Content-Based Image Retrieval

- Queries
- Commercial Systems
- Retrieval Features
- Indexing in the FIDS System
- Lead-in to Object Recognition
Content-based Image Retrieval (CBIR)
Searching a large database for images that match a query:

– What kinds of databases?
– What kinds of queries?
– What constitutes a match?
– How do we make such searches efficient?
Applications

- Art Collections
 e.g. Fine Arts Museum of San Francisco
- Medical Image Databases
 CT, MRI, Ultrasound, The Visible Human
- Scientific Databases
 e.g. Earth Sciences
- General Image Collections for Licensing
 Corbis, Getty Images
- The World Wide Web
 Google, Microsoft, etc
What is a query?

– an **image** you already have

– a rough **sketch** you draw

– a **symbolic description** of what you want
e.g. an **image** of a man and a woman on a **beach**
Some Systems You Can Try

• Corbis sells high-quality images for use in advertising, marketing, illustrating, etc. Corbis was sold to a Chinese company, but

 Getty images now provides the image sales.

• http://www.gettyimages.com/search/2/image?excludenudity=true&sort=best
Google Image

- Google Images
 http://www.google.com/imghp

Try the camera icon.
Microsoft Bing

• http://www.bing.com/
Problem with Text-Based Search

- Retrieval for pigs for the color chapter of my book
- Small company (was called Ditto)
- Allows you to search for pictures from web pages
Features

- **Color** *(histograms, gridded layout, wavelets)*

- **Texture** *(Laws, Gabor filters, local binary pattern)*

- **Shape** *(first segment the image, then use statistical or structural shape similarity measures)*

- **Objects and their Relationships**

 This is the most powerful, but you have to be able to recognize the objects!
Color Histograms

Figure 8.4: Results of a QHIC search based on color percentages: the query specified 40% red, 30% yellow, and 10% black (images courtesy of 2images).
Gridded Color

Gridded color distance is the sum of the color distances in each of the corresponding grid squares.

What color distance would you use for a pair of grid squares?
Color Layout
(IBM’s Gridded Color)

Figure 8.3: Results of a QBIC search based on color layout similarity; the query is the example image shown in the top left position (images courtesy of Egames).
Texture Distances

• Pick and Click (user clicks on a pixel and system retrieves images that have in them a region with similar texture to the region surrounding it).

• Gridded (just like gridded color, but use texture).

• Histogram-based (e.g. compare the LBP histograms).
Laws Texture

Figure 8.6: Results of an image database search based on texture similarity (Images from the MIT Media Lab VisTex database: http://vis Texas.www.media.mit.EDU/visTex/imagry/VisTexTexture/visTex.html).
Shape Distances

• Shape goes one step further than color and texture.

• It requires identification of regions to compare.

• There have been many shape similarity measures suggested for pattern recognition that can be used to construct shape distance measures.
Global Shape Properties: Projection Matching

In projection matching, the horizontal and vertical projections form a histogram.

What are the weaknesses of this method? strengths?
Global Shape Properties: Tangent-Angle Histograms

Is this feature invariant to starting point? Is it invariant to size, translation, rotation?
Boundary Matching

• Fourier Descriptors

• Sides and Angles

• Elastic Matching

The distance between query shape and image shape has two components:

1. energy required to deform the query shape into one that best matches the image shape

2. a measure of how well the deformed query matches the image
Del Bimbo Elastic Shape Matching

query

retrieved images
Regions and Relationships

- Segment the image into regions
- Find their properties and interrelationships
- Construct a graph representation with nodes for regions and edges for spatial relationships
- Use graph matching to compare images
Blobworld (Carson et al, 1999)

- Segmented the query (and all database images) using EM on color+texture
- Allowed users to select the most important region and what characteristics of it (color, texture, location)
- Asked users if the background was also important
Tiger Image as a Graph (motivated by Blobworld)
Andy Berman’s FIDS System
multiple distance measures
Boolean and linear combinations
efficient indexing using images as keys
Andy Berman’s FIDS System:

Use of key images and the triangle inequality for efficient retrieval. \(d(I,Q) \geq |d((I,K) - d(Q,K)| \)
Andy Berman’s FIDS System:

Bare-Bones Triangle Inequality Algorithm

Offline

1. Choose a small set of key images

2. Store distances from database images to keys

Online (given query Q)

1. Compute the distance from Q to each key

2. Obtain lower bounds on distances to database images

3. Threshold or return all images in order of lower bounds
Andy Berman’s FIDS System:

Flexible Image Database System: Example

An example from our system using a simple color measure.
images in system: 37,748
threshold: 100 out of 1000
images eliminated: 37,729
Different Features
Combined Features

Distance measures: ColorHistL14x4x4, ColorHistL8x8x8, SobeiEdgeHist, LBPHist, freshness, Wavelets.

