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Content-Based Image Retrieval

* Queries

« Commercial Systems

* Retrieval Features

 Indexing in the FIDS System
 Lead-in to Object Recognition



Content-based Image Retrieval

(CBIR)
Searching a large database for images that

match a query:

— What kinds of databases?

— What kinds of queries?

— What constitutes a match?

— How do we make such searches efficient?




Applications

— Art Collections

e.g. Fine Arts Museum of San Francisco
— Medical Image Databases

CT, MRI, Ultrasound, The Visible Human
— Scientific Databases

e.g. Earth Sciences
— General Image Collections for Licensing

— The World Wide Web
Google, Microsoft, etc



What 1s a query?

— an image you already have
— a rough sketch you draw

— a symbolic description of what you want



Some Systems You Can Try

e Corbis 3ells sold high-quality images for use in advertising,
marketing, illustrating, etc. Corbis was sold to a Chinese
company, but

B Getty images now provides the image sales.

® http://www.gettyimages.com/search/2/image?excludenudity=true&sort=best



http://www.gettyimages.com/search/2/image?excludenudity=true&sort=best

Google Image

» Google Images
http://www.google.com/imghp

Try the camera icon.


http://www.google.com/imghp

Microsoft Bing

e http://www.bing.com/



http://www.bing.com/

Problem with Text-Based Search

e Retrieval for pigs for the color chapter of my book
e Small company (was called Ditto)

* Allows you to search for pictures from web pages
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Features

e Color (histograms, gridded layout, wavelets)
 Texture (Laws, Gabor filters, local binary pattern)

« Shape (first segment the image, then use statistical
or structural shape similarity measures)

* Objects and their Relationships

This Is the most powerful, but you have to be able to
recognize the objects!

10



Color Histograms
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Figure 8.4: Results of 2 QBIC search bazed on color percentages: the query specified 40%
red, 30% yellow, and 10% black (images courtesy of Egames).
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Gridded Color

Gridded color distance is the sum of the color distances
in each of the corresponding grid squares.

What color distance would you use for a pair of grid squares?
12



Color Layout
IBM’s Gridded Color

32 transp84_ps - GSview M=l B3
File Edit Options “iew Orientation Media Help
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Colum ns: Rows:

Figure §.3: Results of a2 QBIC search based on color layout similarity; the query is the
example image shown in the top keft position (images courtesy of Egames).

13

a Slalll % Fastlane:Proposal Review... Microzoft PawerPaint - [zh... | @ Explaring - metamail ||@Q transp84 ps - GSview




Texture Distances

e Pick and Click (user clicks on a pixel and system
retrieves images that have in them a region with
similar texture to the region surrounding it.

e Gridded (just like gridded color, but use texture).

e Histogram-based (e.g. compare the LBP histograms).
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Laws Texture
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Figure 3.6: Results of an  image database search based on  tex-
ture  similarity (Images from the MIT Media Iab VisTex database:
http:/ fvismod www media mit edu frismod/imagery/ Vision Texture fristex. html).
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Shape Distances

e Shape goes one step further than color and texture.

o It requires identification of regions to compare.

e There have been many shape similarity measures
suggested for pattern recognition that can be used
to construct shape distance measures.
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Global Shape Properties:
Projection Matching

Feature Vector
(0I4I1I3I2IOIOI4I3IZI1IO)
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In projection matching, the horizontal and vertical
projections form a histogram.
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Global Shape Properties:
Tangent-Angle Histograms

135

0 30 45 135

Is this feature invariant to starting point?
Is it invariant to size, translation, rotation?
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Boundary Matching

e Fourier Descriptors
e Sides and Angles

e Elastic Matching

The distance between query shape and image shape
has two components:

1. energy required to deform the query shape into
one that best matches the image shape

19



Del Bimbo Elastic Shape Matching

I
= Draw ske

-0

Template Image Actions

3:images/imgl.brt 0.901 4:images/img60.brt 0.900

query

retrieved images
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Regions and Relationships

e Segment the image into regions
e Find their and interrelationships
e Construct a graph representation with

nodes for regions and edges for
spatial relationships

e Use graph matching to compare images

21



Blobworld (Carson et al, 1999)

« Segmented the query (and all database images)
using EM on color+texture

« Allowed users to select the most important region
and what characteristics of it (color, texture, location)

« Asked users if the background was also important

22



Tiger Image as a Graph
(motivated by Blobworld)

adjacent

abstract regions
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multiple distance measures
Boolean and linear combinations
efficient indexing using images as keys

# demo: Fids - Netscape
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Use of key images and the triangle inequality
for efficient retrieval. d(1,Q) >= |d((I,K) — d(Q,K)]
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Bare-Bones Triangle Inequality Algorithm

Offline

1. Choose a small set of key images

2. Store distances from database images to keys
Online (given query Q)

1. Compute the distance from Q to each key

2. Obtain lower bounds on distances to database images

3. Threshold or return all images in order of lower bounds

26



Flexible Image Database System:
Example

An example from our system using a simple
color measure.

