
Computer Vision

ECE/CSE 576
Describing and Matching

Linda Shapiro
Professor of Computer Science & Engineering

Professor of Electrical & Computer Engineering

Review

• Harris Corner Dector

• SIFT Key Point Detector

• On to Descriptors

2

Second Moment Matrix or Harris Matrix

2 x 2 matrix of image derivatives smoothed by
Gaussian weights.

Notation:

x

I
I x






y

I
I y






y

I

x

I
II yx










• First compute Ix, Iy, and Ix Ix, Iy Iy, IxIy; then apply Gaussian to each.

| Σiwi Ix Ix Σiwi Ix Iy |
| Σiwi Ix Iy Σiwi Iy Iy |

H =

From HW3: Structure matrix
- Weighted sum of gradient information

- | ΣiwiIx(i)Ix(i) ΣiwiIx(i)Iy(i) |

- | ΣiwiIx(i)Iy(i) ΣiwiIy(i)Iy(i) |

- Use Gaussian weighting
- Eigen vectors/values of this matrix summarize the distribution of

the gradients nearby
- λ1 and λ2 are eigenvalues

- λ1 and λ2 both small: no gradient
- λ1 >> λ2: gradient in one direction
- λ1 and λ2 similar: multiple gradient directions, corner

We’ll tell you how to store this!

Estimating Response

- A few methods we use to estimate:

- Calculate these directly from the 2x2 matrix
- det(S) = ad – bc = λ1*λ2

- trace(S) = a + d = λ1+λ2

- **Estimate formula 1: R = det(S) - α trace(S)2 = λ1λ2 - α(λ1+λ2)2

- ---Estimate formula 2: R = det(S) / trace(S) = λ1λ2/(λ1+λ2)

- If these estimates are large, λ2 is large

Harris Corner Detector

- Calculate derivatives Ix and Iy

- Calculate 3 measures IxIx, IyIy, IxIy

- Calculate weighted sums

- Want a weighted sum of nearby pixels, guess what this is?

- Gaussian!

- Estimate response

- Non-max suppression (just like Canny)

9

Lowe’s Pyramid Scheme

s+2 filters

s+1=2(s+1)/s0

.

.

i=2i/s0

.

.

2=22/s0

1=21/s0

0

s+3

images

including

original

s+2

differ-

ence

images

The parameter s determines the number of images per octave.

10

Key point localization

• Detect maxima and minima
of difference-of-Gaussian in
scale space

• Each point is compared to
its 8 neighbors in the
current image and 9
neighbors each in the scales
above and below

Blur

Resample

Subtract

For each max or min found,

output is the location and

the scale.

s+2 difference images.

top and bottom ignored.

s planes searched.

11

Important Point

• People just say “SIFT”.

• But there are TWO parts to SIFT.

1. an interest point detector

2. a region descriptor

• They are independent. Many people use the region descriptor
without looking for the points.

Descriptors

• How are we going to describe the patch
around each of the interest points we find in
order to match them between images?

• We will use a very simple descriptor.

• Let’s look at that first.

13

Simple Normalized Descriptor

14

interest point neighborhood around normalized neighborhood
interest point around interest point

201
45 56 200
46 201 200
85 101 105

156 145 1
155 0 1
116 100 96

• The simple descriptor just subtracts each of the neighbors from the
center value, including the center itself, to normalize for lighting and
exposure.

• We can store this as a 1D vector to be efficient:
156 145 1 155 0 1 116 100 96

Properties of our Descriptor

• Translation Invariant
• Not scale invariant
• Not rotation invariant
• Somewhat invariant to lighting changes

• Let’s look at the SIFT descriptor, because it is
heavily used, even without using the SIFT key
point detector.

• It already solves the scale problem by computing
at multiple scales and keeping track.

15

CSE 576: Computer Vision

Rotation invariance

Image from Matthew Brown

• Rotate patch according to its dominant gradient
orientation

• This puts the patches into a canonical orientation.

T. Tuytelaars, B. Leibe

Orientation Normalization

• Compute orientation histogram

• Select dominant orientation

• Normalize: rotate to fixed orientation

0 2p

[Lowe, SIFT, 1999]

Once we have found the key points and a dominant orientation for each,

we need to describe the (rotated and scaled) neighborhood about each.

