Learning Melanocytic Proliferation Segmentation in Histopathology Images from Imperfect Annotations

Kechun Liu Spring 2021

What is melanoma?

- Third most common type of skin cancer^[1,2]
- Responsible for most skin cancer deaths^[1,2]
- >63,000 diagnosed cases and 9,000 deaths from melanoma each year in US between 2007-2011^[3]

[1] Jemal, Ahmedin, et al. "Recent trends in cutaneous melanoma incidence and death rates in the United States, 1992-2006." Journal of the American Academy of Dermatology 65.5 (2011): S17-e1.

[2] Jemal, Ahmedin, et al. "Annual report to the nation on the status of cancer, 1975–2009, featuring the burden and trends in human papillomavirus (HPV)–associated cancers and HPV vaccination coverage levels." JNCI: Journal of the National Cancer Institute 105.3 (2013): 175-201.

[3] NNAM Howlader, et al. Seer cancer statistics review, 1975-2016. National Cancer Institute, 2019.

- Microscopic examination of H&E-stained biopsy images
- Assessment of architectural growth patterns
 - where are melanocytes situated? (intraepidermal, dermal-epidermal junction, intradermal)

- Microscopic examination of H&E-stained biopsy images
- Assessment of architectural growth patterns
 - where are melanocytes situated? (intraepidermal, dermal-epidermal junction, intradermal)
 - architecture of melanocytic population (confluent growth? pagetoid spread? atypical dermal melanocytes?)

Melanoma in situ

Invasive (malignant) melanoma

- Microscopic examination of H&E-stained biopsy images
- Assessment of architectural growth patterns
 - where are melanocytes situated? (intraepidermal, dermal-epidermal junction, intradermal)
 - architecture of melanocytic population (confluent growth? pagetoid spread? atypical dermal melanocytes?)

Melanocytic Proliferations

- ★ Singly dispersed melanocytes-
- ★ Nested melanocytes

- Microscopic examination of H&E-stained biopsy images
- Assessment of architectural growth patterns
 - where are melanocytes situated? (intraepidermal, dermal-epidermal junction, intradermal)
 - architecture of melanocytic population (confluent growth? pagetoid spread? atypical dermal melanocytes?)

Can we develop a system to automatically point out melanocytic proliferations?

We developed a pipeline to identify image-level melanocytic proliferations with weak supervision.

We leverages sparse and noisy annotations on skin biopsy images and uses weighted loss functions to account for the imperfect labels.

We achieve state-of-the-art performance on segmentation of melanocytic proliferations.

Dataset

H&E stained skin biopsy images, 10x

Consensus under 3 pathologists

227 ROI images^[1]

Dataset - Melanocytic Proliferation Annotations

- Difficulties in annotations:
 - Nests come in various sizes and shapes
 - Hundreds of entities
 - Expertise required

Annotation procedure:

- Partially mark the 227 ROI images
- Draw **polygons** around many melanocytes
- Two other pathologists check the markings

Save Annotation Time!

Singly dispersed melanocytes Nested melanocytes Annotation polygons

Dataset - Annotation Caveats

Sparse annotations

Noisy annotations

Human errors

"Silver standard"

Dataset - Preprocessing

1. Data split

Train: 174 (76%)	Val: 19 (8%)	Test: 34 (15%)

2. Patchify

ROI: 428x381 ~ 23691x22401, 10x

Patches: 1000x1000, 5x, 50% overlap

Close to default design in Mask R-CNN

Model - Mask R-CNN

Idea: filter out the majority of the non-target tissues

Model - Loss Function

Model - Loss Function

L_{rpn_loc}, L_{box_reg}, L_{mask}: only back-propagate loss values on positive samples

L_{rpn cls}, L_{cls} : fully utilize the labeled and unlabeled areas

Weighted Cross Entropy (WCE)

$$L_{\text{WCE}} = -\sum_{i} (w * y_i * \log(\hat{p}_i) + (1 - y_i) * \log(1 - \hat{p}_i))$$

 $y_i \in \{0,1\}$: ground-truth label whether the object belongs to class i. $\hat{p}_i \in [0,1]$: probability of the object being in class i. w: weight given to the categories.

Focal Loss (FL)^[1]

$$L_{\text{WFL}} = -\sum_{i} (w * y_i * (1 - \hat{p}_i)^{\lambda} * \log(\hat{p}_i) + (1 - y_i) * \hat{p}_i^{\lambda} \log(1 - \hat{p}_i))$$

 $y_i \in \{0,1\}$: ground-truth label whether the object belongs to class i. $\widehat{p_i} \in [0,1]$: probability of the object being in class i. w: weight given to the categories.

