Multi-Class Classification



Solution

* Traditional Method: 1-vs-other method

* Too slow. If we have n-classes, we need to
train n models

* Performance is not great, because the
sample size is different for positive and
negative classes

* Multiple Neurons

* Use n output neuron to correspond n classes.

e Easy, fast, and robust

* Problem: how to model the probability? The
values in the neural network can be negative
or greater than 1.
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Softmax: normalized exponential

Input: vector of reals Zk—l e~k
Output: probability distribution

softmax([1,2,7,3,2]):
Calculate ex: [2.72, 7.39, 1096.63, 20.09, 7.39]

Calculate sum(eX): 2.72+7.39+1096.63+20.09+7.39 = 1134.22
Normalize: e*/sum(e*) = [0.002, 0.007, 0.967, 0.017, 0.007]

Result is a vector of reals. e e e e




A Simple Example

Here, we will go over a simple 2-layer neural network (no bias).



Mini-batch for Machine Learning

* Let’s say we have S images of size 28x28
* We use a matrix to represent data.

_—

D=784 D=784

* When s is very large RAM overload
* |In HW4, we will use a batch size of 128



Neural Network Easy Example
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Neural Network Easy Example

A
First pixel %
Second pixel 0//
D
Third pixel W

Input Output Layer

with Softmax



Neural Network Easy Example

A
First pixel 1-st Layer (ReLU)
2.3
1 0.5
Second pixel W1 e
- -2.3 [-0.5
A B
Third pixel
B Weights for level 1
Input
3 2 4




Neural Network Easy Example

A

First pixel
Second pixel
Third pixel
Input
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1st Layer with RelLU

A
First pixel
2.3
Output, =3 *1+2 01+ 4 *x—-2.3 =—6.0
Second pixel Output, = 0 (after RELU)
f(x) &
Third pixel .|

3 4




Neural Network Easy Example

First pixel
Second pixel
Third pixel
Input
3 2
Xin

2.3

A A=0
B B=3%05+2x*1+4x—-0.5=1.5
1-st Layer (RelLU) 0 1.5

1 0.5
01 |1
-2.3|-0.5

O, is outputs from layer 1




Neural Network Easy Example

1 A 0.7 et — e®s 116
. . PUtc = G015 1 603 ~ 116 + 0.74

/ 0.3 Softmax function applied to output
> vD e 0.74
outputp = ~
° = 0.39
Input

Output Layer

1-st Layer (ReLU) with Softmax



Neural Network Easy Example

A
1 0.7
0.1 0
2.3 0.1 0.15 Output O, at layer 2

/ -0.3 0.61 |0.39
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Input Output Layer

1-st Layer (ReLU) with Softmax



Neural Network Easy Example

A 0.7
First pixel 0
2'3 0-1
Second pixel
1.5 D
Third pixel W
B
Input
Output Layer
3 2 4 1-st Layer (ReLU) 0 1.5 withpSoftrT»\/ax
_ _ _ 1 0.5
Xin "1 101 |1 01 07 |21
2
-2.3 | -0.5 0.1 [-0.2

Key:
w; is weights at layer i
0; is outputs at layer i

0.61 0.39




Neural Network Easy Example

First pixel

Second pixel

Third pixel

Input

3 2 4

2.3

1-st Layer (ReLU)

1
0.1
-2.3

0.5
1
-0.5

A

0

1.5

1.5

0.7

0.1

D
o

Output Layer
with Softmax

0.7 |-2.1
0.1 |-0.2

e
- O

Ground Truth

0.61

0.39




Neural Network Easy Example

This is the Error or Loss

| A =1-0.61=0.39

A =0-0.39=-0.39

Ground Truth

® -0

0.61

0.39




What to do with this error?



What to do with this error?

Backpropagate it to update the weights!

How?