128-dimensional vector

SIFT descriptor
Full version

• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)

• Compute an orientation histogram for each cell

• 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David Lowe 19

SIFT descriptor
Full version

• Divide the 16x16 window into a 4x4 grid of cells

• Compute an orientation histogram for each cell

• 16 cells * 8 orientations = 128 dimensional descriptor

8 8 . . . 8

20

0.37 0.79 0.97 0.98

0.97

0.91

0.98

0.79

0.73

0.900.75

0.31

0.45

0.45

0.04

0.08

by Yao Lu

Numeric Example

21

Orientations in each of
the 16 pixels of the cell

The orientations all
ended up in two bins:
11 in one bin, 5 in the
other. (rough count)

22

5 11 0 0 0 0 0 0

Full version
• Start with a 16x16 window (256 pixels)

• Divide the 16x16 window into a 4x4 grid of cells (16 cells)

• Compute an orientation histogram for each cell

• 16 cells * 8 orientations = 128 dimensional descriptor

• Threshold normalize the descriptor:

SIFT descriptor

Adapted from slide by David Lowe

0.2

such that:

23

Properties of SIFT
Extraordinarily robust matching technique

– Can handle changes in viewpoint

• Up to about 30 degree out of plane rotation

– Can handle significant changes in illumination

• Sometimes even day vs. night (below)

– Fast and efficient—can run in real time

– Various code available
• http://www.cs.ubc.ca/~lowe/keypoints/

24

http://www.cs.ubc.ca/~lowe/keypoints/

NASA Mars Rover images
with SIFT feature matches

Figure by Noah Snavely

Example

25

Matching with Features

•Detect feature points in both images

26

Matching with Features

•Detect feature points in both images

•Find corresponding pairs

27

How do you find correspondences?

• Put the descriptors from each image into
vectors and match them

• How do you compare two descriptors?

• Vector distance

– L1-Distance(A,B) = Σi |ai - bi|

– L2-Distance(A,B) = Σi sqrt(ai
2 –bi

2)

– cosine distance (angle between 2 vectors)

28

Find the best matches

• For each descriptor a in A, find its best match b in
B

• And store it in a vector of matches
• Note: this is abstract; see code for details.

29

i

j

i j

A B M

Matching with Features

•Detect feature points in both images

•Find corresponding pairs

•Use these matching pairs to align images.

30

• Larger Goal: Combine two or more
overlapping images to make one larger image

Add example

Slide credit: Vaibhav Vaish
31

http://robots.stanford.edu/cs223b07/notes/CS223B-L11-Panoramas.ppt

How to do it?

• Basic Procedure

1. Take a sequence of images from the same
position

(Rotate the camera about its optical center)

2. Compute transformation between second image
and first

3. Shift the second image to overlap with the first

4. Blend the two together to create a mosaic

5. If there are more images, repeat

32

1. Take a sequence of images from the same

position

• Rotate the camera about its optical center

33

2. Compute transformation between images

• Extract interest points

• Find Matches

• Compute transformation ?

34

3. Shift the images to overlap

35

4. Blend the two together to create a mosaic

36

5. Repeat for all images

37

How to do it?

• Basic Procedure

1. Take a sequence of images from the same
position

Rotate the camera about its optical center

2. Compute transformation between second image
and first

3. Shift the second image to overlap with the first

4. Blend the two together to create a mosaic

5. If there are more images, repeat

✓

38

Compute Transformations

• Extract interest points

• Find good matches

• Compute transformation

✓

Let’s assume we are given a set of good matching
interest points

✓

39

mosaic PP

Image reprojection

• The mosaic has a natural interpretation in 3D

– The images are reprojected onto a common plane

– The mosaic is formed on this plane 40

Example

Camera Center
41

Image reprojection

• Observation
– Rather than thinking of this as a 3D reprojection, think

of it as a 2D image warp from one image to another
42

Motion models

• What happens when we take two images with
a camera and try to align them?

• translation?

• rotation?

• scale?

• affine?

• Perspective?

43

Projective transformations

• (aka homographies)

44

Parametric (global) warping

• Examples of parametric warps:

translation rotation aspect

affine
perspective

45

2D coordinate transformations

• translation: x’ = x + t x = (x,y)

• rotation: x’ = R x + t

• similarity: x’ = s R x + t

• affine: x’ = A x + t

• perspective: x’  H x x = (x,y,1)
(x is a homogeneous coordinate)

46

Image Warping

• Given a coordinate transform x’ = h(x) and a
source image f(x), how do we compute a
transformed image g(x’) = f(h(x))?

f(x) g(x’)
x x’

h(x)

47

48

Inverse Warping

• Get each pixel g(x’) from its corresponding
location x’ = h(x) in f(x)

f(x) g(x’)
x x’

h-1(x)

• What if pixel comes from “between” two pixels?

