
Computer Vision

CSE/EE 576

Content-Based Image 

Retrieval and the EM 

Algorithm

Linda Shapiro
Professor of Computer Science & Engineering

Professor of Electrical & Computer Engineering



Content-Based Image Retrieval
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• Queries
• Commercial Systems
• Retrieval Features
• Indexing in the FIDS System
• Lead-in to Object Recognition



3

Content-based Image Retrieval 

(CBIR)
Searching a large database for images that 

match a query:

– What kinds of databases?

– What kinds of queries?

– What constitutes a match?

– How do we make such searches efficient?
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Applications

– Art Collections 

e.g. Fine Arts Museum of San Francisco

– Medical Image Databases

CT, MRI, Ultrasound, The Visible Human

– Scientific Databases

e.g. Earth Sciences

– General Image Collections for Licensing

Corbis, Getty Images

– The World Wide Web

Google, Microsoft, etc
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What is a query?

– an image you already have

– a rough sketch you draw

– a symbolic description of what you want

e.g. an image of a man and a woman on

a beach



6

Some Systems You Can Try

• Corbis sells sold high-quality images for use in advertising,
marketing, illustrating, etc. Corbis was sold to a Chinese 
company, but

◼ Getty images now provides the image sales.

• http://www.gettyimages.com/search/2/image?excludenudity=true&sort=best

http://www.gettyimages.com/search/2/image?excludenudity=true&sort=best


Google Image
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• Google Images
http://www.google.com/imghp

Try the camera icon.

http://www.google.com/imghp


Microsoft Bing
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• http://www.bing.com/

http://www.bing.com/
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Problem with Text-Based Search

• Retrieval for pigs for the color chapter of my book

• Small company (was called Ditto)

• Allows you to search for pictures from web pages
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Features

• Color (histograms, gridded layout, wavelets)

• Texture (Laws, Gabor filters, local binary pattern)

• Shape (first segment the image, then use statistical

or structural shape similarity measures)

• Objects and their Relationships 

This is the most powerful, but you have to be able to

recognize the objects!
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Color Histograms
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Gridded Color

Gridded color distance is the sum of the color distances
in each of the corresponding grid squares.

What color distance would you use for a pair of grid squares?

1 12 2

3 34 4



13

Color Layout 

(IBM’s Gridded Color)
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Texture Distances

• Pick and Click (user clicks on a pixel and system
retrieves images that have in them a region with
similar texture to the region surrounding it.

• Gridded (just like gridded color, but use texture).

• Histogram-based (e.g. compare the LBP histograms).
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Laws Texture
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Shape Distances

• Shape goes one step further than color and texture.

• It requires identification of regions to compare.

• There have been many shape similarity measures
suggested for pattern recognition that can be used
to construct shape distance measures.
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Global Shape Properties:

Projection Matching

0
4
1
3
2
0

0   4   3   2   1   0

In projection matching, the horizontal and vertical
projections form a histogram.

Feature Vector
(0,4,1,3,2,0,0,4,3,2,1,0)

What are the weaknesses of this method? strengths?
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Global Shape Properties:

Tangent-Angle Histograms

135

0   30     45           135

Is this feature invariant to starting point?
Is it invariant to size, translation, rotation?
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Boundary Matching

• Fourier Descriptors

• Sides and Angles

• Elastic Matching 

The distance between query shape and image shape
has two components:

1. energy required to deform the query shape into
one that best matches the image shape

2. a measure of how well the deformed query matches
the image
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Del Bimbo Elastic Shape Matching

query retrieved images
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Regions and Relationships

• Segment the image into regions

• Find their properties and interrelationships

• Construct a graph representation with
nodes for regions and edges for 
spatial relationships

• Use graph matching to compare images

Like 
what?



