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Recap: Long Range Image Matching and Its
Applications

May 14th , 2020



via JoeRedmon

Matching patches: Corners + Descriptors!

*  Harris Corners + Patch Colors / Intensities as Descriptors
*  Homography and Other Trasnformations for aligning with RANSAC

®* Choosing a Projection Surface such as Cylinders

* Creating Panoramas p——




Wide Baseline Matching

LR




via Svetlana

Scale-space blob detector

Convolve image with scale-normalized Laplacian at several scales

1.

Find maxima of squared Laplacian response in scale-space

2.




via Svetlana

Efficient implementation

octave)

Difference of
Gaussian Gaussian (DOG)

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), pp. 91-110, 2004.



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

via Svetlana

Feature descriptors: SIFT

e Descriptor computation:
o Divide patch into 4x4 sub-patches
o Compute histogram of gradient orientations (8 reference angles) inside each sub-patch

o Resulting descriptor: 4x4x8 = 128 dimensions

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), pp. 91-110, 2004.



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

via Svetlana

Rotational Normalization of SIFT Feature

To assign a unique orientation to circular image windows:
o  Create histogram of local gradient directions in the patch

o  Assign canonical orientation at peak of smoothed histogram




via Svetlana

Normalization: From covariant regions to invariant features

_ _ _ . Eliminate rotational Compute appearance
Extract affine regions Normalize regions ambiguity descriptors




via Svetlana

Invariance vs. covariance

o Invariance:

o features(transform(image)) = features(image)

o Covariance:

o features(transform(image)) = transform(features(image))

o '
q1/

Covariant detection => invariant description



Application: Panoramas from a Jumble of Pictures

o Extract SIFT features from all images
o Find Pairwise Homographies
o Find Connected Components over the pair connections

o Bundle adjust the connected component to find image
to panorama transformation

o Render panorama with blending




Photo Tourism / Photosynth
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o Automatically computes each photo's viewpoint, and
o A sparse 3D model of the scene

o Explorer interface enables interactively moving in 3D space by seamlessly transitioning between photographs



Application: Scalable Images based Search

Output pose estimate

Fig. 1. A worldwide point cloud database. In order to compute the pose of a query image, we
match it to a database of georeferenced structure from motion point clouds assembled from photos
of places around the world. Our database (left) includes a street view image database of downtown

David G. Lowe. "Distinctive image features from Worldwide Pose Estimation
scale-invariant keypoints.” IJCV 60 (2), pp. 91-110, Yunpeng Li, Noah Snavely, Dan Huttenlocher, Pascal Fua
2004 ECCV 2012

o Find location of a Query image by matching against a large database of images indexed with their respective locations

o Find instances of objects / images in a database of images


http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Efficient indexing technique: Vocabulary trees

Test image

Vocabulary tree
with inverted
index

Database

D. Nistér and H. Stewénius, ., CVPR 2006


http://www.vis.uky.edu/~stewe/publications/nister_stewenius_cvpr2006.pdf

Model images

Populating the vocabulary tree/inverted index

Slide credit: D. Nister



Model images

Populating the vocabulary tree/inverted index
Slide credit: D. Nister



Model images

Populating the vocabulary tree/inverted index
Slide credit: D. Nister



Model images

Populating the vocabulary tree/inverted index
Slide credit: D. Nister
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Model images

Looking up a fest image Slide credit: D. Nister



SnapTell : Visual Product Search (Acquired by A9 / Amazon)

Frommer's*

Seattle 2009

A

Camera Phone Image ASG Algorithm Visual Search Match Product Information

o ASG algorithm (Accumulated Signed Gradient) is a SIFT like feature

o https://computervisionblog.wordpress.com/tag/image-recognition/

o Many Others too...


https://computervisionblog.wordpress.com/tag/image-recognition/

Google Cloud Anchors

o Google ‘Cloud Anchors’ will help synchronize group AR
experiences across iOS and Android devices

o Employ Wide Baseline Matching

o https://mediafocus.biz/google-cloud-anchors-will-help-
synchronize-group-ar-experiences-across-ios-and-
android-devices/



https://mediafocus.biz/google-cloud-anchors-will-help-synchronize-group-ar-experiences-across-ios-and-android-devices/

Minecraft Earth via Azure Spatial Anchors

MIHECRAE W

https://www.theverge.com/2019/11/12/20961639/minecraft-earth-now-available-early-access-us-ios-android

https://youtu.be/AQEizp-VrvU

Spatial Anchors are built and quried with Wide Baseline Matching and SfM / SLAM


https://www.theverge.com/2019/11/12/20961639/minecraft-earth-now-available-early-access-us-ios-android

How do Hand-Crafted Features Compare with Learned Features?