#images in system: 37,748

threshold: 100 out of 1000

#images eliminated: 37,729
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Different Features

Found 18 matches. Displaying 1-6

Found 17 matches. Displaying 1- 6
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Combined Features

; Zoomln'il Found 94 matches. Displaying 1-6

‘i] Random | Go
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Another example: different features

: oomlan' Found 202 matches. Displaying 1-6

zOomm[Fl Found 91 matches. Displaying 1- 6 lq Random |

‘Z] Random | EIZoomlnI;‘ Found 7 matches. Displaying 1-6
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Combined Features

ZoomlnIF‘ Found 33 matches. Displaying 1-6

l@ Random |Go|Zoomlnl;l Found 46 matches. Displaying 1-6
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Another example: different features
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Different ways for combination

.........
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Different weights on features
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Found 170 matches. Displaying 1-6

Zoomlnl-ﬂ Found 170 matches. Displaying 1-6 @
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Weakness of Low-level Features

=Can’t capture the high-level concepts
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Yi Li’'s Overall Approach

e Develop object recognizers for common objects

e Use these recognizers to design a new set of both

low- and mid-level features

e Design a learning system that can use these

features to recognize classes of objects

38




Building Features:
Consistent Line Clusters
(CLC)

A Consistent Line Cluster is a set of lines
that are homogeneous in terms of some line
features.

: The lines have the same color
feature.

: The lines are parallel to each
other or converge to a common vanishing point.

: The lines are in close proximity

to each other. .



Experimental Evaluation

* Object Recognition
— 97 well-patterned buildings (bp): 97/97
— 44 not well-patterned buildings (bnp): 42/44

— 16 not patterned non-buildings (nbnp): 15/16
(one false positive)

— 25 patterned non-buildings (nbp): 0/25
« CBIR

40



Experimental Evaluation
Well-Patterned Buildings
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Experimental Evaluation
Non-Well-Patterned Buildings
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Experimental Evaluation
Non-Well-Patterned Non-Buildings

False positive
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Experimental Evaluation
Well-Patterned Non-BuiIdingS (false positives)
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Experimental Evaluation (CBIR)

Total

Total Positive : False False
e Negative iy . Accuracy
Classification P positive | negative
4 Classification 4 4 (%)
(#) #) (#) (#)
Arborgreens 0 47 0 0 100
Campusinfall 27 21 0 5 89.6
Cannonbeach 30 18 0 6 87.5
Yellowstone 4 44 4 0 91.7
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Experimental Evaluation (CBIR)

False positives from Yellowstone
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Machine Learning!

Unsupervised (given the data, no class
labels)

Supervised (given data with class labels)

We will look at two unsupervised methods
today

— K-means

—EM

We saw that EM was used in Rob
Fergus’s work.

a7



Clustering

* There are K clusters C,,..., Cx with means m,,..., my.

 The least-squares error Is defined as

K 2
D=2 2 |x-m/]l .
k=1x; € C,

 Out of all possible partitions into K clusters,
choose the one that minimizes D.

Why don’t we just do this?
If we could, would we get meaningful objects?

48



K-Means Clustering

Form K-means clusters from a set of n-dimensional vectors
1. Set ic (iteration count) to 1
2. Choose randomly a set of K means m,(1), ..., m(1).

3. For each vector x; compute D(x;, m,(ic)), k=1,...K
and assign x; to the cluster C; with nearest mean.

4. Increment ic by 1, update the means to get m(ic),...,m(ic).

5. Repeat steps 3 and 4 until C,(ic) = C(ic+1) for all k.

49



K-Means Example 1

1. Select animage: | imgs/P1010012jpg v | 2.Selectaprocessor; KNCluster v| 3.Click {process== |

Opticns:

Init Method [o |

5407430 (590,68): RGB(158.206,229) Process done!

