Computer Vision

ECE/CSE 576 Stereo and 3D

Linda Shapiro
Professor of Computer Science \& Engineering Professor of Electrical Engineering

Camera Calibration

The idea is to snap images at different depths and get a lot of 2D-3D point correspondences.
$\mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1, \mathrm{u} 1, \mathrm{v} 1$ $x 2, y 2, z 1, u 2, v 2$
$x n, y n, z n, u n, v n$

Then solve a system of equations to get camera parameters.

Camera Parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principal point ($x_{c}^{\prime}, y_{c}^{\prime}$), pixel size $\left(s_{x}, s_{y}\right)$
- blue parameters are called "extrinsics," red are "intrinsics"

Camera Parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principal point ($x_{c}^{\prime}, y_{c}^{\prime}$), pixel size (s_{x}, s_{y})
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

$$
\mathbf{x}=\left[\begin{array}{c}
w x \\
w y \\
w
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\boldsymbol{\Pi} \mathbf{X}
$$

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations

Camera Parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principal point ($x_{c}^{\prime}, y_{c}^{\prime}$), pixel size $\left(s_{x}, s_{y}\right)$
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

$$
\mathbf{x}=\left[\begin{array}{c}
w x \\
w y \\
w
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\boldsymbol{\Pi X} \quad y^{\prime} \xrightarrow[x^{\prime}]{\underset{\left(x_{c}^{\prime}, y_{c}^{\prime}\right)}{\text { a }} X}
$$

- Useful to decompose into a series of operations
- The definitions of these parameters are not completely standardized
- especially intrinsics-varies from one book to another

Stereo

Amount of horizontal movement is ...

...inversely proportional to the distance from the camera

Depth from Stereo

- Goal: recover depth by finding image coordinate x^{\prime} that corresponds to x

Depth from disparity

See Chapter 12 of Shapiro and Stockman Text.

$$
\text { disparity }=x-x^{\prime}=\frac{B \cdot f}{z}
$$

Disparity is inversely proportional to depth.

Depth from Stereo

- Goal: recover depth by finding image coordinate x^{\prime} that corresponds to x
- Sub-Problems

1. Calibration: How do we recover the relation of the cameras (if not already known)?
2. Correspondence: How do we search for the matching point x^{\prime} ?

Correspondence Problem

- We have two images taken from cameras with different intrinsic and extrinsic parameters
- How do we match a point in the first image to a point in the second? How can we constrain our search?

Key idea: Epipolar constraint

Potential matches for x have to lie on the corresponding line l^{\prime}.

Potential matches for x^{\prime} have to lie on the corresponding line I.

Epipolar geometry: notation

- Baseline - line connecting the two camera centers
- Epipoles
= intersections of baseline with image planes
= projections of the other camera center
- Epipolar Plane - plane containing baseline (1D family)

Epipolar geometry: notation

- Baseline - line connecting the two camera centers
- Epipoles
= intersections of baseline with image planes
= projections of the other camera center
- Epipolar Plane - plane containing baseline (1D family)
- Epipolar Lines - intersections of epipolar plane with image planes (always come in corresponding pairs)

Example: Converging cameras

Example: Motion parallel to image plane

Epipolar constraint: Calibrated case

- Assume that the intrinsic and extrinsic parameters of the cameras are known
- We can multiply the projection matrix of each camera (and the image points) by the inverse of the calibration matrix to get normalized image coordinates
- We can also set the global coordinate system to the coordinate system of the first camera. Then the projection matrices of the two cameras can be written as $[\mathbf{I} \mid \mathbf{0}]$ and $[\mathbf{R} \mid \mathbf{t}]$

Simplified Matrices for the 2 Cameras

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)=(\mathbf{I} \mid \mathbf{0}) \\
& \left(\begin{array}{l|l}
\mathbf{R} & \mathbf{t} \\
\hline \mathbf{0} & 1
\end{array}\right)=(\mathrm{R} \mid \mathrm{T})
\end{aligned}
$$

