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Review: What’s an edge?
- Image is a function
- Edges are rapid changes in this function



Image derivatives
- Recall:

-

- Want smoothing too!

Sobel Operator



Laplacian (2nd derivative)!
- Crosses zero at extrema
- Recall:

-

- Laplacian:
-

- Again, have to
estimate f’’(x):

0   1  0
1  -4  1
0   1   0

Laplacian Operator



Laplacians also sensitive to noise
- Again, use gaussian smoothing

- Can just use one kernel since convs commute

- Laplacian of Gaussian, LoG

- Can get good approx. with

5x5 - 9x9 kernels



Difference of Gaussian (DoG)
- Gaussian is a low pass filter
- Strongly reduce components with frequency f < σ
- (g*I) low frequency components
- I - (g*I) high frequency components
- g(σ1)*I - g(σ2)*I

- Components in between these frequencies

- g(σ1)*I - g(σ2)*I = [g(σ1) - g(σ2)]*I

- =
σ = 1σ = 2



DoGs



Canny Edge Detection
- Your first image processing pipeline!

- Old-school CV is all about pipelines

Algorithm:

- Smooth image (only want “real” edges, not noise)
- Calculate gradient direction and magnitude
- Non-maximum suppression perpendicular to edge
- Threshold into strong, weak, no edge
- Connect together components

http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/



Gradient magnitude and direction
- Sobel filter

http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/



Non-maximum suppression



Non-maximum suppression



Non-maximum suppression

http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/



Threshold edges
- Still some noise
- Only want strong edges
- 2 thresholds, 3 cases

- R > T: strong edge
- R < T but R > t: weak edge
- R < t: no edge

- Why two thresholds?

http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/



Connect ‘em up!
- Strong edges are edges!
- Weak edges are edges 

iff they connect to strong
- Look in some neighborhood

(usually 8 closest)

http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/



Features!
- Highly descriptive local regions
- Ways to describe those regions
- Useful for:

- Matching
- Recognition
- Detection



How to create a panorama
- Say we are stitching a panorama

- Want patches in image to match to other image

- Hopefully only match one spot



Q1: How close are two patches?
- Sum squared difference

- Images I, J

- Σx,y (I(x,y) - J(x,y))2



Q2: How can we find unique patches?
- Sky: bad

- Very little variation

- Could match any other sky



How can we find unique patches?
- Sky: bad

- Very little variation

- Could match any other sky

- Edge: ok
- Variation in one direction

- Could match other patches

along same edge



How can we find unique patches?
- Sky: bad

- Very little variation

- Could match any other sky

- Edge: ok
- Variation in one direction

- Could match other patches

along same edge

- Corners: good!
- Only one alignment matches



What are we going to do?

• We are going to build a panorama from two (or 
more) images.

• We need to learn about
– Finding interest points
– Describing small patches about such points
– Finding matches between pairs of such points on two 

images, using the descriptors
– Selecting the best set of matches and saving them
– Constructing homographies (transformations) from 

one image to the other and picking the best one
– Stitching the images together to make the panorama
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Preview: Harris detector

Interest points extracted with Harris (~ 500 points)



How can we find corresponding 
points?



Not always easy

NASA Mars Rover images



NASA Mars Rover images

with SIFT feature matches

Figure by Noah Snavely

Answer below (look for tiny colored squares…)



Human eye movements

Yarbus eye tracking

What catches your
interest?



Interest points

• Suppose you have to click 

on some point,  go away 

and come back after I 

deform the image, and click 
on the same points again.  
• Which points would you 

choose?

original

deformed



Intuition



Corners

• We should easily recognize the point by looking 
through a small window

• Shifting a window in any direction should give a 
large change in intensity

“edge”:

no change along 

the edge 
direction

“corner”:

significant 

change in all 
directions

“flat” region:

no change in 
all directions

Source: A. Efros



Let’s look at the gradient distributions



Principal  Component  Analysis
Principal component is the direction of 
highest variance.

How to compute PCA components:

1.Subtract off the mean for each data point.

2.Compute the covariance matrix.

3.Compute eigenvectors and eigenvalues.

4.The components are the eigenvectors ranked 
by the eigenvalues.

Next, highest component is the direction with 

highest variance orthogonal to the previous 
components.

Definition: A scalar λ is called an eigenvalue of the n×n matrix A if there is a nontrivial 
solution x of Ax=λx. Such x is called an eigenvector corresponding to the eigenvalue λ.



Corners have …

Both eigenvalues are large!



Second Moment Matrix or Harris Matrix

2 x 2 matrix of image derivatives smoothed by 
Gaussian weights.

