
Computer Vision

CSE/ECE 576
Image Coordinates and Resizing

Linda Shapiro
Professor of Computer Science & Engineering

Professor of Electrical & Engineering

What is an image?

Eyes: projection onto retina

Model: pinhole camera

Model: pinhole camera

At each point we record incident light

An image is a matrix of light

Values in matrix = how much light

Values in matrix = how much light
- Higher = more light

- Lower = less light

- Bounded
- No light = 0

- Sensor/device limit = max

- Typical ranges:

- [0-255], fit into byte

- [0-1], floating point

- Called pixels

Addressing pixels
- Ways to index:

- (r,c)

- Like matrix notation
- (3,6) is row 3 column 6

- (x,y)

- Like cartesian
coordinates (but from
the TOP)

- (3,6) is column 3 row 6

- We use (x,y)
- So does your homework!
- Arbitrary
- Only thing that matters is

consistency

Color image: 3d tensor in colorspace

RGB information in separate “channels”

Remember: we can match “real”

colors using a mix of primaries.

Each channel encodes one

primary. Adding the light

produced from each primary

mimics the original color.

Addressing pixels
- We use (x,y,c)

- (1,2,0):

- column 1, row 2,

channel 0

- Be consistent

- But do what we do for

homeworks :-)

- Also for size:
- 1920 x 1080 x 3 image:

- 1920 px wide

- 1080 px tall

- 3 channels

How do we store them?

129 131 152 159 135 163 142 82 182 ...

Storage: row major vs column major

Row Major Column Major

Storage: row major vs column major

HW WH

Typically use row-major or HW

In 3d we have more choices!

HWC: channels interleaved

129 131 152 159 135 163 142 82 182 ...

CHW: channels separated

129 131 152 ... 135 163 142 ... 182 ...

CHW Pop quiz
We’ll use CHW, it’s what a lot of other libraries use.

In an array for a 1920 x 1080 x 3 image what entry

would contain the pixel (15,192,2)?

Formula:

x + y*W + z*W*H x
y

z

H

W

CHW Pop quiz
In an array for a 1920 x 1080 x 3 image what entry

would contain the pixel (15,192,2)?

In general for (x,y,z) of image (W,H,C)

x + y*W + z*W*H

15 + 192*1920 + 2*1920*1080 = 4,515,855

Remember, everything is 0 indexed

Where does (0,0,0) go?

Position 0 + 0 + 0 = 0

In your homework

typedef struct {
int w,h,c;
float *data;

} image;

Image interpolation and resizing

An image is kinda like a function
An image is a mapping from
indices to pixel value:

- Im: I x I x I -> R

We may want to pass in

non-integers:

- Im’: R x R x I -> R

A note on coordinates in images

integer pixels

A note on coordinates in images

We can think of their
values as being at the
centers.

A note on coordinates in images

Now we can move to
a real coordinate
system.

A note on coordinates in images

On the image

A note on coordinates in images

So, the value of the
pixel (x,y) is now
centered at (x,y).

A note on coordinates in images

But there are other
real-valued points.

A note on coordinates in images

This point is:
(-.25, -.25)

Just be careful

This point is:
(-.25, -.25)

Interpolation

• How do we find out the VALUE of a non-
integer point, when the image only comes
with integer points, ie (25,45,3).

• For our assignment:

1. Nearest-Neighbor Interpolation

2. Bilinear Interpolation

34

Nearest neighbor: what it sounds like

f(x,y,z) = Im(round(x), round(y), z)

- Looks blocky
- Common pitfall: Integer

division rounds down in C
- Note: z is still int

Triangle interpolation: for less structured image (alternate approach)

Sometimes you have a regular
grid, sometimes you don’t.

When you don’t, you can look for
triangles!

Triangle interpolation: for less structured image

Sometimes you have a regular
grid, sometimes you don’t.

When you don’t look for
triangles!

Triangle interpolation: for less structured image

Sometimes you have a regular
grid, sometimes you don’t.

When you don’t look for
triangles!

Triangle interpolation: for less structured image

Sometimes you have a regular
grid, sometimes you don’t.

When you don’t look for
triangles!

Triangle interpolation: for less structured image

Weighted sum using triangles:

Q = V1*A1 + V2*A2 + V3*A3

WHY?

V1 is the furthest from q and A1
gives the smallest area.

V2 is next furthest from 1 and A2
gives the next smallest area…

Should normalize this based on
total area, but we won’t use this.