Back to our Neural Network Example

‘A=1—0.61=0.391 @ A
\ A

/ 02
A=0-0.39=-0.39W @ A

0.61 |0.39




Back to our Neural Network Example

0.39
O0E
t aw, 1 9' (02 2
Wi, 1= We + alw,
AOZ
Assume g’'(.) =1
“o” represents

elementwise A

multiplication for matrix *
-0.39

We need to compute this for t=1 and t-2 0.61 |0.39




Neural Network Easy Example

! T 1 , T 0.39
g'(02) ° Ao, Aw; = 0, g'(0z) ° Ao, Ao, = g'(03) ° Ao,w;
“o” represents
.el.emfentmse . .0.39
multiplication for matrix
O0E
Aw, = —=—= o] g'(0z) ° Ao
t

Wi, 1= We + alw,

Assume g’(.) =1




g'(03) o Ao,

0.39 |-0.39

Backpropagation [Cont.]

0.15

0 0.7
] Aw, = 01 g'(03) ° Ao,
0 o)
0.585 -0.585
Ao, = g'(0z) ° Aoyw,
1.092 0.117
A
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Input : Ogtput Layer
2 4 1-st Layer (ReLU) with Softmax
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g'(01) o Aoq g'(03) o Ao,

0 0-117 0.39 |-0.39

Backpropagation [Cont.]
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Now we backpropagate with a learning rate of 0.1

Input Layer

2

4

2.3

1-st Layer (RelLU)

1
0.1
-2.3

0.5351
1.0234

0.4532

0.7

0.158

Wy

I'I'k"rw

Output Layer
with Softmax

Ben

0.7
0.1585

2.1
-0.2585

= Wy + alAw,

= w, + alw,



Think: What will happen if we go forward again?

0.292

The final output is closer
to the actual label

1.84
Input Layer
3 p2 y4 1-st Layer (RelLU) \?V:i;plsjéflj[?::i
1 0.5351
Xin - wi |01 |1.0234 wy | 24
e ' > 10.1585 |-0.2585
23 |-
0.4532

0.15

Previous
Output




Tricks for Training Neural
Networks



Problem: Under and Overfitting

Underfitting: model not powerful enough, too much bias

Overfitting: model too powerful, fits to noise, doesn’t generalize
well




Weight decay: neural network regularization

] We use Aw, to represent the weight
We want the weights to be close to 0. gradient for timepoint t (the current step).

Let L be the “loss” function; (e.g. L = |y - g(in)|,L = (y - g(in))2 , etc.)

A is a regularization parameter (for decay)

Higher: more penalty for large weights, less powerful model
Lower: less penalty, more overfitting

Before: Subtract a little bit of
Aw, =-0/0w, L(w,) weight every iteration

Wi = W+ O Aw,

Now:
W, =W,-a[d/ow, L(w,) +Aw,] = w,-a[-Aw, +Aw,]

=w,-ao0/ow,L(w,)-adAw, = w,+aAw,-Q Aw,



Momentum: speeding up SGD

If we keep moving in same direction we should move further every
round

Still not guarantee reaching

Momentum global minima, but give some

Before:
AWt - -a/aWt L(Wt) COASt Movement =

Negative of dL/dw + Momentum

=P Negative of L / dw
===« p Momentum

Now:
Aw, = -0/0w, L(w,) + mAw,_,

—p Real Movement

Wt+1=Wt+GAWt 5 £

: ...-. ’
aL/dw =0 \.

Aw;_4 representthe gradient
calculatedin the previous step.

