
Brain-Aware Replacements for Supervised Contrastive 
Learning in Detection of Alzheimer’s Disease

05/18/2022

Mehmet Saygin Seyfioglu

Advisors: Prof. Linda Shapiro, Prof. Sheng Wang, Prof. Thomas Grabowski



Outline

● Motivation
● Self-supervised Learning 

○ Self-supervised contrastive learning
■ Self-supervised contrastive learning
■ Issues with Self-supervised contrastive learning in Alzheimer’s Disease prediction

● Supervised Contrastive Learning
○ Issues with Supervised Contrastive Learning

● Supervised Contrastive Learning with Synthetic Samples
○ CutMix
○ Brain Aware Region Replacements (BAR) 

● Results
● Discussions
● Future Directions



Motivation

● We want to detect Alzheimer’s Disease from structural MRIs. 
○ However, having low training sample support limits the complexity of the models that we 

can train.
■ Pre-training is the key!



Self-supervised Learning

● The idea is to create tasks without using the human annotations (labels) and 
pre-train the model on those tasks. 
○ A simple example task could include predicting the original version of the image 

by providing its grayscale one to the model.
● By pre-training, the hope is that the model will learn useful representations. Then, we 

can fine-tune the model to downstream tasks such as classification, segmentation 
etc.



Self-supervised Learning

1) Self-Supervised Contrastive Training [2]: 

2) Patch Reconstruction [3]:



Self-supervised Contrastive Training

The idea is to create two differently augmented copies (positives) of the anchor image, while considering 
the rest of the samples within the batch as negatives. Augmentations are a set of parametric 
transformations, such as random crops, rotations, etc. that aim to preserve semantics of the data while 
altering them.

These positives are then mapped closer in the latent space, while the negatives become further away. This 
approach is shown to be very effective in natural images [5].



Self-supervised Contrastive Loss

● Here,             are the two augmented copies  of the anchor image      ,           is 
a negative sample, n is the number of samples,    denotes an encoder, and b 
is the number of samples within the batch.



Issues with Self-supervised Contrastive Loss with AD Prediction

● Every sample for             is considered equally different from the anchor      . This generally holds 
pretty well for tasks with a large number of classes. (ImageNet has 1000 classes)

● However, for classification problems with a small number of classes such as ours, this approach has its 
flaws since it is highly probable that              contains false negatives, i.e., the samples that are from the 
same class as the anchor. Or even worse, it could contain samples coming from the same subject. 



Supervised Contrastive Loss

● One way to fix negative sampling issue is to use supervised-contrastive learning [4] 
during pre-training, which leverages hard labels to embed features.

● However, this approach has its limitations as using hard labels during pre-training 
exhausts the entropic capacity of labels, thus leading to sub-optimal fine-tuning 
performance.



● Self-supervised Contrastive Learning is problematic because of faulty 
negative-sampling.

● Supervised Contrastive Learning exhausts all label information
● What to do?

Summing up



Mixture Prediction with Synthetic Samples

● We can reformulate the contrastive objective as a mixture detection problem where we create 
synthetic samples and soft-labels by mixing two MRIs and semantically group similarly mixed 
samples. 

● To that end, we need two main components
○ A way to generate mixtures (synthetic samples)
○ A soft-label capable contrastive loss



CutMix Strategy

● CutMix [5] is a technique known to be very effective in creating soft labels by non-linearly combining 
images to create synthetic images and labels.

● Given a set of 3D brain MRIs           and their binary annotations         , it is possible to generate 
synthetic images            and soft labels            by transferring a 3D region from       into     , and 
modifying the label     to be a linear combination of     and     .

● However, CutMix creates 
“non-realistic looking” 
samples. We can do better. 

○ How?



Brain-Aware Replacements (BAR)

● We propose an augmentation technique for brain MRIs that we call BrainAware Replacements (BAR), which 
utilizes anatomically relevant regions from the Automated Anatomical Labeling Atlas (AAL) for non-linear 
replacements from a randomly picked MRI into an anchor MRI 

● AAL has 62 distinct brain regions when the left and right lobes are merged. 



CutMix vs BAR

● For BAR, Superior frontal gyrus, medial orbital and Superior frontal gyrus, dorsolateral are selected. 
● Notice how BAR produces more realistic looking synthetic MRIs as random patches often are too 

bulky and cutting/replacing regions from lateral ventricle.
○ Compared to CutMix, BAR leads to less local distribution shift and harder to solve examples



Soft-Label Capable Contrastive Loss

● With a slight modification on the supervised contrastive loss, soft-labels can be exploited to 
learn the relative similarity between pairs. 

