
Computer Vision

CSE/EE 576
SVMs and Neural Nets

Linda Shapiro
Professor of Computer Science & Engineering

Professor of Electrical & Computer Engineering

2

Kernel Machines

• A relatively new learning methodology (1992) derived from statistical learning
theory.

• Became famous when it gave accuracy comparable to neural nets in a
handwriting recognition class.

• Was introduced to computer vision researchers by Tomaso Poggio at MIT who
started using it for face detection and got better results than neural nets.

• Has become very popular and widely used with packages available.

3

Support Vector Machines (SVM)

• Support vector machines are learning algorithms

that try to find a hyperplane that separates

the different classes of data the most.

• They are a specific kind of kernel machines based on

two key ideas:

• maximum margin hyperplanes

• a kernel ‘trick’

The SVM Equation
• ySVM(xq) = argmax Σ αi,c K(xi,xq)

• xq is a query or unknown object

• c indexes the classes

• there are m support vectors xi with weights αi,c,
i=1 to m for class c

• K is the kernel function that compares xi to xq

c i=1,m

*** This is for multiple class SVMs with support vectors
for every class; we’ll see a simpler equation for 2 class.

5

Maximal Margin (2 class problem)

Find the hyperplane with maximal margin for all

the points. This originates an optimization problem

which has a unique solution.

hyperplane

margin

In 2D space,

a hyperplane is

a line.

In 3D space,

it is a plane.

6

Support Vectors

• The weights i associated with data points are zero, except for those
points closest to the separator.

• The points with nonzero weights are called the support vectors
(because they hold up the separating plane).

• Because there are many fewer support vectors than total data points,
the number of parameters defining the optimal separator is small.

7

Kernels

• A kernel is just a similarity function. It takes 2 inputs and decides how
similar they are.

• Kernels offer an alternative to standard feature vectors. Instead of
using a bunch of features, you define a single kernel to decide the
similarity between two objects.

8

Kernels and SVMs
• Under some conditions, every kernel function can be

expressed as a dot product in a (possibly infinite
dimensional) feature space (Mercer’s theorem)

• SVM machine learning can be expressed in terms of
dot products.

• So SVM machines can use kernels instead of feature
vectors.

9

10

The Kernel Trick

The SVM algorithm implicitly maps the original

data to a feature space of possibly infinite dimension

in which data (which is not separable in the

original space) becomes separable in the feature space.

0
0

0
0

01

1 1

Original space Rk

0

0
0

0
0

1

1

1

Feature space Rn

1

1Kernel

trick

11

Kernel Functions

• The kernel function is designed by the developer of the SVM.

• It is applied to pairs of input data to evaluate dot products in some corresponding
feature space.

• Kernels can be all sorts of functions including polynomials and exponentials.

• Simplest is just the plain dot product: xi•xj

• The polynomial kernel K(xi,xj) = (xi•xj + 1)p, where p is a tunable parameter.

12

Kernel Function used in our 3D Computer Vision Work

• k(A,B) = exp(-2
AB/2)

• A and B are shape descriptors (big
vectors).

•  is the angle between these
vectors.

• 2 is the “width” of the kernel.

What does SVM learning solve?

• The SVM is looking for the best separating plane in its alternate
space.

• It solves a quadratic programming optimization problem

argmax Σαj - 1/2 Σαj αk yj yk (xj•xk)

subject to αj > 0 and Σαjyj = 0.

• The equation for the separator for these optimal αj is

h(x) = sign(Σαj yj (x•xj) – b)

13

α j j,k

j

Simple Example of Classification
• K(A,B) = A • B

• known positive class points {(3,1),(3,-1),(6,1),(6,-1)}

• known negative class points {(1,0),(0,1),(0,-1),(-1,0)}

• support vectors: s = {(1,0),(3,1),(3,-1)} with weights α
= -3.5, .75, .75

• classifier equation: f(x) = sign(Σi [αi*K(si,x)]-b) b=2

f(1,1) = sign(Σi αi si • (1,1) - 2)

= sign(.75*(3,1) • (1,1) + .75*(3,-1)•(1,1)+(-3.5)*(1,0)•(1,1) -2)
= sign(1 – 2) = sign(-1) = - negative class
CORRECT

Time taken to build model: 0.15 seconds

Correctly Classified Instances 319 83.5079 %
Incorrectly Classified Instances 63 16.4921 %
Kappa statistic 0.6685
Mean absolute error 0.1649
Root mean squared error 0.4061
Relative absolute error 33.0372 %
Root relative squared error 81.1136 %
Total Number of Instances 382

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.722 0.056 0.925 0.722 0.811 0.833 cal
0.944 0.278 0.78 0.944 0.854 0.833 dor

W Avg. 0.835 0.17 0.851 0.835 0.833 0.833

=== Confusion Matrix ===

a b <-- classified as
135 52 | a = cal
11 184 | b = dor

16

Neural Net Learning

• Motivated by studies of the brain.