Side effect: smooths out updates if gradient is in different directions




NN updates with weight decay and momentum

Aw’, = -0/dw, L(w,) - Aw; +m

Gradient of loss Weight Momentum
decay
— 4
W, =W, + G\Aw t
Learning

rate




Dropout

Randomly eliminate some nodes during training



Activations



f(x) = x

Linear Activation

<=

‘ gx) = x
gx) =1 &

f(x) =1
« >

> < >
v o |
Y

e Only offers linear effects.
e Fora 2-layer NN with linear activations for both layers.

fX) = g(@gXwpwy) = Xwyw, = Xw

o Not so great, need Non-Linear activations to learn more
complex data distribution.



o . . flx) = 1/(1+e '"/—’
Logistic Activation o

5 5

9(x) = 1+e™*

gx) =gx)g(l—x) '5 |

e Aka Sigmoid function (S-shape) o ____

e Used in Logistic regression. f Goming eapectly (9 -
e Theresultisinrange (0, 1),

e |t canrepresent probability.

e A special case of logistic growth (population model).

Biomass
H
&4
'

| stow growth

Time



Do you see the problem with Sigmoidal activations?



Do you see the problem with Sigmoidal activations?

Vanishing gradients!



RelLU Activation

g(x) = max(0, x)
g’(x) = 1g(x)>0

Rectified linear unit
Fast! In backpropagation, 1 when positive, O otherwise.
Optimizes important (positive) values and ignore the others.

Analog to neurons
Information loss is small (other neurons will carry information)

1
) =5, e
“
d g 1,r(x]>o'$
dx [x)_{O, else
< o

+40

Woltage [rmiv)

55 | Threshal
-70




Visualization with RelLU

Training in

Progress. ..

https://www.youtube.com/channel/UCYO jab esuFRV4b17AJtAw



https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw

Why RelLU provides non-linearity?

/»" O .
: &oo blog.DailyDoseofDS.com ~—  S"®
2 = —e

ReLU approximation

Number of ReLU units: 2 Number of ReLU units: 3 Number of ReLU units: 4
A
14
f(x) = {x' x>0
0, else
‘-I [ 1 >
6 } Number of ReLU units: 5 Number of ReLU units: 10 Number of ReLU units: 20
d f(x) = 1,Hx)>0
dx 0, else
« - >
-1 1

Number of ReLU units: 25 Number of ReLU units: 50 Number of ReLU units: 100




Why RelLU provides non-linearity?

The function is not linear if it does not satisfy the
superposition principles: 1) additivity, 2) homogeneity

1) F(x1+x2) =F(x1) + F(x2)
2) F(ax) = aF(x) 4

x, x>0 !
f(x) _{0, else /
< >

-1 1
4 g
d [1,Hx)>0 Y

dx Flx) _{O, else

S - >

-1 1




Why RelLU provides non-linearity?

[T \®e .
&o blog.DailyDoseofDS.com S ()
e —=— ReLU approximation
Number of ReLU units: 4

Number of ReLU units: 2 Number of ReLU units: 3

Number of ReLU units: 5 Number of ReLU units: 10 Number of ReLU units: 20

Number of ReLU units: 25 Number of ReLU units: 50 Number of ReLU units: 100

AVAXAVAYVA

Taken from https://www.blog.dailydoseofds.com/p/a-visual-and-intuitive-guide-to-what#:~:text=The%20core%20point%20to%20understand,of%20a%20non%2Dlinear%20curve.



The Dying ReLU Problem

fi(x) = g(x) =1, x>=0
=0, x<0



w1200 /
LeakyRelLU Activation — >
A
{0 *
e No information loss (compared to RelLU) « N
e Solves “dying ReLU” problem (i.e. all neurons output 0) '

e Similar to RelLU, pays less attention to less important neurons
e Not always better than RelLU




Do you see any other issues with ReLU?

oy

Ix, x>0
f(x) _{U, else /
<€ g'}

do . [1,Hx)>0" >
dx Fx) _[0, else

<< >



Do you see any other issues with ReLU?

e Exploding gradients: Exact opposite phenomena we
had with Sigmoid (vanishing gradients)



Do you see any other issues with ReLU?

e Exploding gradients: Exact opposite phenomena we
had with Sigmoid (vanishing gradients)
o Do gradient clipping, or layer-wise normalization



