
Computer Vision

CSE/EE 576
Edges and Lines

Linda Shapiro
Professor of Computer Science & Engineering

Professor of Electrical & Computer Engineering

Convolution: Weighted sum over pixels

Filters

Cross-Correlation vs Convolution

Cross-Correlation vs Convolution
Do this in HW!

Cross-Correlation vs Convolution
These come from signal processing and
have nice mathematical properties.

So what can we do with these convolutions anyway?

Mathematically: all the nice things

- Commutative
- A*B = B*A

- Associative
- A*(B*C) = (A*B)*C

- Distributes over addition
- A*(B+C) = A*B + A*C

- Plays well with scalars
- x(A*B) = (xA)*B = A*(xB)

- BUT WE TEND TO USE CORRELATION BECAUSE OUR FILTERS ARE
SYMMETRIC, AND THEN WE JUST CALL IT CONVOLUTION!

So what can we do with these convolutions anyway?

This means some convolutions decompose:

- 2D Gaussian is just composition of 1D Gaussians
- Faster to run 2 1D convolutions

= +

So what can we do with these convolutions anyway?

- Blurring
- Sharpening
- Edges
- Features
- Derivatives
- Super-resolution
- Classification
- Detection
- Image captioning
- ...

So what can we do with these convolutions anyway?

- Blurring
- Sharpening
- Edges
- Features
- Derivatives
- Super-resolution
- Classification
- Detection
- Image captioning
- ...

Much of low-level computer vision
is convolutions

(basically)

What’s an edge?
- Image is a function.
- Think of the gray tones as HEIGHTS.
- Edges are rapid changes in this function

What’s an edge?
- Image is a function
- Edges are rapid changes in this function

Finding edges
- Could take derivative
- Edges = high response

Image derivatives
- Recall:

-

- We don’t have an “actual”
function, must estimate

- Possibility: set h = 1
- What will that look like?

Image derivatives
- Recall:

-

- We don’t have an “actual”
Function, must estimate

- Possibility: set h = 1
- What will that look like?

Image derivatives
- Recall:

-

- We don’t have an “actual”
function, must estimate

- Possibility: set h = 2
- What will that look like?

Image derivatives
- Recall:

-

- We don’t have an “actual”
Function, must estimate

- Possibility: set h = 2
- What will that look like?

Images are noisy!

But we already know how to smooth

* =

But we already know how to smooth

* =

Smooth first, then derivative

Smooth first, then derivative

Smooth first, then derivative

Smooth first, then derivative

Smooth first, then derivative

Smooth first, then derivative

Smooth first, then derivative

Smooth first, then derivative

Smooth first, then derivative

Smooth first, then derivative

Smooth first, then derivative

Sobel filter! Smooth & derivative

Image derivatives
- Recall:

-

- Want smoothing too!

Finding edges
- Could take derivative
- Find high responses
- Sobel filters!
- But let’s stop a moment get

some basics

The gradient direction is give

How does this relate to the direction of the edge?

Simplest image gradient

How would you implement this as a filter?

35

perpendicular

0 -1 1

The edge strength is given by the gradient magnitude

Sobel operator

-1 0 1

-2 0 2

-1 0 1

-1 -2 -1

0 0 0

1 2 1

Magnitude:

Orientation:

In practice, it is common to use:

What’s the C/C++ function?
Use atan2

Who was Sobel?
Irwin Sobel (born 1940)
Consultant (HP Labs Retired –
8Mar13) · Computer Vision & Graphics

Finding edges
- Could take derivative
- Find high responses
- Sobel filters!
- But…
- Edges go both ways
- Want to find extrema

2nd derivative!
- Crosses zero at extrema

Laplacian (2nd derivative)!
- Crosses zero at extrema
- Recall:

-

- Laplacian:
-

- Again, have to
estimate f’’(x):

Laplacians
- Laplacian:

-

Laplacians
- Laplacian:

- Measures the divergence of the gradient
- Flux of gradient vector field through small area

Laplacians
- Laplacian:

-

Laplacians
- Laplacian:

-

Laplacians
- Laplacian:

-

Laplacians
- Laplacian:

-

Laplacians
- Laplacian:

-

- Negative Laplacian, -4 in middle
- Positive Laplacian --->

Laplacians also sensitive to noise
- Again, use gaussian smoothing

- Can just use one kernel since convs commute

- Laplacian of Gaussian, LoG

- Can get good approx. with

5x5 - 9x9 kernels

Another edge detector:
- Image is a function:

- Has high frequency and low frequency components
- Think in terms of fourier transform

- Edges are high frequency changes
- Maybe we want to find edges of a specific size (i.e. specific

frequency)

Difference of Gaussian (DoG)
- Gaussian is a low pass filter
- Strongly reduce components with frequency f < σ

- (g*I) low frequency components

- I - (g*I) high frequency components

- g(σ1)*I - g(σ2)*I
- Components in between these frequencies

- g(σ1)*I - g(σ2)*I = [g(σ1) - g(σ2)]*I

Difference of Gaussian (DoG)
- g(σ1)*I - g(σ2)*I = [g(σ1) - g(σ2)]*I

- =
σ = 2 σ = 1

Difference of Gaussian (DoG)
- g(σ1)*I - g(σ2)*I = [g(σ1) - g(σ2)]*I
- This looks a lot like our LoG!
- (not actually the same but similar)

DoG (1 - 0)

DoG (2 - 1)

DoG (3 - 2)

DoG (4 - 3)

Another approach: gradient magnitude

- Don’t need 2nd derivatives
- Just use magnitude of gradient

Another approach: gradient magnitude

- Don’t need 2nd derivatives
- Just use magnitude of gradient
- Are we done? No!