• A network of “artificial neurons” that learns a function.

• Doesn’t have clear decision rules like decision trees, but highly successful in
many different applications. (e.g. face detection)

• We use them frequently in our research.

• I’ll be using algorithms from
http://www.cs.mtu.edu/~nilufer/classes/cs4811/2016-spring/lecture-
slides/cs4811-neural-net-algorithms.pdf

http://www.cs.mtu.edu/~nilufer/classes/cs4811/2016-spring/lecture-slides/cs4811-neural-net-algorithms.pdf

Common activation functions φ

linear

logistic

tanh

REctified Linear

Unit (RELU)
Leaky RELU

Simple Feed-Forward Perceptrons

x1

x2



W1

W2

g(in) out

in = (∑ Wj xj) + 
out = g[in]

g is the activation function

It can be a step function:
g(x) = 1 if x >=0 and 0 (or -1) else.

It can be a sigmoid function:
g(x) = 1/(1+exp(-x)).

The sigmoid function is differentiable
and can be used in a gradient descent
algorithm to update the weights.

and other
things…

Gradient Descent
takes steps proportional to the negative of the gradient of a function to find its local
minimum

• Let X be the inputs, y the class, W the weights

• in = ∑ Wj xj

• Err = y – g(in)

• E = ½ Err2 is the squared error to minimize

• E/Wj = Err * Err/Wj = Err * /Wj(g(in))(-1)

• = -Err * g’(in) * xj

• The update is Wj <- Wj + α * Err * g’(in) * xj

• α is called the learning rate.

Simple Feed-Forward Perceptrons

x1

x2



W1

W2

g(in) out

repeat
for each e in examples do

in = (∑ Wj xj) + 
Err = y[e] – g[in]
Wj = Wj + α Err g’(in) xj[e]

until done

Examples: A=[(.5,1.5),+1], B=[(-.5,.5),-1], C=[(.5,.5),+1]
Initialization: W1 = 1, W2 = 2,  = -2

Note1: when g is a step function, the g’(in) is removed.
Note2: later in back propagation, Err * g’(in) will be called
We’ll let g(x) = 1 if x >=0 else -1

Graphically

Examples: A=[(.5,1.5),+1], B=[(-.5,.5),-1], C=[(.5,.5),+1]
Initialization: W1 = 1, W2 = 2,  = -2

W1

W2

A

CB

wrong
boundary

Boundary is W1x1 + W2x2 +  = 0

Learning
Examples:
A=[(.5,1.5),+1],
B=[(-.5,.5),-1],
C=[(.5,.5),+1]
Initialization: W1 = 1, W2 = 2,  = -2

A=[(.5,1.5),+1]
in = .5(1) + (1.5)(2) -2 = 1.5
g(in) = 1; Err = 0; NO CHANGE

B=[(-.5,.5),-1]
In = (-.5)(1) + (.5)(2) -2 = -1.5
g(in) = -1; Err = 0; NO CHANGE

C=[(.5,.5),+1]
in = (.5)(1) + (.5)(2) – 2 = -.5
g(in) = -1; Err = 1-(-1)=2

Let α=.5

W1 <- W1 + .5(2) (.5) leaving out g’
<- 1 + 1(.5) = 1.5

W2 <- W2 + .5(2) (.5)
<- 2 + 1(.5) = 2.5

 <-  + .5(+1 – (-1))
 <- -2 + .5(2) = -1

repeat
for each e in examples do

in = (∑ Wj xj) + 
Err = y[e] – g[in]
Wj = Wj + α Err g’(in) xj[e]

until done

Graphically

Examples: A=[(.5,1.5),+1], B=[(-.5,.5),-1], C=[(.5,.5),+1]
Initialization: W1 = 1, W2 = 2,  = -2

W1

W2

a

A

CB

wrong
boundary

Boundary is W1x1 + W2x2 +  = 0

approximately correct boundary

Back Propagation

• Simple single layer networks with feed forward learning were not
powerful enough.