50



K-Means Example 2

1. Select an image: IimgsiP101 0021.JPG EI 2. Select a processor: IKMCIuster E] 3. Click process=» I

Options:

Init Method IEI

6407480 (636,95): RGB{102,130,151) Process done ! (590,209): RGB(D,46,255)
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K-Means Example 3

1. Select an image: |imgsFaly0028 jpg j Z.SEIemaprucessur:|KMCIuster j 3. Click pru:u:ess=~3=|

Options:

Init Method ID

G40%430 (607, 118y RGB(20,221) Process done ! (228,26) RGB(255170,0}
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K-means Variants

Different ways to initialize the means

Different stopping criteria

Dynamic methods for determining the right
number of clusters (K) for a given image

The EM Algorithm: a probabilistic
formulation
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K-Means

* Boot Step:

— Initialize K clusters: C,, ..., Cy
Each cluster Is represented by its mean m;

* |teration Step:
— Estimate the cluster for each data point

X, = C(x)
— Re-estimate the cluster parameters

m, = mean{x, | x; €C,}
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K-Means Example

55



K-Means Example

Where do the red points belong?
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K-Means > EM

* Boot Step:
— Initialize K clusters: C,, ..., Cy
(4 2, and P(C)) for each cluster .
* |teration Step:
— Estimate the cluster of each data point

p(C; | %) mm) Expectation
— Re-estimate the cluster parameters
Maximization
(#;,Z;), p(C)) For each cluster j = Maximizat

57



What Is a covariance mautrix

 For a multidimensional distribution of n
dimensions (X;, X,, ... X,):

* |[ts mean [ Is a vector L = (X4, Xy, ...X,)
Example: u = (r, g, b)

* |ts covariance matrix gives the variances
and covariances for pairs of variables:

2. = a matrix in which Z; = 0 (variance)
and 2; = Cov(X;,X) (covariance of two)
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1-D EM with Gaussian Distributions

» Each cluster C; Is represented by a
Gaussian distribution N(y; , ;).

e |nitialization: For each cluster C Initialize
its mean , , variance c;, and welght Q.
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Expectation

For each point x; and each cluster C,
compute P(C,; [ x;).

P(C; | x) = P(x| C) P(C;) / P(x))
P(Xx;) = 2 P(x| C) P(C))

Where do we get P(x;| C;) and P(C;)?

60



1.Use the pdf for a normal distribution:

- _ AXi- '—lj}z
PX | C)=__ e 262

aEnq

2. Use o, = P(C)) from the current
parameters of cluster C;.
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Maximization

Having computed 2. P(Ci %)%
(G | x) for each TSR )
point x; and each |

cluster Cj, use them

Zp(cj|Xi)°(xi_zuj)°(xi_luj)T
to COmpUte new > =

. —
mean, variance, and 2.P(C;1x)
weight for each

cluster. S p(C, I%)

p(Cj): ! N
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Multi-Dimensional Expectation Step
for Color Image Segmentation

Input (Known) Input (Estimation) Output
X =\r;, &, b} Cluster Parameters Classification Results
x2:{]ﬁ2, gz’ b2} (/’l]’ZI)’ p(C]) for C] p(C]|x])
+ (12, 25), p(C) for C, —> p(Clx,)
—{r o b p(Cilx)
XY=y 8y by (14, 24), p(C) for C, ]|

2(C. [ %) = p(xC;)-P(C;) _ p(x1C;)-P(C))
j1h p(Xx;) Zp(xi|Cj).p(Cj)
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Multi-dimensional Maximization Step
for Color Image Segmentation

Input (Known) Input (Estimation) Output
X =\r;, &, b} Classification Results Cluster Parameters
X,={r, g5 b} p(Clx)) (1,2)), p(C)) for C,
+ p(Cilx,) —> (12, 25), p(C,) for C,
X=Ary & bl PG (44 23, P(Ck) for C;
SRC %)% 2 PCIX) 06— p)- (6 - p) 2.P(C; %)

s = : Zj: i p(CJ): i v
Y p(C %) 2. P(C; 1)
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Full EM Algorithm
Multi-Dimensional

Boot Step.:

— Initialize K clusters: C,, ..., Cx

(44 ;) and P(C)) for each cluster ;.

lteration Step:

— Expectation Step
p(x [C;)-p(C;)  p(x|C;) p(C;)

p(C' |Xi): =
’ p(x;) > p(x1C;)-p(C))
— Maximization Step J
Zp(Cj | %) X; Zp(Cj |Xi)'(xi_/uj)'(xi_:uj)T
o Y =
S TCHTS B NICIED

