Computer Vision

ECE/CSE 576
Describing and Matching

Linda Shapiro

Professor of Computer Science & Engineering
Professor of Electrical & Computer Engineering

Review

* Harris Corner Dector
* SIFT Key Point Detector
* On to Descriptors

Second Moment Matrix or Harris Matrix

| Zwi L Zw Ll |
| Sw, Ll Zw]

H =

2 X 2 matrix of image derivatives smoothed by
Gaussian weights.

‘@

ol 5| ol
Notation: |y D le —
oy OX Oy
* Firstcompute |, I, and I I, I I 1l ;then apply Gaussian to each.

From HW3: Structure matrix

Weighted sum of gradient information
- W) ZwL () |

Y st (VG we'll tell you how to store this!
- L EwL L) w0 () | e’ll tell you how to store this

[¢

- Use Gaussian weighting
- Eigen vectors/values of this matrix summarize the distribution of

the gradients nearby

- A and A, are eigenvalues
- A and A, both small: no gradient
- A, >>A\,: gradient in one direction
- A and A, similar: multiple gradient directions, corner

Estimating Response

H = {gg])\i:%((a%—d)i\/élbc—k(a—d)?)

- A few methods we use to estimate:

- Calculate these directly from the 2x2 matrix
det(S) =ad —bc =A *A,
trace(S) =a+d= Aj+A,

- **Estimate formula 1: R = det(S) - a trace(S)? = A\, - a(A,+A,)?
- -——Estimate formula 2: R = det(S) / trace(S) = A\, /(A +A,)
- If these estimates are large, A, is large

Harris Corner Detector

- Calculate derivatives I, and I,

- Calculate 3 measures 1, I.1, 1,1,

X" X’

- Calculate weighted sums

- Want a weighted sum of nearby pixels, guess what this is?

- Gaussian!

- Estimate response

- Non-max suppression (just like Canny)

Lowe’s Pyramid Scheme

Sl —
| =

octave)

s+2 filters
GS+1:2(S+1)/SGO

Scale
) _ {first
GFZ'ISGO octave)
: s+3
6,=2?56, images = e
c,=2c, including = == Difference of
G, Original Gaussian Gaussian (DOG) images

The parameter s determines the number of images per octave.

Key point localization

Detect maxima and minima
of difference-of-Gaussian in
scale space

Each point is compared to
its 8 neighbors in the
current image and 9
neighbors each in the scales
above and below

s+2 difference images.
top and bottom ignored.
s planes searched.

For each max or min found,
output is the location and
the scale.

11

Important Point

* People just say “SIFT”.
* But there are TWO parts to SIFT.
1. aninterest point detector
2. aregion descriptor

e They are independent. Many people use the region descriptor
without looking for the points.

Descriptors

* How are we going to describe the patch
around each of the interest points we find in
order to match them between images?

 We will use a very simple descriptor.
* Let’s look at that first.

Simple Normalized Descriptor

interest point neighborhood around normalized neighborhood
interest point around interest point
501 45 56 200 156 145 1
46 201 200 155 0 1
85 101 105 116 100 96

The simple descriptor just subtracts each of the neighbors from the

center value, including the center itself, to normalize for lighting and
exposure.

We can store this as a 1D vector to be efficient:
1561451 15501116 10096

Properties of our Descriptor

* Translation Invariant

 Not scale invariant

* Not rotation invariant

 Somewhat invariant to lighting changes

e Let’s look at the SIFT descriptor, because it is
neavily used, even without using the SIFT key
noint detector.

* |t already solves the scale problem by computing
at multiple scales and keeping track.

15

Rotation invariance

Rotate patch according to its dominant gradient
orientation
« This puts the patches into a canonical orientation.

Image from Matthew Brown

Orientation Normalization

« Compute orientation histogram
* Select dominant orientation
« Normalize: rotate to fixed orientation

[Lowe, SIFT, 1999]

s .

Once we have found the key points and a dominant orientation for each,

we need to describe the (rotated and scaled) neighborhood about each.