• Could only produce simple linear classifiers.

• More powerful networks have multiple hidden layers.

• The learning algorithm is called back propagation, because it
computes the error at the end and propagates it back through the
weights of the network to the beginning.

Let’s break it
into steps.

Initialize

x1

x2

x3

n1

n2

layer 1 2 3=L

nf

w11

w21

w31

w1f

w2f

Forward Computation

x1

x2

x3

n1

n2

layer 1 2 3=L

nf

w11

w21

w31

w1f

w2f

g(innf) = anf

g(inn1) = an1

g(inn2) = an2

Backward Propagation 1

x1

x2

x3

n1

n2

layer 1 2 3=L

nf

w11

w21

w31

w1f

w2f

• Node nf is the only node in our output layer.
• Compute the error at that node and multiply by the derivative of the weighted

input sum to get the change delta.

Δnf = g’(innf) * (ynf – anf)

Backward Propagation 2

x1

x2

x3

n1

n2

layer 1 2 3=L

nf

w11

w21

w31

w1f

w2f

• At each of the other layers, the deltas use
• the derivative of its input sum
• the sum of its output weights
• the delta computed for the output error

ht

Δnf

Δn1 =
g′ inn1 w1fΔnf

If there were two output
nodes, there would be a
summation.

Backward Propagation 3

x1

x2

x3

n1

n2

layer 1 2 3=L

nf

w11

w21

w31

w1f

w2f

Now that all the deltas are defined, the weight updates just use them.

i j
wij Δj

ai

Back Propagation Summary

• Compute delta values for the output units using observed errors.

• Starting at the output-1 layer
• repeat

• propagate delta values back to previous layer

• till done with all layers

• update weights for all layers

• This is done for all examples and multiple epochs, till convergence or
enough iterations.

Time taken to build model: 16.2 seconds

Correctly Classified Instances 307 80.3665 % (did not boost)
Incorrectly Classified Instances 75 19.6335 %
Kappa statistic 0.6056
Mean absolute error 0.1982
Root mean squared error 0.41
Relative absolute error 39.7113 %
Root relative squared error 81.9006 %
Total Number of Instances 382

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.706 0.103 0.868 0.706 0.779 0.872 cal
0.897 0.294 0.761 0.897 0.824 0.872 dor

W Avg. 0.804 0.2 0.814 0.804 0.802 0.872

=== Confusion Matrix ===

a b <-- classified as
132 55 | a = cal
20 175 | b = dor

Multi-Class Classification

Solution

• Traditional Method: 1-vs-other method
• Too slow. If we have n-classes, we need to

train n models

• Performance is not great, because the
sample size is different for positive and
negative classes

• Multiple Neurons
• Use n output neuron to correspond n classes.

• Easy, fast, and robust

• Problem: how to model the probability? The
values in the neural network can be negative
or greater than 1.

Softmax: normalized exponential

Input: vector of reals

Output: probability distribution

softmax([1,2,7,3,2]):
Calculate ex: [2.72, 7.39, 1096.63, 20.09, 7.39]

Calculate sum(ex): 2.72+7.39+1096.63+20.09+7.39 = 1134.22

Normalize: ex/sum(ex) = [0.002, 0.007, 0.967, 0.017, 0.007]

Result is a vector of reals.

z

A Simple Example

Here, we will go over a simple 2-layer neural network (no bias).

Mini-batch for Machine Learning

• We use a matrix to represent data.

• If there are 10,000 images, and each image contains 784 features, we
can use a 10,000 x 784 matrix to represent the whole dataset.

• Hard to load a large dataset at once; so, we can split the dataset into
smaller batches.

• For instance, in homework 5, we use batch size 128. Then, each batch
contains 128 images, and the corresponding data is stored in a 128 x
784 matrix.

• Then, we can feed batches one-by-one to the ML model, and train it
for each batch.

Neural Network Easy Example

3

2

4

Input Layer 1-st Layer (ReLU)
Output Layer
with Softmax

1

0.1
-2.3

0.5
1

-0.5

0.7

-2.1

-0.2

3 2 4

. . .

. . .

1 0.5

0.1 1

-2.3 -0.5

𝑋𝑖𝑛 𝑤1
𝑤2

0.7 -2.1

0.1 -0.2

Here, we use batch size
of 4, and we only
visualize the first sample
for simplicity.