Another approach: gradient magnitude

- Don’t need 2nd derivatives
- Just use magnitude of gradient
- Are we done? No!

What we really want: line drawing

Canny Edge Detection
- Your first image processing pipeline!

- Old-school CV is all about pipelines

Algorithm:

- 1. Smooth image (only want “real” edges, not noise)
- 2. Calculate gradient direction and magnitude
- 3. Non-maximum suppression perpendicular to edge
- 4. Threshold into strong, weak, no edge
- 5. Connect together components

http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

Smooth image
- You know how to do this, gaussians!

http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

Gradient magnitude and direction
- Sobel filter

http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

Non-maximum suppression
- Want single pixel edges, not thick blurry lines
- Need to check nearby pixels
- See if response is highest

http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

Non-maximum suppression

Non-maximum suppression

Non-maximum suppression

Non-maximum suppression

Non-maximum suppression

Non-maximum suppression

Non-maximum suppression

Non-maximum suppression

http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

Threshold edges
- Still some noise
- Only want strong edges
- 2 thresholds T and t, 3 cases

- R > T: strong edge
- R < T but R > t: weak edge
- R < t: no edge

- Why two thresholds?

http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

Connect ‘em up!
- Strong edges are edges!
- Weak edges are edges

iff they connect to strong
- Look in some neighborhood

(usually 8 closest)

http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

Canny Edge Detection
- Your first image processing pipeline!

- Old-school CV is all about pipelines

Algorithm:

- Smooth image (only want “real” edges, not noise)
- Calculate gradient direction and magnitude
- Non-maximum suppression perpendicular to edge
- Threshold into strong, weak, no edge
- Connect together components
- Tunable: Sigma, thresholds

http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

Canny Edge Detection

http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

Canny on Kidney

83

Canny Characteristics

• The Canny operator gives single-pixel-wide images
with good continuation between adjacent pixels

• It is the most widely used edge operator today; no
one has done better since it came out in the late 80s.
Many implementations are available.

• It is very sensitive to its parameters, which need to
be adjusted for different application domains.

84

An edge is not a line...

How can we detect lines ?

85

Finding lines in an image

• Option 1:

– Search for the line at every possible
position/orientation

– What is the cost of this operation?

• Option 2:

– Use a voting scheme: Hough transform

86

• Connection between image (x,y) and Hough
(m,b) spaces
– A line in the image corresponds to a point in Hough

space
– To go from image space to Hough space:

• given a set of points (x,y), find all (m,b) such that y = mx + b

x

y

m

b

m0

b0

image space Hough space

Finding lines in an image

87

Hough transform algorithm
• Typically use a different parameterization

– d is the perpendicular distance from the line to the
origin

–  is the angle of this perpendicular with the
horizontal.

88

Hough transform algorithm
• Basic Hough transform algorithm

1. Initialize H[d, ]=0

2. for each edge point I[x,y] in the image
compute gradient magnitude m and angle 

H[d, ] += 1

3. Find the value(s) of (d, ) where H[d, ] is maximum

4. The detected line in the image is given by

Complexity?

89

d



Array H

How do you extract the line segments from the
accumulators?

pick the bin of H with highest value V

while V > value_threshold {

• order the corresponding pointlist from PTLIST

• merge in high gradient neighbors within 10 degrees

• create line segment from final point list

• zero out that bin of H

• pick the bin of H with highest value V }

90

Example

0 0 0 100 100

0 0 0 100 100

0 0 0 100 100

100 100 100 100 100

100 100 100 100 100

- - 0 0 -

- - 0 0 -

90 90 40 20 -

90 90 90 40 -

- - - - -

- - 3 3 -

- - 3 3 -

3 3 3 3 -

3 3 3 3 -

- - - - -

360

.

6

3

0

- - - - - - -

- - - - - - -

- - - - - - -

4 - 1 - 2 - 5

- - - - - - -

0 10 20 30 40 …90

360

.

6

3

0

- - - - - - -

- - - - - - -

- - - - - - -

* - * - * - *

- - - - - - -

(1,3)(1,4)(2,3)(2,4)

(3,1)

(3,2)

(4,1)

(4,2)

(4,3)

gray-tone image DQ THETAQ

Accumulator H PTLIST

distance

angle

91

Line segments from Hough Transform

92

Extensions
• Extension 1: Use the image gradient (we just did that)

• Extension 2

– give more votes for stronger edges

• Extension 3

– change the sampling of (d, ) to give more/less resolution

• Extension 4

– The same procedure can be used with circles, squares, or any other
shape, How?

• Extension 5; the Burns procedure. Uses only angle, two
different quantifications, and connected components with
votes for larger one.

93

Chalmers University

of Technology

94

Chalmers University

of Technology

95

Hough Transform for Finding Circles

Equations:
r = r0 + d sin 

c = c0 - d cos 
r, c, d are parameters

Main idea: The gradient vector at an edge pixel points

to the center of the circle.

*(r,c)
d

96

Why it works

Filled Circle:

Outer points of circle have gradient

direction pointing to center.

Circular Ring:

Outer points gradient towards center.

Inner points gradient away from center.

The points in the away direction don’t

accumulate in one bin!

97

98

Finding lung nodules (Kimme & Ballard)

99

Finale

• Edge operators are based on estimating derivatives.

• While first derivatives show approximately where the
edges are, zero crossings of second derivatives were
shown to be better.

• Ignoring that entirely, Canny developed his own edge
detector that everyone uses now.

• After finding good edges, we have to group them into
lines, circles, curves, etc. to use further.

• The Hough transform for circles works well, but for
lines the performance can be poor. The Burns operator
or some tracking operators (old ORT pkg) work better.

100