128-dimensional vector

~ SIFT descriptor
Full version

« Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
« Compute an orientation histogram for each cell
« 16 cells * 8 orientations = 128 dimensional descriptor

a0
K

k-

Image gradients Keypoint descriptor

Adapted from slide by David Lowe 19

| SIFT descriptor
Full version

* Divide the 16x16 window into a 4x4 grid of cells
« Compute an orientation histogram for each cell
« 16 cells * 8 orientations = 128 dimensional descriptor

20

Numeric Example

0.97 0.98
0.79 0.97
0.73 0.91
0.90 0.98

by Yao Lu

21

/

Orientations in each of
the 16 pixels of the cell

The orientations all
ended up in two bins:
11 in one bin, 5in the
other. (rough count)

511000000

22

Full version

SIFT descriptor

Start with a 16x16 window (256 pixels)

Divide the 16x16 window into a 4x4 grid of cells (16 cells)
Compute an orientation histogram for each cell

16 cells * 8 orientations = 128 dimensional descriptor
Threshold normalize the descriptor:

Z d? —] such that: dz < (.2

0.2

Adapted from slide by David Lowe

23

Properties of SIFT

Extraordinarily robust matching technique
— Can handle changes in viewpoint
e Up to about 30 degree out of plane rotation
— Can handle significant changes in illumination
* Sometimes even day vs. night (below)

— Fast and efficient—can run in real time

— Various code available
http://www.cs.ubc.ca/~lowe/keypoints/

http://www.cs.ubc.ca/~lowe/keypoints/

Example

NASA Mars Rover images
with SIFT feature matches
Figure by Noah Snavely 25

Matching with Features

*Detect feature points in both images

26

ith Features

ing w

Match
*Detect feature po

images

in both

INtS

IrS

ing pa

*Find correspond

27

How do you find correspondences?

e Put the descriptors from each image into
vectors and match them

* How do you compare two descriptors?

* Vector distance
— L1-Distance(A,B) = Z, |a;- b,
— L2-Distance(A,B) = 2. sqrt(a;2—b.?)
— cosine distance (angle between 2 vectors)

Find the best matches

* For each descriptor ain A, find its best match b in
B

A B M

 And store it in a vector of matches
 Note: this is abstract; see code for details.

29

Matching with Features

*Detect feature points in both images
*Find corresponding pairs

*Use these matching pairs to align images.

30

* Larger Goal: Combine two or more
overlapping images to make one larger image

Slide credit: Vaibhav 3\1/aish

http://robots.stanford.edu/cs223b07/notes/CS223B-L11-Panoramas.ppt

How to do it?

e Basic Procedure

1. Take a sequence of images from the same
position
(Rotate the camera about its optical center)

2. Compute transformation between second image
and first

3. Shift the second image to overlap with the first
Blend the two together to create a mosaic
5. If there are more images, repeat

1. Take a sequence of images from the same
position

* Rotate the camera about its optical center

" SRR
. ‘ v‘-‘..!' u\

_ \ RaTST
«

33

2. Compute transformation between images

Extract interest points
Find Matches
Compute transformation ?

34

3. Shift the images to overlap

35

4. Blend the two together to create a mosaic

36

5. Repeat for all images

37

How to do it?

e Basic Procedure

v 1. Take a sequence of images from the same
position
Rotate the camera about its optical center

2. Compute transformation between second image
and first

3. Shift the second image to overlap with the first
Blend the two together to create a mosaic
5. If there are more images, repeat

Compute Transformations

v/« Extract interest points
V'« Find good matches
 Compute transformation

Let’s assume we are given a set of good matching
interest points

Image reprojection

] ™ mosaic PP

 The mosaic has a natural interpretation in 3D
— The images are reprojected onto a common plane
— The mosaic is formed on this plane

Example

Camera Center

41

lmage reprojection

|

[

[
]
o
H

—

e Observation

— Rather than thinking of this as a 3D reprojection, think
of it as a 2D image warp from one image to another

Motion models

 What happens when we take two images with

a camera and try to align them?
translation?
rotation?
scale?
affine?
Perspective?