0.1
First pixel

Second pixel

Third pixel

[Example] Forward Pass

3

2

4

0

1.5

.61

.39

Input Layer
1-st Layer (ReLU)

Output Layer
with Softmax

1

0.1
-2.3

0.5
1

-0.5

0.7

0.1

-2.1

-0.2

1 0.5

0.1 1

-2.3 -0.5

𝑋𝑖𝑛 𝑤1
𝑤2

0.7 -2.1

0.1 -0.2

0.15

-0.3

𝑜2
𝑜1

0 1.5

. .

. .

3 2 4

. . .

. . .

0.61 0.39

. .

. .

𝑒0.15

𝑒0.15 + 𝑒−0.3
≈

1.16

1.16 + 0.74
= 0.61

𝑒−0.3

𝑒0.15 + 𝑒−0.3
≈

0.74

1.16 + 0.74
= 0.39

-6.0

1.5

[Example] Ground Truth and Loss

3

2

4

0

1.5

.61

.39

Input Layer 1-st Layer (ReLU)
Output Layer
with Softmax

1

0.1
-2.3

0.5
1

-0.5

0.7

0.1

-2.1

-0.2

1 0.5

0.1 1

-2.3 -0.5

𝑋𝑖𝑛 𝑤1
𝑤2

0.7 -2.1

0.1 -0.2

0.15

-0.3

𝑜2𝑜1

1

0

Label

0.39

-0.39

3 2 4

. . .

. . .

0 1.5

. .

. .

Ground truth

Δ

Δ

Δo2

0.61 0.39

. .

. .

[Example] Backpropagation

3

2

4

0

1.5

Input Layer 1-st Layer (ReLU)
Output Layer
with Softmax

1

0.1
-2.3

0.5
1

-0.5

0.7

-2.1

-0.2

1 0.5

0.1 1

-2.3 -0.5

𝑋𝑖𝑛 𝑤1 𝑜1

Δ𝑜1 = 𝑔′(o2) ∘ Δ𝑜2𝑤2
𝑇

𝑔′(o2) ∘ Δ𝑜2
0.39 -0.39

. .

. .

Δ𝑤2 = 𝑜1
𝑇𝑔′(o2) ∘ Δ𝑜2

0 0

0.585 -0.585

1.092 0.117

. .

. .

0.1

.61

.39

0.15

-0.3

0.7 -2.1

0.1 -0.2 𝑜2

0.39

-0.39

𝑤2

3 2 4

. . .

. . .

0 1.5

. .

. .

Assume g’(.) = 1

We use Δ𝑤2 to
represent the weight
gradient for layer 2.

0.61 0.39

. .

. .

“∘” represents
elementwise

multiplication for matrix

Backpropagation [Cont.]

3

2

4

0

1.5

Input Layer 1-st Layer (ReLU)

1

0.1
-2.3

0.5
1

-0.5

0.7

-2.1

-0.2

1 0.5

0.1 1

-2.3 -0.5

𝑋𝑖𝑛 𝑤1
𝑤2 𝑜2𝑜1

1.092 (0)

0.117

Δ𝑤1 = 𝑜0
𝑇𝑔′(o1) ∘ Δo1

0 0.351

0 0.234

0 0.468

Δ𝑜0 = 𝑔′(o1) ∘ Δo1𝑤1
𝑇

0.0585 0.117 -0.0585

. . .

. . .

𝑔′(o1) ∘ Δo1
0 0.117

. .

. .

0 0

0.585 -0.585

1.092 0.117

. .

. .

.61

.39

Output Layer
with Softmax

𝑤2
0.7 -2.1

0.1 -0.2

0.15

-0.3

0.39

-0.39

0.1

3 2 4

. . .

. . .

0 1.5

. .

. .

0.39 -0.39

. .

. .

0.61 0.39

. .

. .

