

.61

.39

0.15

-0.3

0.39

-0.39

0.1

0.39 -0.39

. .

. .

0 0

0.585 -0.585

1.092 0.117

. .

. .

1-st Layer (ReLU)

Output Layer
with Softmax

0.7 -2.1

0.1 -0.2

1 0.5

0.1 1

-2.3 -0.5

Input

3 2 4

. . .

. . .

0 1.5

. .

. .

0.61 0.39

. .

. .

Now we backpropagate with a learning rate of 0.1

3

2

4

Input Layer
1-st Layer (ReLU)

Output Layer
with Softmax

1

0.1
-2.3

.5351

1.0234

-0.4532

0.7

0.1585

-2.1

-0.2585

3 2 4

. . .

. . .

0.7 -2.1

0.1585 -0.2585

1 0.5351

0.1 1.0234

-2.3 -

0.4532

Think: What will happen if we go forward again?

3

2

4

0

1.84

.68

.32

Input Layer
1-st Layer (ReLU)

Output Layer
with Softmax

1

0.1
-2.3

.5351

1.0234

-0.4532

0.7

0.1585

-2.1

-0.2585

3 2 4

. . .

. . .

0.7 -2.1

0.1585 -0.2585

1 0.5351

0.1 1.0234

-2.3 -

0.4532

0.292

-0.475

Previous
Output

.61

.39

0.15

-0.3

1

0

The final output is closer
to the actual label

Label

Tricks for Training Neural
Networks

Problem: Under and Overfitting

Underfitting: model not powerful enough, too much bias

Overfitting: model too powerful, fits to noise, doesn’t generalize
well

Weight decay: neural network regularization

Subtract a little bit of

weight every iteration

Momentum: speeding up SGD

If we keep moving in same direction we should move further every
round

Before:
Δwt = -∂/∂wt L(wt)

Now:
Δwt = -∂/∂wt L(wt) + mΔwt-1

wt+1 = wt + α Δwt

Side effect: smooths out updates if gradient is in different directions

NN updates with weight decay and momentum

Δw’t = -∂/∂wt L(wt) - λwt + mΔw’t-1

wt+1 = wt + α Δw’t

Gradient of loss Weight

decay

Momentum

Learning

rate

Dropout

Randomly eliminate some nodes during training

Activations

Linear Activation

●

Logistic Activation

●

Do you see the problem with Sigmoidal activations?

Do you see the problem with Sigmoidal activations?

Vanishing gradients!

ReLU Activation

●

Visualization with ReLU

https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw

https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw

Why ReLU provides non-linearity?

Why ReLU provides non-linearity?

The function is not linear if it does not satisfy the
superposition principles: 1) additivity, 2) homogeneity

1) F (x1 + x2) = F(x1) + F(x2)
2) F(ax) = aF(x)

Why ReLU provides non-linearity?

Taken from https://www.blog.dailydoseofds.com/p/a-visual-and-intuitive-guide-to-what#:~:text=The%20core%20point%20to%20understand,of%20a%20non%2Dlinear%20curve.

The Dying ReLU Problem

LeakyReLU Activation

● No information loss (compared to ReLU)
● Solves “dying ReLU” problem (i.e. all neurons output 0)
● Similar to ReLU, pays less attention to less important neurons
● Not always better than ReLU

Do you see any other issues with ReLU?

Do you see any other issues with ReLU?

● Exploding gradients: Exact opposite phenomena we
had with Sigmoid (vanishing gradients)

Do you see any other issues with ReLU?

● Exploding gradients: Exact opposite phenomena we
had with Sigmoid (vanishing gradients)
○ Do gradient clipping, or layer-wise normalization

Homework 4
Neural Network

MNIST: Handwriting recognition

50,000 images of handwriting

Input: 28 x 28 x 1 (grayscale) 784 pixel values

Numbers 0-9 10 classes

Train a linear softmax model

> 95% accuracy

Functions You need to Code

Functions You need to Code (classifier.c)
void activate_matrix(matrix m, ACTIVATION a)

void gradient_matrix(matrix m, ACTIVATION a, matrix d)

matrix forward_layer(layer *l, matrix in)

matrix backward_layer(layer *l, matrix delta)

void update_layer(layer *l, double rate, double momentum, double decay)

Run Experiments and Write a Report (hw4.pdf)
Play around with tryhw4.py file, and answer the questions.

Save your question to a PDF file and submit to Canvas for grading.

Important Data Structure (image.h)

typedef enum{LINEAR, LOGISTIC, RELU, LRELU, SOFTMAX} ACTIVATION;

typedef struct {

matrix in; // Saved input to a layer

matrix w; // Current weights for a layer

matrix dw; // Current weight updates

matrix v; // Past weight updates (for use with momentum)

matrix out; // Saved output from the layer

ACTIVATION activation; // Activation the layer uses

} layer;

typedef struct {

layer *layers;

int n;

} model;

Useful Matrix manipulation functions (matrix.c)

matrix matrix_mult_matrix(matrix a, matrix b);

matrix transpose_matrix(matrix m);

matrix axpy_matrix(double a, matrix x, matrix y); // a * x + y

forward_layer

Output

Input: model m, data X

forward_model

X = in * l->w

Output

Input: layer l, data in

forward_layer

activation_matrix
(X, l->activation)