> p(C;|x)

p(Cj): i
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EM Applications

* Blobworld: Image segmentation using
Expectation-Maximization and its application
to 1mage querying

* Used both color and texture features with the
EM algorithm.
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Blobworld: Sample Results




EM Classifier Approach
ODbject Class Recognition
using Images of Abstract

Regions

Yi LI, Jeff A. Bilmes, and Linda G. Shapiro
Department of Computer Science and Engineering
Department of Electrical Engineering
University of Washington



Problem Statement

Given: Some images and their corresponding descriptions

00
{trees, grass, cherry trees} {cheetah, trunk} {mountains, sky} {beach, sky, trees, water}
To solve: What object classes are present in new images
000




Image Features for Object
Recognition

e Texture

e Context




Abstract Regions

Original Images  Color Regions  Texture Regions  Line Clusters




Abstract Regions

Multiple segmentations whose regions are not labeled,;
a list of labels is provided for each training image.

image

various different .
segmentations region
attributes
: === | from several

different
types of
labels regions

@m




Model Initial Estimation

« Estimate the initial model of an object using all
the region features from all images that contain
the object
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EM Classifier: the Idea

Initial Model for “trees” Final Model for “trees”

B . =

Initial Model for “sky” :> Final Model for “sky”
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EM Algorithm

Start with K clusters, each represented by a probability
distribution

Assuming a Gaussian or Normal distribution, each cluster is
represented by its mean and variance (or covariance matrix)
and has a weight.

Go through the training data and soft-assign it to each
cluster. Do this by computing the probability that each
training vector belongs to each cluster.

Using the results of the soft assignment, recompute the
parameters of each cluster.

Perform the last 2 steps iteratively.




1-D EM with Gaussian Distributions

Each cluster C; is represented by a Gaussian
distribution N( , 5;).

Initialization: For each cluster C; initialize its
mean y, , variance c;, and weight o

ii B J
The noemal curde The normal curse The ncrmal surde

N(py , ©1) N(p, , ©,) N(u3 , 03)
o, = P(Cy) a, = P(Cy) az = P(Cy)

With no other knowledge, use random means
and variances and equal weights.




Standard EM to EM Classifier

That's the standard EM algorithm.

For n-dimensional data, the variance
becomes a co-variance matrix, which
changes the formulas slightly.

But we used an EM variant to produce a
classifier.

The next slide indicates the differences
between what we used and the standard.




EM Classifier

Fixed Gaussian components (one Gaussian per object class) and
fixed weights corresponding to the frequencies of the
corresponding objects in the training data.

Customized initialization uses only the training images that contain
a particular object class to initialize its Gaussian.

Controlled expectation step ensures that a feature vector only
contributes to the Gaussian components representing objects
present in its training image.

Extra background component absorbs noise.

Gaussian for Gaussian for Gaussian for Gaussian for
trees buildings sky background




1. Initialization Step (Example)

Image & description
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2. lteration Step (Example) ;
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How do you decide if a particular object is in an image?

To calculate p(tree | image)

pltree | image) = f

r

p( l‘ree| i e )

p(tree| 0 )
J

f is a function that combines
probabilities from all the color
regions in the image.

€.J. max or mean
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Combining different types of
abstract regions: First Try

« Treat the different types of regions
iIndependently and combine at the time of
classification.

1. P(object| a,, a,,..,a,) = P(object|a,)*..*P(object|a,)

2. Form intersections of the different types of
regions, creating smaller regions that have
both color and texture properties for
classification.




Experiments (on 860 images)

« 18 keywords: mountains (30), (37),
track (40), tree trunk (43), football field (43),
(45), (53), cherry tree (53),
snow (54), zebra (56), polar bear (56), (71),
(76), chimpanzee (79), cheetah (112), sky
(259), grass (272), tree (361).

A set of cross-validation experiments (80% as
training set and the other 20% as test set)

« The poorest results are on object classes “tree,”
‘grass,” and each of which has a high
variance; a single Gaussian model is insufficient.



True Positive Rate
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ROC Charts:
True Positive vs. False Positive
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Sample Results (Cont.)
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Summary

« Designed a set of abstract region features: color,
texture, structure, . ..

« Developed a new semi-supervised EM-like algorithm
to recognize object classes in color photographic
Images of outdoor scenes; tested on 860 images.

« Compared two different methods of combining
different types of abstract regions. The intersection
method had a higher performance



Weakness of the EM Classifier
Approach

* |t did not generalize well to multiple
features

* |t assumed that object classes could be
modeled as Gaussians