Δ𝑜1 = 𝑔′(o2) ∘ Δ𝑜2𝑤2
𝑇

𝑔′(o2) ∘ Δ𝑜2

Δ𝑤2 = 𝑜1
𝑇𝑔′(o2) ∘ Δ𝑜2

[Example] Update with Learning Rate 0.1

3

2

4

0

1.5

Input Layer 1-st Layer (ReLU)

1

0.1
-2.3

0.5
1

-0.5

0.7

-2.1

-0.2

1 0.5

0.1 1

-2.3 -0.5

𝑋𝑖𝑛 𝑤1
𝑤2

1.092 (0)

0.117

Δ𝑤1 = 𝑜0
𝑇𝑔′(o1) ∘ Δo1

0 0.351

0 0.234

0 0.468

Δ𝑤2 = 𝑜1
𝑇𝑔′(o2) ∘ Δ𝑜2

0 0

0.585 -0.585

.61

.39

Output Layer
with Softmax

𝑤2
0.7 -2.1

0.1 -0.2

0.15

-0.3

0.39

-0.39

0.1

𝑤1 = 𝑤1 + 𝛼Δ𝑤1

1 .5351

0.1 1.0234

-2.3 -0.4532

𝑤2 = 𝑤2 + 𝛼Δ𝑤2

0.7 -2.1

0.1585 -0.2585

3 2 4

. . .

. . .

[Example] Done

3

2

4

Input Layer 1-st Layer (ReLU)
Output Layer
with Softmax

1

0.1
-2.3

.5351

1.0234

-0.4532

0.7

0.1585

-2.1

-0.2585

𝑋𝑖𝑛
𝑤1 𝑤2

0.7 -2.1

0.1585 -0.2585

1 0.5351

0.1 1.0234

-2.3 -0.4532

3 2 4

. . .

. . .

Think: What will happen if we go forward again?

3

2

4

Input Layer 1-st Layer (ReLU)
Output Layer
with Softmax

1

0.1
-2.3

.5351

1.0234

-0.4532

0.7

0.1585

-2.1

-0.2585

𝑋𝑖𝑛
𝑤1 𝑤2

0.7 -2.1

0.1585 -0.2585

1 0.5351

0.1 1.0234

-2.3 -0.4532

3 2 4

. . .

. . .

Previous
Output

3

2

4

0

1.84

.68

.32

Input Layer 1-st Layer (ReLU)
Output Layer
with Softmax

1

0.1
-2.3

.5351

1.0234

-0.4532

0.7

0.1585

-2.1

-0.2585

𝑋𝑖𝑛
𝑤1 𝑤2

0.7 -2.1

0.1585 -0.2585

1 0.5351

0.1 1.0234

-2.3 -0.4532

0.292

-0.475

The final output is closer
to the actual label

.61

.39

0.15

-0.3

1

0

Label

3 2 4

. . .

. . .

Think: What will happen if we go forward again?

Tricks for Neural Network

Problem: Under and Overfitting

Underfitting: model not powerful enough, too much bias

Overfitting: model too powerful, fits to noise, doesn’t generalize
well

Want the happy medium, how?

Weight decay: neural network regularization

We want the weights to be close to 0.

Let L be the “loss” function; (e.g. 𝐿 = |𝑦 – 𝑔(𝑖𝑛)|, 𝐿 = 𝑦 – 𝑔 𝑖𝑛
2

, etc.)

λ is a regularization parameter (for decay)
Higher: more penalty for large weights, less powerful model
Lower: less penalty, more overfitting

Before:
Δwt = -∂/∂wt L(wt)

wt+1 = wt + α Δwt

Now:
wt+1 = wt - α[∂/∂wt L(wt) + λwt] = wt - α[- Δwt + λwt]

= wt - α ∂/∂wt L(wt) - α λwt = wt + α Δwt - α λwt

Subtract a little bit of

weight every iteration

We use Δ𝑤𝑡 to represent the weight
gradient for timepoint t (the current step).

Momentum: speeding up SGD

If we keep moving in same direction we should move further every
round

Before:
Δwt = -∂/∂wt L(wt)

Now:
Δwt = -∂/∂wt L(wt) + mΔwt-1

wt+1 = wt + α Δwt

Side effect: smooths out updates if gradient is in different directions

Δ𝑤𝑡−1 represent the gradient
calculated in the previous step.

NN updates with weight decay and momentum

Δw’t = -∂/∂wt L(wt) - λwt + mΔw’t-1

wt+1 = wt + α Δw’t

Gradient of loss Weight

decay

Momentum

Learning

rate

Activations

Linear Activation

𝑔(𝑥) = 𝑥
𝑔’(𝑥) = 1

● Only offers linear effects.
● For a 2-layer NN with linear activations for both layers.

𝑓 𝑋 = 𝑔 𝑔 𝑋𝑤1 𝑤2 = 𝑋𝑤1𝑤2 = 𝑋𝑤

● Not so great, need Non-Linear activations to learn more
complex data distribution.