 λ : the larger λ is, the more the model focuses on hard examples. (λ =2)

Model - Transfer Learning

Lack of accurately annotated training data: 130 images in train set!

Mask R-CNN from detectron2^[Wu et al.]: pretrained on MSCOCO

Model - post processing

Patch-level segmentation results \Rightarrow Image-level segmentation result

Model - Implementation details

- SGD optimizer
 - Initial learning rate: 0.001; learning rate warm-up; 0.5 decay every 4 epochs
 - Total 40 epochs
- Loss
 - Weighted cross entropy
 - Focal loss
 - Weight: 1, 2, 3, 5, 8, 12
- Run each model 10 times with different randomization

Evaluation metrics

$$Dice = \frac{2 \times TP}{2 \times TP + FP + FN}$$
$$mIOU = \frac{1}{2} \times (\mathcal{J}_{nest} + \mathcal{J}_{bg})$$
$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$
$$Sensitivity = \frac{TP}{TP + FN}$$
$$Specificity = \frac{TN}{TN + FP}$$

All metrics are reported in **mean** and **standard deviation**.

Experimental results

- We fully label the melanocytic nests in our test set (34 ROI images).
- We re-implemented the convolutional autoencoder (previous SOTA work^[Kucharski et al.]).
- We achieve better performance in Dice score, mIOU, accuracy and specificity.

Method	Dice	mIOU	Accuracy	Sensitivity	Specificity
Autoencoder [21]	0.679	0.705	0.905	0.814	0.918
Mask R-CNN with CE loss	0.685	0.715	0.917	0.726	0.944
Mask R-CNN with WCE loss	0.705	0.726	0.917	0.792	0.935
Mask R-CNN with FL loss	0.719	0.740	0.927	0.751	0.952

Ablations

Loss function		Weight	Dice	mIOU	Accuracy	Sensitivity	Specificity
		w = 1	0.685(0.013)	0.715(0.008)	0.917(0.002)	0.726(0.041)	0.944(0.006)
		w = 2	0.705(0.003)	0.726(0.003)	0.917(0.003)	0.792(0.027)	0.935(0.007)
Weighted Cross Entropy (WCE)		w = 3	0.701(0.009)	0.723(0.006)	0.915(0.003)	0.792(0.021)	0.933(0.005)
		w = 5	0.701(0.008)	0.722(0.006)	0.914(0.002)	0.813(0.028)	0.928(0.005)
		w = 8	0.700(0.007)	0.718(0.007)	0.909(0.005)	0.850(0.022)	0.918(0.008)
		w = 12	0.700(0.005)	0.716(0.003)	0.908(0.002)	0.847(0.021)	0.917(0.005)
Focal Loss (FL)	Larger STD	w = 1	0.717(0.018)	0.740(0.011)	0.928(0.002)	0.740(0.053)	0.954(0.007)
		w = 2	0.703(0.022)	0.731(0.014)	0.926(0.003)	0.710(0.053)	0.956(0.006)
		w = 3	0.702(0.021)	0.730(0.014)	0.926(0.003)	0.705(0.045)	0.957(0.004)
		w = 5	0.711(0.014)	0.735(0.008)	0.926(0.002)	0.730(0.044)	0.954(0.006)
		w = 8	0.719(0.011)	0.740(0.007)	0.927(0.003)	0.751(0.027)	0.952(0.005)
		w = 12	0.710(0.023)	0.734(0.015)	0.925(0.004)	0.742(0.056)	0.951(0.007)

- Adding weights helps improve performance.
- Noise is also amplified when using focal loss.

Discussions

- Why Mask R-CNN?
 - Robust to noise
- How does this work serve to help diagnosis?
 - First step of an automated diagnosis pipeline
 - Combine features with classification techniques to create a diagnosis tool

H&E

Groundtruth

- How does annotation quality affect the performance?
 - Reduce human errors by leveraging our model's output

Mask-RCNN

Autoencoder

Conclusion

- We propose a weakly-supervised Mask R-CNN-based model for melanocytic proliferations segmentation.
- Our model only requires partially labeled datasets by leveraging weak supervision.
- Our approach achieves state-of-the-art accuracy on identification of melanocytic proliferations.

Thank you!