Notation:
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• First compute Ix, Iy, and Ix  Ix,  Iy Iy, IxIy; then apply Gaussian to each.

| Σiwi Ix  Ix Σiwi Ix Iy |
| Σiwi Ix Iy Σiwi Iy Iy |

H =



From HW3: Structure matrix
- Weighted sum of gradient information

- | ΣiwiIx(i)Ix(i)    ΣiwiIx(i)Iy(i) |

- | ΣiwiIx(i)Iy(i)    ΣiwiIy(i)Iy(i) |

- Use Gaussian weighting 
- Eigen vectors/values of this matrix summarize the distribution of 

the gradients nearby
- λ1 and λ2 are eigenvalues

- λ1 and λ2 both small: no gradient
- λ1 >> λ2: gradient in one direction
- λ1 and λ2 similar: multiple gradient directions, corner

We’ll tell you how to store this!



Estimating Response

- A few methods we use to estimate:

- Calculate these directly from the 2x2 matrix
- det(S) = ad – bc = λ1*λ2

- trace(S) = a + d =  λ1+λ2

- Estimate formula 1: R = det(S) - α trace(S)2 = λ1λ2 - α(λ1+λ2)2

- Estimate formula 2: R = det(S) / trace(S) = λ1λ2/(λ1+λ2)

- If these estimates are large, we call it a corner



Harris Corner Detector

- Calculate derivatives Ix and Iy

- Calculate 3 measures IxIx, IyIy, IxIy

- Calculate weighted sums

- Want a weighted sum of nearby pixels, guess what this is?

- Gaussian!

- Estimate response

- Non-max suppression!



Harris Detector: Steps



Harris Detector: Steps

Compute corner response R



Harris Detector: Steps
Find points with large corner response: R > threshold



Harris Detector: Steps
Take only the points of local maxima of R



Harris Detector: Results



Properties of the Harris corner detector

• Translation invariant?

• Rotation invariant? 

• Scale invariant?

All points will be 
classified as edges

Corner !

Yes

No

Yes
What’s the
problem?







• Can we do better than Harris?

• The Harris corner detector is not widely used 
except in class assignments.

• The SIFT detector/descriptor is the standard.

• Let’s take a look.
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Scale 

What is the “best” scale?



Scale Invariance

K. Grauman, B. Leibe

How can we independently select interest points in 

each image, such that the detections are repeatable 
across different scales?

)),((      )),((
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Differences between Inside and Outside

1.  We can use a Laplacian function



Scale

Why Gaussian?

It is invariant to scale change, 

i.e., 

and has several other nice 

properties.  Lindeberg, 1994

In practice, the Laplacian is 

approximated using a 

Difference of Gaussian (DoG).

But we use a Gaussian.



Difference-of-Gaussian (DoG)

K. Grauman, B. Leibe

- =

G1        - G2            =        DoG



DoG example

σ = 1

σ = 66

Take Gaussians at
multiple spreads
and uses DoGs.



1

2

3

4

5

 List of       
(x, y, σ)

scale

Scale invariant interest points

Interest points are local maxima in both position 
and scale.

Apply Gaussians 

with different σ’s.

Look for extrema
in difference of
Gaussians.



Scale (Lowe uses multiple scales) 

In practice the image is downsampled for larger sigmas.

Lowe, 2004.
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Lowe’s Pyramid Scheme

s+2 filters

s+1=2(s+1)/s0

s=2s/s0

.

.

i=2i/s0

.

.

2=22/s0

1=21/s0

0

s+3

images

including

original

s+2

differ-

ence

images

The parameter s determines the number of images per octave.
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Key point localization

• Detect maxima and minima 
of difference-of-Gaussian in 
scale space

• Each point is compared to 
its 8 neighbors in the 
current image and 9 
neighbors each in the scales 
above and below

Blur 

Resample

Subtract

For each max or min found,

output is the location and

the scale.

s+2 difference images.

top and bottom ignored.

s planes searched.
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Scale-space extrema detection: experimental results over 32 images that 
were synthetically transformed and noise added.

• Sampling in scale for efficiency
– How many scales should be used per octave? S=?

• More scales evaluated, more keypoints found

• S < 3, stable keypoints increased too

• S > 3, stable keypoints decreased

• S = 3, maximum stable keypoints found

% detected

% correctly matched

average no. detected

average no. matched

Stability Expense



Results: Difference-of-Gaussian

K. Grauman, B. Leibe
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How can we find correspondences?

Similarity transform



CSE 576: Computer Vision

Rotation invariance

Image from Matthew Brown

• Rotate patch according to its dominant gradient 
orientation

• This puts the patches into a canonical orientation.



T. Tuytelaars, B. Leibe

Orientation Normalization

• Compute orientation histogram

• Select dominant orientation

• Normalize: rotate to fixed orientation 

0 2p

[Lowe, SIFT, 1999]



What’s next?

Once we have found the keypoints and a dominant orientation for each,

we need to describe the (rotated and scaled) neighborhood about each.

128-dimensional vector



Important Point

• People just say “SIFT”.

• But there are TWO parts to SIFT.

1. an interest point detector

2. a region descriptor

• They are independent. Many people use the region descriptor 
without looking for the points.