Forward Pass in Homework

Backward Pass in Homework

backward_layer

Output

Input: model m, matrix d

backward_model

gradient_matrix

Input: layer l, matrix delta

backward_layer

Weight Update in Homework

update_layer

update_layer

Output

update_model

TODO void activate_matrix(matrix m, ACTIVATION a)

for(i = 0; i < m.rows; ++i){

double sum = 0;

for(j = 0; j < m.cols; ++j){

double x = m.data[i][j];

if(a == LOGISTIC){

// TODO m.data[i][j] should equals 1 / (1 + exp(-x));

} else if (a == RELU){

// TODO m.data[i][j] should equals x if x > 0; otherwise, it should equal 0

} else if (a == LRELU){

// TODO m.data[i][j] should equals x if x > 0; otherwise, it should equal 0.1 * x.

} else if (a == SOFTMAX){

// TODO m.data[i][j] should equals exp(x) here, and we will normalize it later.

}

sum += m.data[i][j];

}

if (a == SOFTMAX) {

// TODO: have to normalize by sum if we are using SOFTMAX

// for all the possible j, we should normalize it as m.data[i][j] /= sum;

}

}

Apply activation “a” to the matrix “m”

TODO void gradient_matrix(matrix m, ACTIVATION a, matrix d)

int i, j;

for(i = 0; i < m.rows; ++i){

for(j = 0; j < m.cols; ++j){

double x = m.data[i][j];

// TODO: multiply the correct element of d by the gradient

// if a is SOFTMAX or a is LINEAR, we should do nothing (multiply by 1)

// if a is LOGISTIC, d.data[i][j] should times x * (1.0 - x);

// if a is RELU and x <= 0, d.data[i][j] should be zero

// if a is LRELU and x <= 0, d.data[i][j] should multiple 0.1

}

}

TODO matrix forward_layer(layer *l, matrix in)

l->in = in; // Save the input for backpropagation

// TODO: multiply input by weights and apply activation function.

// Calculate out = in * l->w (note: matrix multiplication here)

// Then, apply activate_matrix function to out with l->activation

free_matrix(l->out);// free the old output

l->out = out; // Save the current output for gradient calculation

return out;

Given the input data “in” and layer “l”, calculate the output data.

TODO matrix backward_layer(layer *l, matrix delta)

// delta is Δout

// TODO: modify it in place to be “g'(out) * delta” out with // gradient_matrix function.

// You can use gradient_matrix function with “l->out” and “l->activation” to “delta”

// TODO: then calculate dL/dw and save it in l->dw

free_matrix(l->dw);

// Calculate xt as the transpose matrix of “l->in”

// Calculate dw as xt times delta (matrix multiplication)

// free matrix xt to avoid memory leak

l->dw = dw;

// TODO: finally, calculate dL/dx and return it. (Similar to 1.4.2. Care memory leak)

// Calculate dx = delta * (l->w)^T, where * is matrix multiplication and ^T is matrix transpose

return dx;

TODO void update_layer(layer *l, double rate, double

momentum, double decay)

// Calculate Δw_t = dL/dw_t - λw_t + mΔw_{t-1}

// save it to l->v

// Note that You can use axpy_matrix to perform the matrix summation/subtraction

// Update l->w

// l->w = rate * l->v + l->w

Note the multiplication and summation in this slides all mean matrix multiplication or matrix summation.

Given a layer “l”, learning rate, momentum, and decay rate,
Update the weight (i.e. l->w)

Functions You Need to Know before
ExperimentsFor simplicity, we already filled the following functions for you. You should
read and understand these functions (classifier.c) before running
experiments.

layer make_layer(int input, int output, ACTIVATION activation)

matrix forward_model(model m, matrix X)

void backward_model(model m, matrix dL)

void update_model(model m, double rate, double momentum, double decay)

double accuracy_model(model m, data d)

double cross_entropy_loss(matrix y, matrix p)

void train_model(model m, data d, int batch, int iters, double rate, double momentum, double decay)

Get the Data

1. Download, Unzip, and Prepare the MNIST Dataset

wget https://pjreddie.com/media/files/mnist_train.tar.gz

wget https://pjreddie.com/media/files/mnist_test.tar.gz

tar xzf mnist_train.tar.gz

tar xzf mnist_test.tar.gz

find train -name *.png > mnist.train

find test -name *.png > mnist.test

2. Download, Unzip, and Prepare the CIFAR-10 Dataset

wget http://pjreddie.com/media/files/cifar.tgz

tar xzf cifar.tgz

find cifar/train -name *.png > cifar.train

find cifar/test -name *.png > cifar.test

Experiments (Write Your Answers to hw4.pdf)

1. Coding and Data prepare
2. MNIST Experiments

1. Linear Softmax Model (1-layer)
1. Run the basic model
2. Tune the learning rate
3. Tune the decay

2. Neural Network (2-layer NNs and 3-layer NNs)
1. Find the best activation
2. Tune the learning rate
3. Tune the decay
4. Tune the decay for 3-layer Neural Network

3. Experiments for CIFAR-10
1. Neural Network (3-layer NNs)

1. Tune the learning rate and decay