Epipolar constraint: Calibrated case

The vectors $R x, t$, and x^{\prime} are coplanar

Epipolar constraint: Calibrated case

Epipolar constraint: Calibrated case

- $\boldsymbol{E} \boldsymbol{x}$ is the epipolar line associated with $\boldsymbol{x}\left(I^{\prime}=\boldsymbol{E} \boldsymbol{x}\right)$
- $\boldsymbol{E}^{\top} \boldsymbol{x}^{\prime}$ is the epipolar line associated with $\boldsymbol{x}^{\prime}\left(\boldsymbol{I}=\boldsymbol{E}^{\top} \boldsymbol{x}^{\prime}\right)$
- $\boldsymbol{E} \boldsymbol{e}=0$ and $\boldsymbol{E}^{\top} \boldsymbol{e}^{\prime}=0$
- \boldsymbol{E} is singular (rank two)
- E has five degrees of freedom

Moving on to stereo...

Fuse a calibrated binocular stereo pair to produce a depth image

image 1

image 2

Dense depth map

Many of these slides adapted frbom Steve Seitz and Lana Lazebnik

Stereo image rectification

- Reproject image planes onto a common plane parallel to the line between camera centers
- Pixel motion is horizontal after this transformation
- Two homographies (3×3 transform), one for each input image reprojection
> C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. IEEE Conf. Computer Vision and Pattern Recognition, 1999.

Example

Unrectified

Rectified

- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD, SAD, or normalized correlation

Correspondence search

Norm. corr

Results with window search
 Data

Window-based matching
Ground truth

Using more than two images

Multi-View Stereo for Community Photo Collections M. Goesele, N. Snavely, B. Curless, H. Hoppe, S. Seitz
 Proceedings of ICCV 2007,

3D model

- "Digital copy" of real object
- Allows us to
- Inspect details of object
- Measure properties
- Reproduce in different material
- Many applications
- Cultural heritage preservation
- Computer games and movies
- City modelling
- E-commerce

Applications: cultural heritage

SCULPTEUR European project

Applications: art

Block Works Precipitate III 2004
Mild steel blocks $80 \times 46 \times 66 \mathrm{~cm}$

Domain Series Domain VIII Crouching 1999 Mild steel bar $81 \times 59 \times 63 \mathrm{~cm}$

Applications: structure engineering

BODY / SPACE / FRAME, Antony Gormley, Lelystad, Holland

Applications: 3D indexation

Applications: archaeology

- "forma urbis romae" project

Fragments of the City: Stanford's Digital Forma Urbis Romae Project

David Koller, Jennifer Trimble, Tina Najbjerg, Natasha Gelfand, Marc Levoy
Proc. Third Williams Symposium on Classical Architecture, Journal of Roman Archaeology supplement, 2006.
forma urbis romae

1186 fragments

Applications: large scale modelling

[Furukawa10]

Applications: Medicine

expert's order	1	2	3	4	5	6	7	8	9	10
images										
learning	1	3	2	4	5	6	8	9	7	10
a-lmk	1	2	3	5	6	4	8	7	9	10
mirror	1	2	4	8	5	6	9	3	7	10
m-lmk	1	2	3	4	5	6	9	7	10	8
plane	1	2	3	5	4	6	7	9	10	8

Scanning technologies

- Laser scanner, coordinate measuring machine
- Very accurate
- Very Expensive
- Complicated to use

Contura CMM

Medical Scanning System

The "Us" Data Set (subset)

3d shape from photographs

"Estimate a 3d shape that would generate the input photographs given the same material, viewpoints and illumination"

Photometric Stereo

- Estimate the surface normals of a given scene given multiple 2D images taken from the same viewpoint, but under different lighting conditions.
- Basic photometric stereo required a Lambertian reflectance model:

$$
\mathrm{I}=\rho \mathbf{n} \cdot \mathbf{v}
$$

where I is pixel intensity, \mathbf{n} is the normal, \mathbf{v} is the lighting direction, and ρ is diffuse albedo constant, which is a reflection coefficient.