Homework 4
Neural Network



MNIST: Handwriting recognition

50,000 images of handwriting
Input: 28 x 28 x 1 (grayscale) 784 pixel values
Numberso_g 1OCIasseS Label: 5 Label: 0 Label: 4 Label: 1 Label: 9 Label: 2 Label: 1

Label: 1 Label: 4 Label: 3 Label: 5 Label: 3 Label: 6 Label: 1 Label: 7

Train a linear softmax model “..-.E“.
> 95% accuracy




Functions You need to Code

Functions You need to Code (classifier.c)

vold activate matrix (matrix m, ACTIVATION a)

voild gradient matrix (matrix m, ACTIVATION a, matrix d)
matrix forward layer (layer *1, matrix in)

matrix backward layer (layer *1, matrix delta)

void update layer (layer *1, double rate, double momentum, double decay)

Run Experiments and Write a Report (hw4.pdf)

Play around with tryhw4.py file, and answer the questions.

Save your question to a PDF file and submit to Canvas for grading.



Important Data Structure (image.h)

typedef enum{LINEAR, LOGISTIC, RELU, LRELU, SOFTMAX} ACTIVATION;

typedef struct {

matrix in; // Saved input to a layer

matrix w; // Current weights for a layer

matrix dw; // Current weight updates

matrix v; // Past weight updates (for use with momentum)
matrix out; // Saved output from the layer

ACTIVATION activation; // Activation the layer uses

} layer;

typedef struct {
layer *layers;
int n;

} model;



Useful Matrix manipulation functions (matrix.c)

matrix matrix mult matrix(matrix a, matrix b);
matrix transpose matrix(matrix m);

matrix axpy matrix(double a, matrix x, matrix y); // a * x + y



Forward Pass in Homework

forward_model forward_layer

Input: layer |, data in

Input: model m, data X

-

forward_layer activation_matrix
(X, [->activation)

Output

Output




Backward Pass in Homework

backward_model backward_layer

Input: layer |, matrix delta

Input: model m, matrix d

gradient_matrix

' Calculate Aw

backward_layer

Calculate Ao

& < <
<« <«

Output

Ao




Aw';_; represent the regularized
gradient from the previous step.

Weight Update in Homework I the code, we use “I->v" to store

this value.

update_model update_layer

Input: layer |, learning rate «,

Input: model m, learning rate «, decay A, momentumm
decay 4, momentumm

Aw' = Aw —Aw + m A w/{_,

\

update_layer

Output




TODO void activate matrix (matrix m, ACTIVATION a)

for(i = 0; i < m.rows; ++1i) { Apply activation “a” to the matrix “m”

double sum = 0;
for(j = 0; j < m.cols; ++7){
double x = m.datalil[]];
if(a == LOGISTIC) {
// TODO m.data[i][]j] should equals 1 / (1 + exp(-x));
} else if (a == RELU) {
// TODO m.data[i][]j] should equals x if x > 0; otherwise, it should equal 0
} else if (a == LRELU) {
// TODO m.data[i][]j] should equals x if x > 0; otherwise, it should equal 0.1 * x.
} else if (a == SOFTMAX) {
// TODO m.data[i][]j] should equals exp(x) here, and we will normalize it later.
}
sum += m.datali]l []];
}
if (a == SOFTMAX) {
// TODO: have to normalize by sum if we are using SOFTMAX

// for all the possible J, we should normalize it as m.datal[i][]J] /= sum;



TODO void gradient matrix (matrix m, ACTIVATION a, matrix d)

Calculate g’(m) * d, and store in-place to matrix d.
The matrix “m” is the output of a layer, and matrix “d” is the A of output.

int i, j;
for(i = 0; 1 < m.rows; ++1i){
for(j = 0; jJ < m.cols; ++73){

double x = m.datali][]];
// TODO: multiply the correct element of d by the gradient
// 1if a is SOFTMAX or a is LINEAR, we should do nothing (multiply by 1)
// if a is LOGISTIC, d.data[i][j] should times x * (1.0 - x);
// if a is RELU and x <= 0, d.datali][]j] should be zero
// if a is LRELU and x <= 0, d.data[i][]j] should multiple 0.1



TODO matrix forward layer (layer *1, matrix 1in)

IIIII

Given the input data “in” and layer “|”, calculate the output data.