Logistic Activation

𝑔 𝑥 =
1

1 + 𝑒−𝑥

𝑔’(𝑥) = 𝑔 𝑥 𝑔(1 − 𝑥)

● Aka Sigmoid function (S-shape)
● Used in Logistic regression.
● The result is in range (0, 1),
● It can represent probability.
● A special case of logistic growth (population model).

ReLU Activation

𝑔 𝑥 = max(0, 𝑥)
𝑔’ 𝑥 = 𝟏𝑔 𝑥 >0

● Rectified linear unit
● Fast! In backpropagation, 1 when positive, 0 otherwise.
● Optimizes important (positive) values and ignore the others.
● Analog to neurons
● Information loss is small (other neurons will carry information)

Visualization with ReLU

https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw

https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw

LeakyReLU Activation

● No information loss (compared to ReLU)
● Solves “dying ReLU” problem (i.e. all neurons output 0)
● Similar to ReLU, pays less attention to less important neurons
● Not always better than ReLU

Homework 4
Neural Network

MNIST: Handwriting recognition

50,000 images of handwriting

28 x 28 x 1 (grayscale)

Numbers 0-9

10 class softmax regression

Input is 784 pixel values

Train the model

> 95% accuracy

Functions You need to Code

Functions You need to Code (classifier.c)
void activate_matrix(matrix m, ACTIVATION a)

void gradient_matrix(matrix m, ACTIVATION a, matrix d)

matrix forward_layer(layer *l, matrix in)

matrix backward_layer(layer *l, matrix delta)

void update_layer(layer *l, double rate, double momentum, double decay)

Run Experiments and Write a Report (hw4.pdf)
Play around with tryhw4.py file, and answer the questions.

Save your question to a PDF file and submit to Canvas for grading.

Important Data Structure (image.h)

typedef enum{LINEAR, LOGISTIC, RELU, LRELU, SOFTMAX} ACTIVATION;

typedef struct {

matrix in; // Saved input to a layer

matrix w; // Current weights for a layer

matrix dw; // Current weight updates

matrix v; // Past weight updates (for use with momentum)

matrix out; // Saved output from the layer

ACTIVATION activation; // Activation the layer uses

} layer;

typedef struct {

layer *layers;

int n;

} model;

Useful Matrix manipulation functions (matrix.c)

matrix matrix_mult_matrix(matrix a, matrix b);

matrix transpose_matrix(matrix m);

matrix axpy_matrix(double a, matrix x, matrix y); // a * x + y

forward_layer

Output

Input: model m, data X

forward_model

X = in * l->w

Output

Input: layer l, data in

forward_layer

activation_matrix
(X, l->activation)

Forward Pass in Homework

Backward Pass in Homework

backward_layer

Output

Input: model m, matrix d

backward_model

gradient_matrix

Δ𝑜

Input: layer l, matrix delta

backward_layer

Calculate Δ𝑤

Calculate Δ𝑜

Weight Update in Homework

Δ𝑤′ = Δ𝑤 − 𝜆𝑤 +m Δ 𝑤𝑡−1
′

Input: layer l, learning rate 𝛼,
decay 𝜆, momentum 𝑚

update_layer

w = w+ 𝛼Δ𝑤′

Δ𝑤′𝑡−1 represent the regularized
gradient from the previous step.

In the code, we use “l->v” to store
this value.

update_layer

Output

Input: model m, learning rate 𝛼,
decay 𝜆, momentum 𝑚

update_model

TODO void activate_matrix(matrix m, ACTIVATION a)

for(i = 0; i < m.rows; ++i){

double sum = 0;

for(j = 0; j < m.cols; ++j){

double x = m.data[i][j];

if(a == LOGISTIC){

// TODO m.data[i][j] should equals 1 / (1 + exp(-x));

} else if (a == RELU){

// TODO m.data[i][j] should equals x if x > 0; otherwise, it should equal 0

} else if (a == LRELU){

// TODO m.data[i][j] should equals x if x > 0; otherwise, it should equal 0.1 * x.

} else if (a == SOFTMAX){

// TODO m.data[i][j] should equals exp(x) here, and we will normalize it later.