43

Projective transformations

* (aka homographies)

‘abel |x

ghl] |1

de f| Y] =

|

=
~

S

= v/w

44

Parametric (global) warping

* Examples of parametric warps:

perspective
affine

45

2D coordinate transformations

translation: x’=x+t x = (x,y)
rotation: x’=Rx+t

similarity: X’=sRx+t

affine: X=Ax+t

perspective: x'=zHx x=(xy,1)
(x is a homogeneous coordinate)

Image Warping

* Given a coordinate transform x” = h(x) and a
source image f(x), how do we compute a
transformed image g(x’) = f(h(x))?

47

Inverse Warping

* Get each pixel g(x’) from its corresponding
location x” = h(x) in f(x)
 What if pixel comes from “between” two pixels?

48

Inverse Warping

* Get each pixel g(x’) from its corresponding
location x” = h(x) in f(x)
 What if pixel comes from “between” two pixels?

« Answer: We already know this: resample
color value from interpolated source image

T_; h™(x) L#

fix) g(x’)

Interpolation

* Possible interpolation filters:
— nearest neighbor
— bilinear

— bicubic (interpolating)

50

Motion models

r O mﬁ U

\""'-_ i

Translation Affine Perspective

2 unknowns 6 unknowns 8 unknowns

51

Finding the transformation

* Translation = 2 degrees of freedom
* Similarity = 4 degrees of freedom

e Affine = 6 degrees of freedom
* Homography = 8 degrees of freedom

* How many corresponding points do we need
to solve?

Simple case: translations

How do we solve for
(Xta yt) ?

54

Simple case: translations

(x7,¥1)

Displacement of match i = (X; — X, y,; — yz)

Simple case: translations

|
.

Yi T Yt
e System of linear equations

— What are the knowns? Unknowns?

— How many unknowns? How many equations (per match)?
56

Simple case: translations

<
<
c+

|
S

* Problem: more equations than unknowns

— “Overdetermined” system of equations

— We will find the least squares solution .

Least squares formulation

* For each point (Xia y'i)

X

Y-

- Yt

—= X

e we define the residuals as

x; (Xﬁ)

Tyi (Yt)

7
(xi +x¢t) — X;
(yi +y:) -y,

Least squares formulation

* Goal: minimize sum of squared residuals

mn

C(Xt,yt) = Z (Tx@- (%)

1=1

« “Least squares’ solution

Iy, (yt)Q)

* For translations, is equal to mean displacement

59

Solving for translations

* Using least squares

/

1 0] xh — 1y

0 1 Y1 — Y

1 0 ThH — To

0 1 xt]: yh — v
: Yt :

1 0 T — Ty

0 1 _ygz_yn

Least squares

At=Db

e Find t that minimizes

|At —b|?
* To solve, form the normal equations
A"At=A"b
—1
t=(A"A) A'b

Affine transformations

O QLR

o o o

C
f
1 —

L
Y
1

How many unknowns?

How many equations per match?
X =ax+by+c;, y =dx +ey+f

How many matches do we need?

Affine transformations

 Residuals:

re(a,b,¢.d e f) = (ax; +by; + c) —
Iy, (CL, ba C, d? €, f) — (d;’]ﬂ'@ — €Y; T f) — y;

 Cost function:
C(a,b,c,d,e, f) =

T

1=1

63

Affine transformations

« Matrix form

C a1 oy 10 0 0 ° Cx T
0 0 0 = wy 1| _ . Y
a
2 y2 1 0 0 0 b rh
0 0 0 X9 Yo 1 C o 3/2
g =
e
o yn 1 0 0 0" I
0 0 0 x, Yyn 1 _ i _

N X 6 6x1 2nx 1

Solving for homographies

x - hoo hoi hoz | | @
Y, hio hi1 hio Y;
1 _hzohzl@__l_

D, e, e

Why is this now a variable and not just 1?

A homography is a projective object, in that it has no scale.
It is represented by the above matrix, up to scale.

* One way of fixing the scale is to set one of the coordinates to 1,
though that choice is arbitrary.

e But that’s what most people do and your assignment code does.