Blobworld (Carson et al, 1999)

• Segmented the query (and all database images) 

using EM on color+texture

• Allowed users to select the most important region 

and what characteristics of it (color, texture, location)

• Asked users if the background was also important

22
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Tiger Image as a Graph 

(motivated by Blobworld)

sky

sand

tiger grass

above
adjacent

above

inside

above above
adjacent

image

abstract regions



24

Andy Berman’s FIDS System

multiple distance measures

Boolean and linear combinations

efficient indexing using images as keys



25

Andy Berman’s FIDS System:

Use of key images and the triangle inequality

for efficient retrieval. d(I,Q) >= |d((I,K) – d(Q,K)|
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Andy Berman’s FIDS System:

Bare-Bones Triangle Inequality Algorithm

Offline

1. Choose a small set of key images

2. Store distances from database images to keys

Online (given query Q)

1. Compute the distance from Q to each key

2.  Obtain lower bounds on distances to database images

3.  Threshold or return all images in order of lower bounds
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Andy Berman’s FIDS System:



Different Features



Combined Features



Another example: different features



Combined Features



Another example: different features



Different ways for combination



Different weights on features
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Weakness of Low-level Features

▪Can’t capture the high-level concepts
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Yi Li’s Overall Approach

• Develop object recognizers for common objects

• Use these recognizers to design a new set of both

low- and mid-level features

• Design a learning system that can use these 

features to recognize classes of objects
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Building Features: 

Consistent Line Clusters 

(CLC)
A Consistent Line Cluster is a set of lines 
that are homogeneous in terms of some line 
features.

◼Color-CLC: The lines have the same color 
feature.

◼Orientation-CLC: The lines are parallel to each 
other or converge to a common vanishing point.

◼Spatially-CLC: The lines are in close proximity 
to each other.
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Experimental Evaluation

• Object Recognition 

– 97 well-patterned buildings (bp): 97/97

– 44 not well-patterned buildings (bnp): 42/44

– 16 not patterned non-buildings (nbnp): 15/16

(one false positive)

– 25 patterned non-buildings (nbp): 0/25

• CBIR
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Experimental Evaluation

Well-Patterned Buildings
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Experimental Evaluation

Non-Well-Patterned Buildings
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Experimental Evaluation

Non-Well-Patterned Non-Buildings
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Experimental Evaluation
Well-Patterned Non-Buildings (false positives)
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Experimental Evaluation (CBIR)

Total Positive 
Classification

(#)

Total 
Negative 

Classification

(#)

False 
positive

(#)

False 
negative

(#)

Accuracy

(%)

Arborgreens 0 47 0 0 100

Campusinfall 27 21 0 5 89.6

Cannonbeach 30 18 0 6 87.5

Yellowstone 4 44 4 0 91.7
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Experimental Evaluation (CBIR)
False positives from Yellowstone



Machine Learning!

• Unsupervised (given the data, no class 

labels)

• Supervised (given data with class labels)

• We will look at two unsupervised methods 

today

– K-means

– EM

• We saw that EM was used in Rob 

Fergus’s work.
47
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Clustering

• There are K clusters C1,…, CK with means m1,…, mK.

• The least-squares error is defined as

• Out of all possible partitions into K clusters, 

choose the one that minimizes D.

Why don’t we just do this?

If we could, would we get meaningful objects?

D =   || xi - mk ||   .
k=1 xi  Ck

K
2
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K-Means Clustering

Form K-means clusters from a set of n-dimensional vectors

1. Set ic (iteration count) to 1

2. Choose randomly a set of K means m1(1), …, mK(1).

3. For each vector xi compute D(xi , mk(ic)), k=1,…K
and assign xi to the cluster Cj with nearest mean.

4.  Increment ic by 1, update the means to get m1(ic),…,mK(ic).

5. Repeat steps 3 and 4 until Ck(ic) = Ck(ic+1) for all k.
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K-Means Example 1
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K-Means Example 2
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K-Means Example 3
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K-means Variants

• Different ways to initialize the means

• Different stopping criteria

• Dynamic methods for determining the right 

number of clusters (K) for a given image

• The EM Algorithm: a probabilistic 

formulation 
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K-Means

• Boot Step:
– Initialize K clusters: C1, …, CK

Each cluster is represented by its mean mj

• Iteration Step:
– Estimate the cluster for each data point

– Re-estimate the cluster parameters

xi C(xi)
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K-Means Example
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K-Means Example

Where do the red points belong?
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K-Means → EM

• Boot Step:
– Initialize K clusters: C1, …, CK

• Iteration Step:
– Estimate the cluster of each data point

– Re-estimate the cluster parameters

(j, j) and P(Cj) for each cluster j.  