49

Inverse Warping

• Get each pixel g(x’) from its corresponding
location x’ = h(x) in f(x)

• What if pixel comes from “between” two pixels?

• Answer: We already know this: resample

color value from interpolated source image

f(x) g(x’)
x x’

h-1(x)

Interpolation

• Possible interpolation filters:

– nearest neighbor

– bilinear

– bicubic (interpolating)

50

Motion models

Translation

2 unknowns

Affine

6 unknowns

Perspective

8 unknowns

51

Finding the transformation

• Translation = 2 degrees of freedom

• Similarity = 4 degrees of freedom

• Affine = 6 degrees of freedom

• Homography = 8 degrees of freedom

• How many corresponding points do we need
to solve?

52

Simple case: translations

How do we solve for
?

54

Mean displacement =

Simple case: translations

Displacement of match i =

55

Simple case: translations

• System of linear equations
– What are the knowns? Unknowns?

– How many unknowns? How many equations (per match)?
56

Simple case: translations

• Problem: more equations than unknowns
– “Overdetermined” system of equations

– We will find the least squares solution
57

Least squares formulation

• For each point

• we define the residuals as

58

Least squares formulation

• Goal: minimize sum of squared residuals

• “Least squares” solution

• For translations, is equal to mean displacement

59

Solving for translations

• Using least squares

2n x 2 2 x 1 2n x 1 60

Least squares

• Find t that minimizes

• To solve, form the normal equations

61

Affine transformations

• How many unknowns?

• How many equations per match?

• x´ = ax + by + c; y´ = dx + ey +f

• How many matches do we need?

62

Affine transformations

• Residuals:

• Cost function:

63

Affine transformations

• Matrix form

2n x 6 6 x 1 2n x 1
64

Solving for homographies

65

Why is this now a variable and not just 1?

• A homography is a projective object, in that it has no scale.
It is represented by the above matrix, up to scale.

• One way of fixing the scale is to set one of the coordinates to 1,
though that choice is arbitrary.

• But that’s what most people do and your assignment code does.

Solving for homographies

66

Why the division?

Solving for homographies

67

This is just for one pair of points.

Direct Linear Transforms (n points)

Defines a least squares problem:

• Since is only defined up to scale, solve for unit vector

• Solution: = eigenvector of with smallest eigenvalue

• Works with 4 or more points

2n × 9 9 2n

68

Direct Linear Transforms

• Why could we not solve for the homography
in exactly the same way we did for the affine
transform, ie.

69

Answer from Sameer Agarwal
(Dr. Rome in a Day)

• For an affine transform, we have equations of the form Axi + b
= yi, solvable by linear regression.

• For the homography, the equation is of the form

Hxĩ ̴ ỹi (homogeneous coordinates)

and the ̴ means it holds only up to scale. The affine solution
does not hold.

70

71

Matching features

What do we do about the “bad” matches?

72

RAndom SAmple Consensus

Select one match, count inliers

73

RAndom SAmple Consensus

Select one match, count inliers

74

Least squares fit (from inliers)

Find “average” translation vector

75

RANSAC for estimating homography

• RANSAC loop:

1. Select four feature pairs (at random)

2. Compute homography H (exact)

3. Compute inliers where ||pi´, H pi|| < ε

• Keep largest set of inliers

• Re-compute least-squares H estimate using all
of the inliers

76

77

Simple example: fit a line

• Rather than homography H (8 numbers)
fit y=ax+b (2 numbers a, b) to 2D pairs

77

78

Simple example: fit a line

• Pick 2 points

• Fit line

• Count inliers

78

3 inliers

79

Simple example: fit a line

• Pick 2 points

• Fit line

• Count inliers

79

4 inliers

80

Simple example: fit a line

• Pick 2 points

• Fit line

• Count inliers

80

9 inliers

81

Simple example: fit a line

• Pick 2 points

• Fit line

• Count inliers

81

8 inliers

82

Simple example: fit a line

• Use biggest set of inliers

• Do least-square fit

82

What still needs to be fixed?

• The planar projections may not work so well

• Your homework uses cylindrical projections
instead.

83

Panorama algorithm:
Find corners in both images

Calculate descriptors

Match descriptors

RANSAC to find homography

Stitch together images with homography

NEXT TIME.