1->in = in; // Save the input for backpropagation

// TODO: multiply input by weights and apply activation function.
// Calculate out = in * 1->w (note: matrix multiplication here)

// Then, apply activate matrix function to out with l->activation

free matrix(l->out);// free the old output
1->out = out; // Save the current output for gradient calculation

return out;



TODO matrix backward layer (layer *1, matrix delta)

H’IH

Given the layer “I” and delta, perform backward step:
1.4.1: Calculate the delta after considering the activation
1.4.2: Calculate Aw
1.4.3: Calculate and Return Ao (aka “dx”).

// delta 1is Aout
// TODO: modify it in place to be “g' (out) * delta” out with // gradient matrix function.

// You can use gradient matrix function with “1->out” and “l->activation” to “delta”

// TODO: then calculate dL/dw and save it in 1->dw

free matrix (1l->dw);

// Calculate xt as the transpose matrix of “1->in”

// Calculate dw as xt times delta (matrix multiplication)
// free matrix xt to avoid memory leak

1->dw = dw;

// TODO: finally, calculate dL/dx and return it. (Similar to 1.4.2. Care memory leak)
// Calculate dx = delta * (l1->w)"T, where * is matrix multiplication and “T is matrix transpose

return dx;



TODO void update layer (layer *1, double rate, double

HIII
U

Given a layer learning rate, momentum, and decay rate,

momentum, double decay) Update the weight (i.e. I->w)

// Calculate Aw t = dL/dw t - Aw t + mAw {t-1}
// save it to 1->v

// Note that You can use axpy matrix to perform the matrix summation/subtraction

// Update 1->w

// l1l->w = rate * 1->v + 1->w

Note the multiplication and summation 1in this slides all mean matrix multiplication or matrix summation.



Functions You Need to Know before

Eo)lgplr%glllmy,evvetgready filled the following functions for you. You should
read and understand these functions (classifier.c) before running
experiments.

layer make layer (int input, int output, ACTIVATION activation)

matrix forward model (model m, matrix X)

void backward model (model m, matrix dL)

voild update model (model m, double rate, double momentum, double decay)
double accuracy model (model m, data d)

double cross entropy loss(matrix y, matrix p)

void train model (model m, data d, int batch, int iters, double rate, double momentum, double decay)



Get the Data

1. Download, Unzip, and Prepare the MNIST Dataset

wget https://pjreddie.com/media/files/mnist train.tar.gz
wget https://pjreddie.com/media/files/mnist test.tar.gz
tar xzf mnist train.tar.gz

tar xzf mnist test.tar.gz

find train -name \*.png > mnist.train

find test -name \*.png > mnist.test

2. Download, Unzip, and Prepare the CIFAR-10 Dataset

wget http://pjreddie.com/media/files/cifar.tgz
tar xzf cifar.tgz
find cifar/train -name \*.png > cifar.train

find cifar/test -name \*.png > cifar.test



Experiments (Write Your Answers to hw4.pdf)

1. Coding and Data prepare

2. MNIST Experiments

1. Linear Softmax Model (1-layer)
1. Run the basic model
2. Tune the learning rate
3.  Tune the decay
2. Neural Network (2-layer NNs and 3-layer NNs)
1. Find the best activation
2. Tune the learning rate
3.  Tune the decay
4.  Tune the decay for 3-layer Neural Network

3. Experiments for CIFAR-10
1. Neural Network (3-layer NNs)

1.  Tune the learning rate and decay