)|( ij xCp

)(),,( jjj Cp For each cluster j

Expectation

Maximization



What is a covariance matrix

• For a multidimensional distribution of n 

dimensions (X1, X2, … Xn):

• Its mean µ is a vector µ = (x1, x2, …xn)

Example: µ = (r, g, b)

• Its covariance matrix gives the variances 

and covariances for pairs of variables:

Σ = a matrix in which Σii = σi
2 (variance)

and Σij = Cov(Xi,Xj) (covariance of two)

58
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1-D EM with Gaussian Distributions

• Each cluster Cj is represented by a 

Gaussian distribution N(j , j).

• Initialization: For each cluster Cj initialize 

its mean j , variance j, and weight j. 

N(1 , 1)

1 = P(C1)

N(2 , 2)

2 = P(C2)

N(3 , 3)

3 = P(C3)
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Expectation

• For each point xi and  each cluster Cj

compute P(Cj | xi).

• P(Cj | xi) = P(xi | Cj) P(Cj ) / P(xi)

• P(xi) =  P(xi | Cj) P(Cj)

• Where do we get P(xi | Cj)  and P(Cj)?

j
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1.Use the pdf for a normal distribution:

2. Use j = P(Cj) from the current

parameters of cluster Cj.
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Maximization

• Having computed 

P(Cj | xi) for each 

point xi and each 

cluster Cj, use them 

to compute new 

mean, variance, and 

weight for each 

cluster.
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x1={r1, g1, b1}

x2={r2, g2, b2}

…

xi={ri, gi, bi}

…

Cluster Parameters

(1,1), p(C1) for C1

(2,2), p(C2) for C2

…

(k,k), p(Ck) for Ck

Multi-Dimensional Expectation Step

for Color Image Segmentation

Input (Known) Input (Estimation) Output

+

Classification Results

p(C1|x1)

p(Cj|x2)

…

p(Cj|xi)

…
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x1={r1, g1, b1}

x2={r2, g2, b2}

…

xi={ri, gi, bi}

…

Cluster Parameters

(1,1), p(C1) for C1

(2,2), p(C2) for C2

…

(k,k), p(Ck) for Ck

Multi-dimensional Maximization Step

for Color Image Segmentation
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Full EM Algorithm

Multi-Dimensional

• Boot Step:
– Initialize K clusters: C1, …, CK

• Iteration Step:
– Expectation Step

– Maximization Step

(j, j) and P(Cj) for each cluster j.  
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EM Applications

• Blobworld: Image segmentation using 

Expectation-Maximization and its application 

to image querying

• Used both color and texture features with the 

EM algorithm.
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Blobworld: Sample Results



EM Classifier Approach

Object Class Recognition 

using Images of Abstract 

Regions
Yi Li, Jeff A. Bilmes, and Linda G. Shapiro

Department of Computer Science and Engineering

Department of Electrical Engineering

University of Washington



Given: Some images and their corresponding descriptions

{trees, grass, cherry trees} {cheetah, trunk} {mountains, sky} {beach, sky, trees, water}

? ? ? ?

•••

To solve: What object classes are present in new images

•••

Problem Statement



• Structure

• Color

Image Features for Object 

Recognition

• Texture

• Context



Abstract Regions

Original Images Color Regions Texture Regions Line Clusters



Abstract Regions

{sky, building}

image

labels

region

attributes

from several

different

types of

regions

Multiple segmentations whose regions are not labeled;

a list of labels is provided for each training image.

various different

segmentations



Model Initial Estimation

• Estimate the initial model of an object using all 

the region features from all images that contain 

the object

Tree

Sky

file:///h:/creatas/DV/00012/031301.JPG
file:///h:/creatas/PD/PDV044/44193PD.JPG
file:///h:/creatas/DV/00012/031678.JPG
file:///h:/creatas/DV/00240/506046.JPG
file:///h:/creatas/DV/00013/031171.JPG


Final Model for “trees”

Final Model for “sky”

EM

EM Classifier: the Idea

Initial Model for “trees”

Initial Model for “sky”



EM Algorithm

• Start with K clusters, each represented by a probability 
distribution

• Assuming a Gaussian or Normal distribution, each cluster is 
represented by its mean and variance (or covariance matrix) 
and has a weight.