Bilinear interpolation: for grids, pretty good; easier than triangles

This time find the closest pixels in
a box

Bilinear interpolation: for grids, pretty good

This time find the closest pixels in
a box

Bilinear interpolation: for grids, pretty good

This time find the closest pixels in
a box

Bilinear interpolation: for grids, pretty good

This time find the closest pixels in
a box

Same plan, weighted sum based
on area of opposite rectangle

Q = V1*A1 + V2*A2 + V3*A3 + V4*A4

Bilinear interpolation: for grids, pretty good

A1 = d2*d4
A2 = d1*d4
A3 = d2*d3
A4 = d1*d3

q = V1*A1 + V2*A2 + V3*A3 + V4*A4

Bilinear interpolation: for grids, pretty good

- Smoother than NN
- More complex

- 4 lookups
- Some math

- Often the right tradeoff of
speed vs final result

Bicubic sampling: more complex, maybe better?

- A cubic interpolation of 4
cubic interpolations

- Smoother than bilinear, no
“star”

- 16 nearest neighbors
- Fit 3rd order poly:

- f(x) = a + bx + cx^2 + dx^3

- Interpolate along axis
- Fit another poly to

interpolated values

Bicubic vs bilinear

Bicubic vs bilinear

Resize algorithm:

- For each pixel in new image:
1. Map to old im coordinates
2. Interpolate value
3. Set new value in image

What about shrinking?
- NN and Bilinear only look at

small area
- Lots of artifacting
- Staircase pattern on diagonal

lines
- We’ll fix this next class with

filters!

So what is this interpolation useful for?

Image resizing!
Say we want to increase the size
of an image…

This is a beautiful image of a
sunset… it’s just very small…

Image resizing!
Say we want to increase the size
of an image…

This is a beautiful image of a
sunset… it’s just very small…

Say we want to increase size 4x4 -
> 7x7

Resize 4x4 -> 7x7
- Create our new image

Resize 4x4 -> 7x7
- Create our new image
- Match up coordinates

Resize 4x4 -> 7x7
- Create our new image
- Match up coordinates

Resize 4x4 -> 7x7
- Create our new image
- Match up coordinates

(-0.5, -0.5)

(3.5, 3.5)

Resize 4x4 -> 7x7
- Create our new image
- Match up coordinates

- System of equations
- aX + b = Y
- a*-.5 + b = -.5
- a*6.5 + b = 3.5

Resize 4x4 -> 7x7
- Create our new image
- Match up coordinates

- System of equations
- aX + b = Y
- a*-.5 + b = -.5
- a*6.5 + b = 3.5

- a*7 = 4

Resize 4x4 -> 7x7
- Create our new image
- Match up coordinates

- System of equations
- aX + b = Y
- a*-.5 + b = -.5
- a*6.5 + b = 3.5

- a*7 = 4
- a = 4/7

Resize 4x4 -> 7x7
- Create our new image
- Match up coordinates

- System of equations
- aX + b = Y
- a*-.5 + b = -.5
- a*6.5 + b = 3.5
- a = 4/7

Resize 4x4 -> 7x7
- Create our new image
- Match up coordinates

- System of equations
- aX + b = Y
- a*-.5 + b = -.5
- a*6.5 + b = 3.5
- a = 4/7

- a*-.5 + b = -.5

Resize 4x4 -> 7x7
- Create our new image
- Match up coordinates

- System of equations
- aX + b = Y
- a*-.5 + b = -.5
- a*6.5 + b = 3.5
- a = 4/7

- a*-.5 + b = -.5
- 4/7*-1/2 + b = -1/2

Resize 4x4 -> 7x7
- Create our new image
- Match up coordinates

- System of equations
- aX + b = Y
- a*-.5 + b = -.5
- a*6.5 + b = 3.5
- a = 4/7

- a*-.5 + b = -.5
- 4/7*-1/2 + b = -1/2
- -4/14 + b = -7/14

Resize 4x4 -> 7x7
- Create our new image
- Match up coordinates

- System of equations
- aX + b = Y
- a*-.5 + b = -.5
- a*6.5 + b = 3.5
- a = 4/7

- a*-.5 + b = -.5
- 4/7*-1/2 + b = -1/2
- -4/14 + b = -7/14
- b = -3/14

Resize 4x4 -> 7x7
- Create our new image
- Match up coordinates

- System of equations
- aX + b = Y
- a*-.5 + b = -.5
- a*6.5 + b = 3.5
- a = 4/7
- b = -3/14

- So, we can start with any
coordinate X of the big (new)
image and use a and b to get
Y on the smaller (old) image.