Loose and strict: 5 matches each.

Options: And, Or, Sum.
Another example: different features
Combined Features
Another example: different features
Different ways for combination
Different weights on features

- **Distance measures**
 - ColorHistL14x4
 - ColorHistB8x8
 - SobelEdgeHist
 - LBPHist

- **Weights**
 - Loose: 1
 - Strict: 2

- Operators:
 - And
 - Or
 - Sum
<table>
<thead>
<tr>
<th>distance measures</th>
<th>loose</th>
<th>strict</th>
</tr>
</thead>
<tbody>
<tr>
<td>ColorHistL14x4x4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>ColorHist8x8x8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>SobelEdgeHist</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>LBPHist</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>fleshiness</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Wavelets</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

And

Or

Sum

And

Or

Sum
Weakness of Low-level Features

- Can’t capture the high-level concepts
Yi Li’s Overall Approach

• Develop object recognizers for common objects

• Use these recognizers to design a new set of both low- and mid-level features

• Design a learning system that can use these features to recognize classes of objects
Building Features:
Consistent Line Clusters (CLC)

A **Consistent Line Cluster** is a set of lines that are homogeneous in terms of some line features.

- **Color-CLC**: The lines have the same color feature.
- **Orientation-CLC**: The lines are parallel to each other or converge to a common vanishing point.
- **Spatially-CLC**: The lines are in close proximity to each other.
Experimental Evaluation

- Object Recognition
 - 97 well-patterned buildings (bp): 97/97
 - 44 not well-patterned buildings (bnp): 42/44
 - 16 not patterned non-buildings (nbnp): 15/16 (one false positive)
 - 25 patterned non-buildings (nbp): 0/25

- CBIR
Experimental Evaluation

Well-Patterned Buildings
Experimental Evaluation

Non-Well-Patterned Buildings

False negative

False negative
Experimental Evaluation

Non-Well-Patterned Non-Buildings

False positive
Experimental Evaluation
Well-Patterned Non-Buildings (false positives)
Experimental Evaluation (CBIR)

<table>
<thead>
<tr>
<th>Location</th>
<th>Total Positive Classification (#)</th>
<th>Total Negative Classification (#)</th>
<th>False positive (#)</th>
<th>False negative (#)</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arborgreens</td>
<td>0</td>
<td>47</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Campusinfall</td>
<td>27</td>
<td>21</td>
<td>0</td>
<td>5</td>
<td>89.6</td>
</tr>
<tr>
<td>Cannonbeach</td>
<td>30</td>
<td>18</td>
<td>0</td>
<td>6</td>
<td>87.5</td>
</tr>
<tr>
<td>Yellowstone</td>
<td>4</td>
<td>44</td>
<td>4</td>
<td>0</td>
<td>91.7</td>
</tr>
</tbody>
</table>
Experimental Evaluation (CBIR)
False positives from Yellowstone
Machine Learning!

- **Unsupervised** (given the data, no class labels)
- **Supervised** (given data with class labels)
- We will look at two unsupervised methods today
 - K-means
 - EM
- We saw that EM was used in Rob Fergus’s work.
Clustering

• There are K clusters C_1, \ldots, C_K with means m_1, \ldots, m_K.

• The least-squares error is defined as

$$D = \sum_{k=1}^{K} \sum_{x_i \in C_k} || x_i - m_k ||^2.$$

• Out of all possible partitions into K clusters, choose the one that minimizes D.

Why don’t we just do this? If we could, would we get meaningful objects?
K-Means Clustering

Form K-means clusters from a set of n-dimensional vectors

1. Set ic (iteration count) to 1

2. Choose randomly a set of K means $m_1(1), \ldots, m_K(1)$.

3. For each vector x_i compute $D(x_i, m_k(ic))$, $k=1,\ldots,K$ and assign x_i to the cluster C_j with nearest mean.

4. Increment ic by 1, update the means to get $m_1(ic),\ldots,m_K(ic)$.

5. Repeat steps 3 and 4 until $C_k(ic) = C_k(ic+1)$ for all k.
K-Means Example 1
K-Means Example 2

1. Select an image: [Image Path]
2. Select a processor: KMCluster
3. Click process>>

Options:
- Init Method: 0

Process done!