• Go through the training data and soft-assign it to each 
cluster. Do this by computing the probability that each 
training vector belongs to each cluster.

• Using the results of the soft assignment, recompute the 
parameters of each cluster.

• Perform the last 2 steps iteratively.



1-D EM with Gaussian Distributions

• Each cluster Cj is represented by a Gaussian 

distribution N(j , j).

• Initialization: For each cluster Cj initialize its 

mean j , variance j, and weight j. 

• With no other knowledge, use random means 

and variances and equal weights.

N(1 , 1)

1 = P(C1)

N(2 , 2)

2 = P(C2)

N(3 , 3)

3 = P(C3)



Standard EM to EM Classifier

• That’s the standard EM algorithm.

• For n-dimensional data, the variance 

becomes a co-variance matrix, which 

changes the formulas slightly.

• But we used an EM variant to produce a 

classifier.

• The next slide indicates the differences 

between what we used and the standard.



EM Classifier

1. Fixed Gaussian components (one Gaussian per object class) and 
fixed weights corresponding to the frequencies of the 
corresponding objects in the training data. 

2.     Customized initialization uses only the training images that contain 
a particular object class to initialize its Gaussian.

3.     Controlled expectation step ensures that a feature vector only 
contributes to the Gaussian components representing objects 
present in its training image.

4.     Extra background component absorbs noise.

Gaussian for         Gaussian for        Gaussian for         Gaussian for

trees                  buildings               sky                 background
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I2 I3
O2

O3

Image & description

1. Initialization Step (Example)

W=0.5 W=0.5W=0.5 W=0.5

W=0.5

W=0.5

W=0.5

W=0.5

W=0.5 W=0.5W=0.5 W=0.5
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E-Step

M-Step

2. Iteration Step (Example)

I1
O1

O2

O1

O3

I2 I3
O2

O3

W=0.8 W=0.2W=0.2 W=0.8

W=0.8

W=0.2

W=0.2

W=0.8

W=0.8 W=0.2W=0.2 W=0.8
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Recognition

Test Image Color Regions

Tree

Sky

compare

Object Model

Database

To calculate p(tree | image)

p( tree|             )

p( tree|             )

p( tree|             )

p(tree | image) = f p( tree|             )

f is a function that combines

probabilities from all the color

regions in the image.

e.g. max or mean

How do you decide if a particular object is in an image?

file:///h:/creatas/DV/00012/031678.JPG


Combining different types of 

abstract regions: First Try

• Treat the different types of regions 
independently and combine at the time of 
classification.

1. P(object| a1, a2,..,an) = P(object|a1)*..*P(object|an)

2. Form intersections of the different types of 
regions, creating smaller regions that have 
both color and texture properties for 
classification.



Experiments (on 860 images)

• 18 keywords: mountains (30), orangutan (37), 
track (40), tree trunk (43), football field (43), 
beach (45), prairie grass (53), cherry tree (53), 
snow (54), zebra (56), polar bear (56), lion (71), 
water (76), chimpanzee (79), cheetah (112), sky
(259), grass (272), tree (361).

• A set of cross-validation experiments (80% as 
training set and the other 20% as test set)

• The poorest results are on object classes “tree,”
“grass,” and “water,” each of which has a high 
variance; a single Gaussian model is insufficient.
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ROC Charts: 

True Positive vs. False Positive

Independent Treatment of

Color and Texture

Using Intersections of

Color and Texture Regions



cheetah

Sample Retrieval Results



Sample Results (Cont.)

grass



Sample Results (Cont.)

cherry tree



Sample Results (Cont.)

lion



Summary

• Designed a set of abstract region features: color, 

texture, structure, . . .

• Developed a new semi-supervised EM-like algorithm
to recognize object classes in color photographic 
images of outdoor scenes; tested on 860 images. 

• Compared two different methods of combining
different types of abstract regions. The intersection 
method had a higher performance



Weakness of the EM Classifier 

Approach
• It did not generalize well to multiple 

features

• It assumed that object classes could be 

modeled as Gaussians