Basic Photometric Stereo

(a)

Basic Photometric Stereo

Basic Photometric Stereo

- K light sources
- Lead to K images $R_{1}(p, q), \ldots, R_{K}(p, q)$ each from just one of the light sources being on
- For any (p, q), we get K intensities $I_{1}, \ldots I_{K}$
- Leads to a set of linear equations of the form

$$
I_{k}=\rho n \bullet v_{k}
$$

- Solving leads to a surface normal map.

Photometric Stereo

Inputs

3D normals

3d shape from photographs

Photograph based 3d reconstruction is:

\checkmark practical
\checkmark fast
\checkmark non-intrusive
\checkmark low cost
\checkmark Easily deployable outdoors
x "low" accuracy
\times Results depend on material properties

Reconstruction

- Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape

Reconstruction

- Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape
- "Images of the same object or scene"
- Arbitrary number of images (from two to thousands)
- Arbitrary camera positions (camera network or video sequence)
- Calibration may be initially unknown
- "Representation of 3D shape"
- Depth maps
- Meshes
- Point clouds
- Patch clouds
- Volumetric models
- Layered models

Multiple-baseline stereo

M. Okutomi and T. Kanade, "A Multiple-Baseline Stereo System," IEEE Trans. on Pattern Analysis and Machine Intelligence, 15(4):353-363 (1993).

Reconstruction from silhouettes

- Can be computed robustly
- Can be computed efficiently

π 3

Reconstruction from Silhouettes

- The case of binary images: a voxel is photoconsistent if it lies inside the object's silhouette in all views

Binary Images

Reconstruction from Silhouettes

- The case of binary images: a voxel is photoconsistent if it lies inside the object's silhouette in all views

Binary Images

Finding the silhouette-consistent shape (visual hull):

- Backproject each silhouette
- Intersect backprojected volumes

Calibrated Image Acquisition

Calibrated Turntable

Selected Dinosaur Images

Selected Flower Images

- Space Carving Algorithm
- Initialize to a volume V containing the true scene
- Choose a voxel on the outside of the volume

Project to visible input images
Carve if not photo-consistent (inside object's silhouette)
K. N. Kutulakos and S. M. Seitz, $\underline{\text { A Theory of Shape by Space Carving, ICCV } 1999}$

Our 4-camera light-striping stereo system

(now deceased)

Calibration Object

The idea is to snap images at different depths and get a lot of 2D-3D point correspondences.

Surface Modoling and Display from Range and Color Data

Kari Pulli	UW
Michael Chen	MSR
Tom Duchamp	UW
Hugues Hoppe	MSR
John	MCDonald
UW	
Linda Shapiro	UW
Werner Stuetzle	UW

$$
\begin{array}{ll}
\text { UW }= & \text { University of washington } \\
& \text { Seattle, wA USA } \\
M S R= & \text { Microsoft Research } \\
& \text { Redmond, wA USA }
\end{array}
$$

Introdiction

Goal

- develop robust algorithms for constructing 3D models from range \& color data
- use those models to produce realistic renderings of the scanned objects

Surface Reconstuction

Step 1: Data acquisition
Obtain range data that covers the object. Filter, remove background.
Step 2: Registration
Register the range maps into a common coordinate system.

Step 3: Integration
Integrate the registered range data into a single surface representation.
Step 4: Optimization
Fit the surface more accurately to the data, simplify the representation.

Carve space in cubes

Label cubes

- Project cube to image plane (hexagon)
- Test against data in the hexagon

3D space is made up of many cubes.