}

sum += m.data[i][j];

}

if (a == SOFTMAX) {

// TODO: have to normalize by sum if we are using SOFTMAX

// for all the possible j, we should normalize it as m.data[i][j] /= sum;

}

}

Apply activation “a” to the matrix “m”

TODO void gradient_matrix(matrix m, ACTIVATION a, matrix d)

int i, j;

for(i = 0; i < m.rows; ++i){

for(j = 0; j < m.cols; ++j){

double x = m.data[i][j];

// TODO: multiply the correct element of d by the gradient

// if a is SOFTMAX or a is LINEAR, we should do nothing (multiply by 1)

// if a is LOGISTIC, d.data[i][j] should times x * (1.0 - x);

// if a is RELU and x <= 0, d.data[i][j] should be zero

// if a is LRELU and x <= 0, d.data[i][j] should multiple 0.1

}

}

Calculate g’(m) * d, and store in-place to matrix d.
The matrix “m” is the output of a layer, and matrix “d” is the Δ of output.

TODO matrix forward_layer(layer *l, matrix in)

l->in = in; // Save the input for backpropagation

// TODO: multiply input by weights and apply activation function.

// Calculate out = in * l->w (note: matrix multiplication here)

// Then, apply activate_matrix function to out with l->activation

free_matrix(l->out);// free the old output

l->out = out; // Save the current output for gradient calculation

return out;

Given the input data “in” and layer “l”, calculate the output data.

TODO matrix backward_layer(layer *l, matrix delta)

// delta is Δout

// TODO: modify it in place to be “g'(out) * delta” out with // gradient_matrix function.

// You can use gradient_matrix function with “l->out” and “l->activation” to “delta”

// TODO: then calculate dL/dw and save it in l->dw

free_matrix(l->dw);

// Calculate xt as the transpose matrix of “l->in”

// Calculate dw as xt times delta (matrix multiplication)

// free matrix xt to avoid memory leak

l->dw = dw;

// TODO: finally, calculate dL/dx and return it. (Similar to 1.4.2. Care memory leak)

// Calculate dx = delta * (l->w)^T, where * is matrix multiplication and ^T is matrix transpose

return dx;

Given the layer “l” and delta, perform backward step:
1.4.1: Calculate the delta after considering the activation
1.4.2: Calculate Δ𝑤
1.4.3: Calculate and Return Δo (aka “dx”).

TODO void update_layer(layer *l, double rate, double

momentum, double decay)

// Calculate Δw_t = dL/dw_t - λw_t + mΔw_{t-1}

// save it to l->v

// Note that You can use axpy_matrix to perform the matrix summation/subtraction

// Update l->w

// l->w = rate * l->v + l->w

Note the multiplication and summation in this slides all mean matrix multiplication or matrix summation.

Given a layer “l”, learning rate, momentum, and decay rate,
Update the weight (i.e. l->w)

Functions You Need to Know before Experiments

For simplicity, we already filled the following functions for you. You should
read and understand these functions (classifier.c) before running
experiments.

layer make_layer(int input, int output, ACTIVATION activation)

matrix forward_model(model m, matrix X)

void backward_model(model m, matrix dL)

void update_model(model m, double rate, double momentum, double decay)

double accuracy_model(model m, data d)

double cross_entropy_loss(matrix y, matrix p)

void train_model(model m, data d, int batch, int iters, double rate, double momentum, double decay)

Get the Data

1. Download, Unzip, and Prepare the MNIST Dataset

wget https://pjreddie.com/media/files/mnist_train.tar.gz

wget https://pjreddie.com/media/files/mnist_test.tar.gz

tar xzf mnist_train.tar.gz

tar xzf mnist_test.tar.gz

find train -name *.png > mnist.train

find test -name *.png > mnist.test

2. Download, Unzip, and Prepare the CIFAR-10 Dataset

wget http://pjreddie.com/media/files/cifar.tgz

tar xzf cifar.tgz

find cifar/train -name *.png > cifar.train

find cifar/test -name *.png > cifar.test

Experiments (Write Your Answers to hw4.pdf)

1. Coding and Data prepare
2. MNIST Experiments

1. Linear Softmax Model (1-layer)
1. Run the basic model
2. Tune the learning rate
3. Tune the decay

2. Neural Network (2-layer NNs and 3-layer NNs)
1. Find the best activation
2. Tune the learning rate
3. Tune the decay
4. Tune the decay for 3-layer Neural Network

3. Experiments for CIFAR-10
1. Neural Network (3-layer NNs)

1. Tune the learning rate and decay