Dimensions:
- 640x480
- (636,95): RGB(102,130,181)
- (600,200): RGB(0,16,256)
K-Means Example 3

1. Select an image: imgs/Pa170028.jpg
2. Select a processor: KMCluster
3. Click process>>

Options:
Init Method

Process done!

(607,118): RGB(20,22,1)
(228,26): RGB(255,170,0)
K-means Variants

- Different ways to initialize the means
- Different stopping criteria
- Dynamic methods for determining the right number of clusters (K) for a given image

- The EM Algorithm: a probabilistic formulation
K-Means

• **Boot Step:**
 – Initialize K clusters: $C_1, ..., C_K$
 Each cluster is represented by its mean m_j

• **Iteration Step:**
 – Estimate the cluster for each data point
 \[x_i \mapsto C(x_i) \]
 – Re-estimate the cluster parameters

\[m_j = \text{mean}\{x_i \mid x_i \in C_j\} \]
K-Means Example
K-Means Example

Where do the red points belong?
K-Means → EM

- **Boot Step:**
 - Initialize K clusters: C_1, \ldots, C_K

 (μ_j, Σ_j) and $P(C_j)$ for each cluster j.

- **Iteration Step:**
 - Estimate the cluster of each data point

 $p(C_j | x_i)$

 - Re-estimate the cluster parameters

 $(\mu_j, \Sigma_j), p(C_j)$ For each cluster j
What is a covariance matrix

• For a multidimensional distribution of n dimensions ($X_1, X_2, \ldots X_n$):

 • Its mean μ is a vector $\mu = (x_1, x_2, \ldots x_n)$

 Example: $\mu = (r, g, b)$

 • Its covariance matrix gives the variances and covariances for pairs of variables:

 $\Sigma = \text{a matrix in which } \Sigma_{ii} = \sigma_i^2 \text{ (variance)}$

 and $\Sigma_{ij} = \text{Cov}(X_i, X_j) \text{ (covariance of two)}$
1-D EM with Gaussian Distributions

- Each cluster C_j is represented by a Gaussian distribution $N(\mu_j, \sigma_j)$.
- Initialization: For each cluster C_j initialize its mean μ_j, variance σ_j, and weight α_j.

$$N(\mu_1, \sigma_1) \quad \alpha_1 = P(C_1)$$

$$N(\mu_2, \sigma_2) \quad \alpha_2 = P(C_2)$$

$$N(\mu_3, \sigma_3) \quad \alpha_3 = P(C_3)$$
Expectation

• For each point x_i and each cluster C_j compute $P(C_j \mid x_i)$.

• $P(C_j \mid x_i) = \frac{P(x_i \mid C_j) \cdot P(C_j)}{P(x_i)}$

• $P(x_i) = \sum_j P(x_i \mid C_j) \cdot P(C_j)$

• Where do we get $P(x_i \mid C_j)$ and $P(C_j)$?
1. Use the pdf for a normal distribution:

\[P(x_i \mid C_j) = \frac{1}{\sqrt{2\pi \sigma_j}} e^{-\frac{(x_i - \mu_j)^2}{2\sigma_j^2}} \]

2. Use \(\alpha_j = P(C_j) \) from the current parameters of cluster \(C_j \).
Maximization

• Having computed $P(C_j \mid x_i)$ for each point x_i and each cluster C_j, use them to compute new mean, variance, and weight for each cluster.

\[
\mu_j = \frac{\sum_i p(C_j \mid x_i) \cdot x_i}{\sum_i p(C_j \mid x_i)}
\]

\[
\Sigma_j = \frac{\sum_i p(C_j \mid x_i) \cdot (x_i - \mu_j) \cdot (x_i - \mu_j)^T}{\sum_i p(C_j \mid x_i)}
\]

\[
p(C_j) = \frac{\sum_i p(C_j \mid x_i)}{N}
\]
Multi-Dimensional Expectation Step for Color Image Segmentation

Input (Known)

\[x_1 = \{r_1, g_1, b_1\} \]
\[x_2 = \{r_2, g_2, b_2\} \]
\[\ldots \]
\[x_i = \{r_i, g_i, b_i\} \]
\[\ldots \]

Input (Estimation)