OUTSIDE
one of many cubes in virtual 3D cube space

Scveral views

Processing order: FOR EACH cube FOR EACH View

Rules:
any view thinks cube's out \Rightarrow it's out
every view thinks cube's in
\Rightarrow it's in
else
\Rightarrow it's at boundary

Hfierarchical space carving

- Big cubes \Rightarrow fast, poor results
- Small cubes \Rightarrow slow, more accurate results
- Combination $=$ octrees

RULES: •cube's out \Rightarrow done

- cube's in \Rightarrow done
- else $\quad \Rightarrow$ recurse

Hfierarchical space carving

- Big cubes \Rightarrow fast, poor results
- Small cubes \Rightarrow slow, more accurate results
- Combination $=$ octrees

RULES: •cube's out \Rightarrow done

- cube's in \Rightarrow done
- else $\quad \Rightarrow$ recurse

The rest of the chair

Sane for a busky pup

1

4

5

6

Optinining the dad mesh

Registered points

Initial mesh

Optimized mesh

View dependent textuning

our viewer

More: Space Carving Results: African Violet

Imput Tmage (1 of 45)
Reconstruction

More: Space Carving Results: Hand

Stereo from community photo collections

- Up to now, we've always assumed that camera calibration is known
- For photos taken from the Internet, we need structure from motion techniques to reconstruct both camera positions and 3D points.

Head Reconstruction from Uncalibrated Internet Photos

- Input: Internet photos in different poses and expressions

- Output: 3D model of the head

Recognizing Deformable Shapes

Salvador Ruiz Correa (CSE/EE576 Computer Vision I)

Goal

- We are interested in developing algorithms for recognizing and classifying deformable object shapes from range data.

- This is a difficult problem that is relevant in several application fields.

What Kind Of Deformations?

Component-Based Methodology

Numeric Signatures

The Spin Image Signature

P is the selected vertex.
X is a contributing point of the mesh.

α is the perpendicular distance from X to P^{\prime} s surface normal.
β is the signed perpendicular distance from X to P 's tangent plane.

Spin Image Construction

- A spin image is constructed
- about a specified oriented point o of the object surface
- with respect to a set of contributing points C, which is controlled by maximum distance and angle from o.
- It is stored as an array of accumulators $S(\alpha, \beta)$ computed via:
- For each point c in C(o)

1. compute α and β for c.
2. increment $S(\alpha, \beta)$

Numeric Signatures: Spin Images

- Rich set of surface shape descriptors.
- Their spatial scale can be modified to include local and non-local surface features.
- Representation is robust to scene clutter and occlusions.

Components

How To Extract Shape Class Components?

Training Set

Component Detector $\sqrt{1}$

Grown components around seeds

Component Extraction Example

Selected 8 seed points by hand

Grow one region at the time (get one detector per component)

Labeled
Surface Mesh

Region
Growing

Detected components on a training sample

How To Combine Component Information?

Symbolic Signatures

Symbolic Signature

Symbolic Signatures Are Robus \dagger To Deformations

Relative position of components is stable across deformations:
experimental evidence

Architecture of Classifiers

Learns Components And Their Geometric Relationships

3
Symbolic Signatures

Proposed Architecture

Verify spatial configuration of the components

Two classification stages

Experimental Validation

> Recognition Tasks: 4 (T1-T4) Classification Tasks: 3 (T5-T7)

No. Experiments: 5470

Recognition

Classification

Shape Classes

Enlarging Training Sets Using Virtual

 SamplesMorphs

Global Morphing Operators

Task 1: Recognizing Single Objects (1)

- No. Shape classes: 9.
- Training set size: 400 meshes.
- Testing set size: 200 meshes.
- No. Experiments: 1960.
- No. Component detectors:3.
- No. Symbolic signature detectors: 1.
- Numeric signature size: 40×40.
- Symbolic signature size: 20x20.
- No clutter and occlusion.

Task 1: Recognizing Single Objects (2)

- Snowman: 93\%.
- Rabbit: 92\%.
- Dog: 89\%.
- Cat: 85.5\%.
- Cow: 92\%.
- Bear: 94\%.
- Horse: 92.7\%.
- Human head: 97.7\%.
- Human face: 76\%.

Recognition rates (true positives)
(No clutter, no occlusion, complete models)

Main Contributions (2)

- A region growing algorithm for learning shape class components.
- A novel architecture of classifiers for abstracting the geometry of a shape class.
- A validation of our methodology in a set of large scale recognition and classification experiments aimed at applications in scene analysis and medical diagnosis.