Solving for homographies

! hoo hoir ho2 | |
y: | = | hig h11 hio Yi
1 | hog ho1 hoo || 1]

hoor; + ho1y; + ho2
hoox; + h21y; + hoo
) = hiox; + h11y; + hio
hoow; + h21y; + hoo
Why the division?

r, —

hoox; + ho1y; + hoo
hior; + h11y; + hio

z;(hoow; + ho1y; + hoo)
y:(hoow; + ho1y; + hoo)

Solving for homographies

- hoo

z;(hoow; + ho1y; + hoo) = hoox; + ho1y; -
yi(hoom; + ho1y; + hoo) = hiox; + h119; A
e
ho1
hoo
z, yi 1 0 0 0 —a2la; —aly _x;] Zlo
11
0 0 0 z; vy 1 —ym; —vy; —v his
hoo
ho1
This is just for one pair of points. ho2 |

- hio

Direct Linear Transforms (n points)

hoo
_ | ho1 o
rx1 y1 1 0 O O —:13’1331 —x’lyl —a:"l hoo 0
O 0 0 21 y1 1 —yiz1 —¥iy1 - || hio 0
: hll = :
Tn yn 1 0 0 O —aban —alyn —2 hio 0
0 0 O @n yn 1 —ypon —Ypyn —Yn | | h2o 0 |
ho1
A
2n X 9 191 2n
Defines a least squares problem: minimize ||[Ah — 0||2

e Since h is only defined up to scale, solve for unit vector fl
e Solution: I = eigenvector of AT A with smallest eigenvalue
e Works with 4 or more points

Direct Linear Transforms

 Why could we not solve for the homography
in exactly the same way we did for the affine
transform, ie.

t=(ATA) ATb

Answer from Sameer Agarwal
(Dr. Rome in a Day)

* For an affine transform, we have equations of the form Ax, + b
=vy,, solvable by linear regression.

* For the homography, the equation is of the form
HX. ~ V¥, (homogeneous coordinates)

and the ~ means it holds only up to scale. The affine solution
does not hold.

Colosseum: 2,097 images, 819,242 points Trevi Fountain: 1,935 images, 1,055,153 points

70

Matching features

=i

amimal S
J{M.x}]ﬁ

1‘1:‘
b
o
RE= Sy
Ll | R 7=

il |

Ilhj uu‘l

J=4
[T 1
I“J; v

'y W
’

N i

What do we do about the “bad” matches?

71

RAndom SAmple Consensus

Select one match, count inliers

72

RAndom SAmple Consensus

Select one match, count inliers

73

Least squares fit (from inliers)

=i

:ni i-.iii]_i

<t {
1 B0 v <
™ I T ‘
— .
| d ol
i 3
|
w .
/, :
i : : Ei
- [T «

Find “average” translation vector

74

LE
IR
i | ‘_{.Z ﬁﬁ

lu‘ml

iy |
'y

75

RANSAC for estimating homography

* RANSAC loop:

1. Select four feature pairs (at random)
<2. Compute homography H (exact)

3. Compute inliers where ||p;’, H pi|| < €

* Keep largest set of inliers

* Re-compute least-squares H estimate using all
of the inliers

Simple example: fit a line

e Rather than homography H (8 numbers)
fit y=ax+b (2 numbers a, b) to 2D pairs

77

Simple example: fit a line

* Pick 2 points
e Fitline
e Countinliers

3inliers O O

O O
0 O
O

78

Simple example: fit a line

* Pick 2 points
e Fitline
e Countinliers

4 inliers O O

—_— o0 o0—o—

o © O
O

79

Simple example: fit a line

Pick 2 points
Fit line
Count inliers

9 inliers

80

80

Simple example: fit a line

Pick 2 points
Fit line
Count inliers

8 inliers

81

81

Simple example: fit a line

* Use biggest set of inliers

* Do least-square fit

82

82

What still needs to be fixed?

* The planar projections may not work so well

* Your homework uses cylindrical projections
instead.

Panorama algorithm:

Find corners in both images

Calculate descriptors

Match descriptors

RANSAC to find homography

Stitch together images with homography

NEXT TIME.