Cluster Parameters
\[(\mu_1, \Sigma_1), p(C_1) \text{ for } C_1 \]
\[(\mu_2, \Sigma_2), p(C_2) \text{ for } C_2 \]
\[\ldots \]
\[(\mu_k, \Sigma_k), p(C_k) \text{ for } C_k \]

Output

Classification Results
\[p(C_1|x_1) \]
\[p(C_2|x_2) \]
\[\ldots \]
\[p(C_j|x_i) \]
\[\ldots \]

\[
p(C_j \mid x_i) = \frac{p(x_i \mid C_j) \cdot p(C_j)}{p(x_i)} = \frac{p(x_i \mid C_j) \cdot p(C_j)}{\sum_j p(x_i \mid C_j) \cdot p(C_j)}
\]
Multi-dimensional Maximization Step for Color Image Segmentation

Input (Known)

\[x_1 = \{r_1, g_1, b_1\} \]
\[x_2 = \{r_2, g_2, b_2\} \]
...
\[x_i = \{r_i, g_i, b_i\} \]
...

Input (Estimation)

Classification Results

\[p(C_1|x_1) \]
\[p(C_j|x_2) \]
...
\[p(C_j|x_i) \]
...

Output

Cluster Parameters

\[(\mu_1, \Sigma_1), p(C_1) \text{ for } C_1 \]
\[(\mu_2, \Sigma_2), p(C_2) \text{ for } C_2 \]
...
[\[(\mu_k, \Sigma_k), p(C_k) \text{ for } C_k \]

\[\mu_j = \frac{\sum_i p(C_j | x_i) \cdot x_i}{\sum_i p(C_j | x_i)} \]
\[\Sigma_j = \frac{\sum_i p(C_j | x_i) \cdot (x_i - \mu_j) \cdot (x_i - \mu_j)^T}{\sum_i p(C_j | x_i)} \]
\[p(C_j) = \frac{\sum_i p(C_j | x_i)}{N} \]
Full EM Algorithm
Multi-Dimensional

• **Boot Step:**
 – Initialize K clusters: $C_1, ..., C_K$

 \[(\mu_j, \Sigma_j) \text{ and } P(C_j) \text{ for each cluster } j.\]

• **Iteration Step:**
 – Expectation Step

 \[
p(C_j | x_i) = \frac{p(x_i | C_j) \cdot p(C_j)}{p(x_i)} = \frac{p(x_i | C_j) \cdot p(C_j)}{\sum_j p(x_i | C_j) \cdot p(C_j)}
 \]

 – Maximization Step

 \[
 \mu_j = \frac{\sum_i p(C_j | x_i) \cdot x_i}{\sum_i p(C_j | x_i)} \quad \Sigma_j = \frac{\sum_i p(C_j | x_i) \cdot (x_i - \mu_j) \cdot (x_i - \mu_j)^T}{\sum_i p(C_j | x_i)}
 \]

 \[
p(C_j) = \frac{\sum_i p(C_j | x_i)}{N}
 \]
EM Applications

• Blobworld: Image segmentation using Expectation-Maximization and its application to image querying

• Used both color and texture features with the EM algorithm.
Blobworld: Sample Results
EM Classifier Approach
Object Class Recognition using Images of Abstract Regions

Yi Li, Jeff A. Bilmes, and Linda G. Shapiro
Department of Computer Science and Engineering
Department of Electrical Engineering
University of Washington
Problem Statement

Given: Some images and their corresponding descriptions

{trees, grass, cherry trees} {cheetah, trunk} {mountains, sky} {beach, sky, trees, water}

To solve: What object classes are present in new images
Image Features for Object Recognition

- Color
- Texture
- Structure
- Context
Abstract Regions

<table>
<thead>
<tr>
<th>Original Images</th>
<th>Color Regions</th>
<th>Texture Regions</th>
<th>Line Clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Abstract Regions

Multiple segmentations whose regions are not labeled; a list of labels is provided for each training image.

image

labels

{sky, building}

various different segmentations

region attributes from several different types of regions
Model Initial Estimation

- Estimate the initial model of an object using all the region features from all images that contain the object.
EM Classifier: the Idea

Initial Model for “trees”

Final Model for “trees”

EM

Initial Model for “sky”

Final Model for “sky”
EM Algorithm

• Start with K clusters, each represented by a probability distribution

• Assuming a Gaussian or Normal distribution, each cluster is represented by its mean and variance (or covariance matrix) and has a weight.

• Go through the training data and soft-assign it to each cluster. Do this by computing the probability that each training vector belongs to each cluster.