● Here φ denotes a distance kernel between two labels, which in our case are the soft labels of 
mixtures. Hence, this objective explicitly force the model to learn the relative similarity of the 
augmented versions, and bring similarly mixed MRIs together.



BAR Pre-training



Proposed Pre-training Framework



Encoder

● We used a 3D enabled Vision Transformer with 10 layers and 12 attention 
heads. Also, input MRI size is selected as 96x96x96 and patch size of 
16x16x16 is employed.



Experiments

We compared the performance of our proposed framework against: 

1. Training a ViT (as our Encoder) from scratch
2. Self-Supervised pre-training + fine-tuning

a. Contrastive only
b. Recon only
c. Contrastive + Recon

3. CutMix based supervised pre-training + fine tuning
a. Contrastive
b. Contrastive + Recon



Self-supervised Contrastive Learning for AD



Self-supervised Contrastive Learning + Reconstruction for AD



Results



Advantages of Our Framework

● Mixture Learning during pre-training provides a great insight for the model 
especially when combined with the recon loss.

○ This way of pre training do not exhaust entropic capacity of our hard labels, since we do not 
utilize them “directly” but only use them to create synthetic mixtures, thus the same labels 
could be exploited during fine-tuning.

● BAR produces more realistic-looking synthetic MRIs, which leads to higher 
local variability, thus harder-to-solve synthetic samples.



AD case



Selection of Beta Distribution for BAR

● We tried two different beta distributions for sampling brain regions in BAR, a 
left skewed one with parameters of beta(0.2, 0.8) and a uniform distribution 
with beta(1,1). We obtained an overall accuracy of 86.9±1.5 with the left 
skewed one as opposed to 87.2 ± 1.3 with the uniform one. 

● We argue that the replacement ratio sampled from the left skewed beta 
distribution makes somewhat of an easier objective with less replacements 
and thus is easier to solve. However, more research is needed to find the 
optimal replacement ratio.



Further Transferability

● We froze the ViT encoder in the BAR framework and trained an MLP. 
○ Obtained an accuracy of 85.2 which shows that there is further room for the same features to 

be used for fine tuning, as the fine-tuned model yields about 87.22. 
○ We argue that this is the case because we do not directly use our hard labels during 

pre-training but use them for creating soft labels and realistic looking synthetic images instead, 
thus their entropic capacity is not fully exhausted during the pre-training phase. 



Directly Using the Hard-labels During Pretraining

● We compared our soft-label supervised contrastive learning + fine-tuning 
approach against hard-label supervised contrastive learning + fine-tuning 
approach. 

○ We utilized hard-labels and no replacements during pre-training of supervised contrastive loss 
+ recon loss, using inner outer cuts and pixel shuffling for both                 . This approach 
produces lower quality embeddings compared to the soft-label approach as it yields an 
accuracy around 83.7% by training an MLP on top of the frozen encoder, and its fine tuning 
results are 84.7%.



Anybody wants to collaborate for the Summer? 

● We want to expand our approach in some other Brain-Related tasks like 
Autism or Schizophrenia. 



Future Projects: Guided Soft-Attention

● Use a region prominence mapping tensor to guide VALUE vector in 
Transformer training. 

● Then slowly relax the importance of prominence mapping as the training 
continues based on the derivative of the loss

[6], They trained models using different parts of the brain and 
mapped their results, stating that representation strength of 
Temporal lobe is the greatest and only slightly worse than 
using the whole brain



Thank you!
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CN Case



Self-supervised learning in medical domain

● Since self supervised objectives help to alleviate problems coming from having low 
training data, many papers published in medical field too.

○ Mostly based on 3d jigsaw puzzles, 3d rotation predictions, patch location, reconstruction etc.



Conclusions

● We proposed a new framework for AD detection that combines a novel augmentation 
strategy, BAR, which leverages 3D anatomical brain regions to create synthetic MRIs 
and labels.

● We showed that, when pre-trained with the synthetic samples, a continuous valued 
supervised contrastive loss is very effective for the AD detection task. 

● We experimented on the public dataset ADNI and showed that our approach 
outperforms training from scratch as well as self-supervised approaches. 

● Furthermore, we compared BAR with (CutMix), and showed that BAR creates realistic 
looking samples, which leads to better embedding learning during pre-training.



Brain Aware Masking in Self-Supervised Case

● We test the performance of Brain Aware Mapping, (i.e., we randomly selected 
and filled 3D anatomical brain regions with noise) against the use of inner and 
outer cuts in a self-supervised manner. When fine-tuned, the performance is 
comparable to inner outer cuts with an overall accuracy of 83.54 ± 1.8 when 
trained with Contrastive + Recon with a similar drop ratio used in inner-outer 
cuts.


