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Whatis Melanoma?

» Melanoma is the most aggressive type of skin cancer.

> Melanoma occurs when UV radiation triggers DNA damages in
the melanocytes

> The “gold standard” for diagnosis of invasive melanoma relies on
the visual assessments of skin biopsy images by pathologists.

An example of an Invasive Melanoma T1b in M-Path dataset.




Why melanoma diagnosis?

> Unfortunately, diagnostic errors are common

> Computer-aided diagnostic system can be a second
reader and help reduce uncertainties
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Melanoma Dataset

Diagnostic Number of WSIs Average WSI size
Category Training Validation Test Total (in pixels)
MMD 26 6 29 61 11843 x 10315
MIS 25 5 30 60 9133 x 8501
pTla 33 6 34 73 9490 x 7984
pTlb 18 6 22 46 14858 x 12154

Total 102 23 115 240 11130 x 9603




Difficulties in diagnosis

Size of whole slide images

An example image from An example WSI at 10x
ImageNet [500 x 375] [15264 x 19824]




Difficulties in diagnosis

Dataset size

Diagnostic Number of WSIs Average WSI size
Category Training Validation Test Total (in pixels)
MMD 26 6 29 61 11843 x 10315
MIS Y 5 30 60 9133 x 8501
pTla 33 6 34 73 9490 x 7984
pTlb 18 6 22 46 14858 x 12154
Total 102 23 115 240 11130 x 9603

TABLE 1: Statistics of skin biopsy whole slide image (WSI)
dataset. The average WSI size is computed at a magnification
factor of x10. Diagnostic terms for the dataset used in this
study are as follows: mild and moderate dysplastic nevi (MMD),
melanoma in situ (MIS), invasive melanoma stage pT1a (pT1a),
invasive melanoma stage = pT1b (pT1b).




Difficulties in diagnosis

Size of whole slide images Dataset size

cancerous structure vs. normal structure
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Related Work

> Multiple Instance Learning

Negative Bag Positive Bag
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Related Work

> Multiple Instance Learning




Related Work

> Multiple Instance Learning
+ reduce high computational cost
+ effective in learning instance/bag-wise representation
- Does not allow long-range/global feature interaction
- Prone to label ambiguity/noise




Related Work

> Segmentation-based methods

Epidermis | Epidermis | Epidermis & Dermis | Dermis | Dermis
Analysis | Segmentations Analysis

Epidermis Features Dermis Features

v v

Skin Tissue Classification

Classified as Normal Malignant? Classified as Nevus

Melanoma Invasion Measurement

v

Breslow Depth

Hongming Xu, Cheng Lu, Richard Berendt, Naresh Jha, and Mrinal Mandal.
Automated analysis and classification of melanocytic tumor on skin whole slide
images. Computerized medical imaging and graphics, 66:124-134, 2018.




Related Work

> Segmentation-based methods
+ Learns global representation
+ More effective (better performance) on small dataset
- Require fine tissue-level segmentation masks

- Diagnostic performance highly dependent on segmentation
quality
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Related Work

> Visual Transformers
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Difficulties in diagnosis
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HATNet
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HATNet (on a breast dataset)

> Outperforms CNN-based methods by a large
margin

> Significant overlap between top bags, words and
annotations of clinical biomarkers

> Learned representations from clinically relevant
tissue structures without any supervision
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ScAtNet
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ScAtNet: Soft Label

Invasive T1la Skin Biopsy Image I Hard Label (one-hot encoding) Label smoothing (smoothing=0.1)
(or Class 3) I 1s1] o | o 1 | o TS1 |0.033| 0033 | 09 |0.033

I

TS 1 (w/o ROI) - TS2| o 0 1 0 TS2 | 0.033]0.033| 09 |0.033
I
i TS 3 0 0 1 0 TS3 | 0.033]0.033|] 0.9 ]0.033
I
i Constrained label smoothing Soft labels (ours)
NS 0.5 0.5 0 0 TS1 | 0.54 | 0.46 0 0

TS 2 0 0 1 0 S 2 0 0 1 0

I
! 1S3 | 05 0.5 0 0 TS3 | 0.28 | 0.72 0 0
I




ScAtNet

> Qutperforms MIL and CNN based methods

> Achieves comparable performance to 187 practicing
U.S. pathologists

> Saliency analysis shows that ScAtNet learns to weigh
features from different scales

Input scales

7.5x 10x 12.5x

Accuracy F1  Sensitivity Specificity AUC

v 0.55 0.55 0.55 0.85 0.75
v 0.60 0.60 0.60 0.87 0.77

v 0.61 0.61 0.61 0.87 0.78

v/ v 0.64 0.64 0.64 0.88 0.79
v/ v/ 0.63 0.63 0.63 0.88 0.80
v v 0.63 0.63 0.63 0.88 0.79

v/ v v 0.63 0.63 0.63 0.88 0.79

(a) Overall performance of ScAtNet
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Semantic Segmentation-based Method




How do we combine everything?

Diagnoses:

Mild Dysplastic
Moderate Dysplastic

Melanoma in situ
Invasive T'la

Invasive T'1b
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