• Using the results of the soft assignment, recompute the parameters of each cluster.

• Perform the last 2 steps iteratively.
1-D EM with Gaussian Distributions

- Each cluster C_j is represented by a Gaussian distribution $N(\mu_j, \sigma_j)$.
- Initialization: For each cluster C_j initialize its mean μ_j, variance σ_j, and weight α_j.

$N(\mu_1, \sigma_1) \quad \alpha_1 = P(C_1)$

$N(\mu_2, \sigma_2) \quad \alpha_2 = P(C_2)$

$N(\mu_3, \sigma_3) \quad \alpha_3 = P(C_3)$

- With no other knowledge, use random means and variances and equal weights.
Standard EM to EM Classifier

- That’s the standard EM algorithm.
- For n-dimensional data, the variance becomes a co-variance matrix, which changes the formulas slightly.
- But **we used an EM variant to produce a classifier**.
- The next slide indicates the differences between what we used and the standard.
EM Classifier

1. **Fixed Gaussian components** (one Gaussian per object class) and fixed weights corresponding to the frequencies of the corresponding objects in the training data.

2. **Customized initialization** uses only the training images that contain a particular object class to initialize its Gaussian.

3. **Controlled expectation step** ensures that a feature vector only contributes to the Gaussian components representing objects present in its training image.

4. **Extra background component** absorbs noise.

| Gaussian for trees | Gaussian for buildings | Gaussian for sky | Gaussian for background |
1. Initialization Step (Example)

Image & description

\[W = 0.5 \quad W = 0.5 \quad W = 0.5 \]

\[N_{O_1}^{(0)} \quad N_{O_2}^{(0)} \quad N_{O_3}^{(0)} \]

\[W = 0.5 \quad W = 0.5 \quad W = 0.5 \]

\[W = 0.5 \quad W = 0.5 \quad W = 0.5 \]
2. Iteration Step (Example)

\[I_1 \rightarrow \{ O_1, O_2 \} \]

\[I_2 \rightarrow \{ O_1, O_3 \} \]

\[I_3 \rightarrow \{ O_2, O_3 \} \]

E-Step

M-Step

\[N_{O_1}^{(p)} \]

\[N_{O_2}^{(p)} \]

\[N_{O_3}^{(p)} \]
Recognition

Test Image

Color Regions

Object Model Database

Tree

Sky

How do you decide if a particular object is in an image?

To calculate \(p(\text{tree} \mid \text{image}) \)

\[
p(\text{tree} \mid \text{image}) = f \begin{pmatrix}
p(\text{tree} \mid \text{image}) \\
p(\text{tree} \mid \text{image}) \\
p(\text{tree} \mid \text{image}) \\
p(\text{tree} \mid \text{image})
\end{pmatrix}
\]

\(f \) is a function that combines probabilities from all the color regions in the image.

e.g. max or mean
Combining different types of abstract regions: First Try

- Treat the different types of regions **independently** and combine at the time of classification.

1. \[P(\text{object} | a_1, a_2, \ldots, a_n) = P(\text{object} | a_1) \times \ldots \times P(\text{object} | a_n) \]

2. Form **intersections** of the different types of regions, creating smaller regions that have both color and texture properties for classification.
Experiments (on 860 images)

- 18 keywords: mountains (30), orangutan (37), track (40), tree trunk (43), football field (43), beach (45), prairie grass (53), cherry tree (53), snow (54), zebra (56), polar bear (56), lion (71), water (76), chimpanzee (79), cheetah (112), sky (259), grass (272), tree (361).

- A set of cross-validation experiments (80% as training set and the other 20% as test set)

- The poorest results are on object classes “tree,” “grass,” and “water,” each of which has a high variance; a single Gaussian model is insufficient.
ROC Charts:
True Positive vs. False Positive

Independent Treatment of Color and Texture

Using Intersections of Color and Texture Regions
Sample Retrieval Results

cheetah
Sample Results (Cont.)

grass
Sample Results (Cont.)

cherry tree
Sample Results (Cont.)

lion
Summary

• Designed a set of abstract region features: color, texture, structure, . . .

• Developed a new semi-supervised EM-like algorithm to recognize object classes in color photographic images of outdoor scenes; tested on 860 images.

• Compared two different methods of combining different types of abstract regions. The intersection method had a higher performance.
Weakness of the EM Classifier Approach

• It did not generalize well to multiple features

• It assumed that object classes could be modeled as Gaussians