Resize 4x4 -> 7x7
- Create our new image
- Match up coordinates

- 4/7 X - 3/14 = Y

Resize 4x4 -> 7x7
- Create our new image
- Match up coordinates

- 4/7 X - 3/14 = Y

Resize 4x4 -> 7x7
- Create our new image
- Match up coordinates

- 4/7 X - 3/14 = Y

- Iterate over new pts

Resize 4x4 -> 7x7
- Create our new image
- Match up coordinates

- 4/7 X - 3/14 = Y

- Iterate over new pts
- Map to old coords (Y is old)

Resize 4x4 -> 7x7
- Create our new image
- Match up coordinates

- 4/7 X - 3/14 = Y

- Iterate over new pts
- Map to old coords (Y is old)
- (1, 3)

Resize 4x4 -> 7x7
- Create our new image
- Match up coordinates

- 4/7 X - 3/14 = Y

- Iterate over new pts
- Map to old coords
- (1, 3)
- 4/7*1 - 3/14
- 4/7*3 - 3/14

Resize 4x4 -> 7x7
- Create our new image
- Match up coordinates

- 4/7 X - 3/14 = Y

- Iterate over new pts
- Map to old coords
- (1, 3)
- 4/7*1 - 3/14
- 4/7*3 - 3/14
- (5/14, 21/14)

Resize 4x4 -> 7x7
- Create our new image
- Match up coordinates

- 4/7 X - 3/14 = Y

- Iterate over new pts
- Map to old coords
- (1, 3) -> (5/14, 21/14)

Resize 4x4 -> 7x7
- Create our new image
- Match up coordinates

- 4/7 X - 3/14 = Y

- Iterate over new pts
- Map to old coords
- (1, 3) -> (5/14, 21/14)
- Interpolate old values

Resize 4x4 -> 7x7
- Create our new image
- Match up coordinates

- 4/7 X - 3/14 = Y

- Iterate over new pts
- Map to old coords
- (1, 3) -> (5/14, 21/14)
- Interpolate old values

(0,1) (1,1)

(0,2) (1,2)

Resize 4x4 -> 7x7
- Create our new image
- Match up coordinates

- 4/7 X - 3/14 = Y

- Iterate over new pts
- Map to old coords
- (1, 3) -> (5/14, 21/14)
- Interpolate old values

- Size of opposite rects

(0,1) (1,1)

(0,2) (1,2)

Resize 4x4 -> 7x7
- Create our new image
- Match up coordinates

- 4/7 X - 3/14 = Y

- Iterate over new pts
- Map to old coords
- (1, 3) -> (5/14, 21/14)
- Interpolate old values

- Yar = (1/2)(5/14)
- Bar = (1/2)(9/14)
- R1ar = (1/2)(5/14)
- R2ar = (1/2)(9/14)

V = Yval*Yar+Bval*Var+R1val*R1ar+R2val*R2ar

- For each channel c, put the interpolated value
from that channel in position (1,3,c).

(0,1) B (1,1) R1

(0,2) R2 (1,2) Y

Resize 4x4 -> 7x7
- Create our new image
- Match up coordinates

- 4/7 X - 3/14 = Y

- Iterate over new pts
- Map to old coords
- (1, 3) -> (5/14, 21/14)
- Interpolate old values

Resize 4x4 -> 7x7
- Create our new image results
- Match up coordinates

- 4/7 X - 3/14 = Y

- Iterate over new pts
- Map to old coords
- (1, 3) -> (5/14, 21/14)
- Interpolate old values

Resize 4x4 -> 7x7
- Create our new image
- Match up coordinates

- 4/7 X - 3/14 = Y

- Iterate over new pts
- Map to old coords
- (1, 3) -> (5/14, 21/14)
- Interpolate old values

- Fill in the rest
- On outer edges use padding!

Resize 4x4 -> 7x7
- Create our new image
- Match up coordinates

- 4/7 X - 3/14 = Y

- Iterate over new pts
- Map to old coords
- (1, 3) -> (5/14, 21/14)
- Interpolate old values

- Final result 7 x 7

We did it!

Let’s do something interesting already!!

Want to make image smaller

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

448x448 -> 64x64

IS THIS ALL THERE IS??

THERE IS A BETTER WAY!

129

Next Time: Filtering

