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Background



Ø Melanoma is the most aggressive type of skin cancer.
> Melanoma occurs when UV radiation triggers DNA damages in 

the melanocytes
> The “gold standard” for diagnosis of invasive melanoma relies on 

the visual assessments of skin biopsy images by pathologists.

What isMelanoma?

An example of  an Invasive Melanoma T1b in M-Path dataset. 



> Unfortunately, diagnostic errors are common
> Computer-aided diagnostic system can be a second

reader and help reduce uncertainties

Whymelanomadiagnosis?
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MelanomaDataset



Difficulties in diagnosis

Size of whole slide images

An example image from
ImageNet [500 x 375]

An example WSI at 10x
[15264 x 19824]



Difficulties in diagnosis

Size of whole slide images Dataset size

TABLE 1: Statistics of skin biopsy whole slide image (WSI) 
dataset. The average WSI size is computed at a magnification 
factor of x10. Diagnostic terms for the dataset used in this
study are as follows: mild and moderate dysplastic nevi (MMD), 
melanoma in situ (MIS), invasive melanoma stage pT1a (pT1a), 
invasive melanoma stage ≥ pT1b (pT1b).



Difficulties in diagnosis

Size of whole slide images Dataset size

cancerous structure vs. normal structure
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> Multiple Instance Learning
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> Multiple Instance Learning
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> Multiple Instance Learning
+ reduce high computational cost
+ effective in learning instance/bag-wise representation
- Does not allow long-range/global feature interaction
- Prone to label ambiguity/noise

RelatedWork



> Segmentation-based methods

RelatedWork

Hongming Xu, Cheng Lu, Richard Berendt, Naresh Jha, and Mrinal Mandal. 
Automated analysis and classification of melanocytic tumor on skin whole slide 
images. Computerized medical imaging and graphics, 66:124–134, 2018.



> Segmentation-based methods
+ Learns global representation
+ More effective (better performance) on small dataset
- Require fine tissue-level segmentation masks
- Diagnostic performance highly dependent on segmentation

quality

RelatedWork



> Visual Transformers

RelatedWork



Difficulties in diagnosis

Size of whole slide images Dataset size

cancerous structure vs. normal structure
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HATNet



> Outperforms CNN-based methods by a large 
margin

> Significant overlap between top bags, words and 
annotations of clinical biomarkers

> Learned representations from clinically relevant 
tissue structures without any supervision

HATNet (on a breast dataset)



ScAtNet



ScAtNet: Soft Label



> Outperforms MIL and CNN based methods
> Achieves comparable performance to 187 practicing 

U.S. pathologists
> Saliency analysis shows that ScAtNet learns to weigh

features from different scales

ScAtNet



Next Step



Semantic Segmentation-basedMethod



Howdowe combine everything?

Diagnoses:
Mild Dysplastic

Moderate Dysplastic
Melanoma in situ

Invasive T1a
Invasive T1b
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