Comparative Evaluation of Hand-Crafted and Learned Local Features

Johannes L. Schonberger!  Hans Hardmeier'!  Torsten Sattler!  Marc Pollefeys!
! Department of Computer Science, ETH Ziirich > Microsoft Corp.
{jsch, harhans, sattlert,pomarc}@inf.ethz.ch

CVPR 2017

o “Hand-crafted features still perform on par or better than recent learned features for image-based reconstruction.

o The current generation of learned descriptors shows a high variance across different datasets and applications.

o The next generation of learned descriptors needs more training data.”



Viewpoint and lllumination Variations Dataset

HPatches: A benchmark and evaluation of handcrafted and learned local
descriptors‘

https://github.com/hpatches/hpatches-dataset

Krystian Mikolajczyk
Imperial College London

k.mikolajczyk@imperial.ac.uk

o Reproducible, patch-based: Descriptor evaluation should be done on patches to
eliminate the detector related factors.

o Diverse: Representative of many different scenes and image capturing conditions.

o Real: Real data more challenging than a synthesized one due to nuisance factors
that cannot be modelled in image transformations.

o Large: For accurate and stable evaluation; to provide substantial training sets for
learning based descriptors.

e i = & >

o Multitask: Use cases, from matching image pairs to image retrieval.

Figure 1. Examples of image sequences; note the diversity of

scenes and nuisance factors, including viewpoint, illumination, fo-
cus, reflections and other changes.



https://github.com/hpatches/hpatches-dataset

How do Hand-Crafted Features Compare with Learned Features?

Image Matching across Wide Baselines: From Paper to Practice

Yuhe Jin®  Dmytro Mishkin®  Anastasiia Mishchuk®
o, 2 3 . ) )
Jifi Matas®  Pascal Fua® Kwang Moo Yi'!  Eduard Trulls*

YUniversity of Victoria  2Czech Technical University in Prague  3Ecole Polytechnique Fédérale de Lausanne  *Google Research

Contributions
o Dataset with 30k images with depth maps and ground truth poses

o A modular pipeline incorporating dozens of methods for feature
extraction and matching, and pose estimation

abonyd ok % |, TR e O i o Two downstream tasks — stereo and multi-view reconstruction —
Figure 1. Every paper claims to outperform the state of the art. evaluated with downstream and intermediate metrics
[s this possible, or an artifact of insufficient validation? On the
left, we show stereo matches obtained with D2-Net (2019) [33],

a state-of-the-art local feature, using OpenCV RANSAC with its .
default settings. On the right, we show SIFT (1999) [48] with a o A thorough StUdy of dozens of methods and technlques, hand-crafted and

carefully tuned MAGSAC [29] — notice how the latter performs Iearnedr and their combination, anng with a procedure for hyper"

much better. We fill this gap with a new, modular benchmark for parameter selection
sparse image matching, with dozens of built-in methods.



Multiview Results
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CV-SIFT 2567 4 1 95.6
CV-v/SIFT 2 96.2
SURF 2421.7 84.5 93.9
AKAZE 3258. 4 959
ORB 2341.1 84.5 92.1

DoG-HardNet S5 96.3
[.2Net 2413. 88.0 95.2
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Key.Net-HardNet 3755.. .6 98.0
Geodesc 2631.8 89.4 959
ContextDesc ). 2 96.4
SOSNet 2681. 1 96.4
LogPolarDesc 3029. 1 95.6
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SuperPoint (2k) . 3.0 927
LF-Net (2k) 30.0 89.8
D2-Net (SS) 3302.8 .0 958
D2-Net (MS) 40229 93.7 97.0
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o (NL) Number of 3D Landmarks

o (SR) Success Rate (%) in the 3D reconstruction across ‘bags’
o (RC) Ratio of Cameras (%) registered in a ‘bag’

o (TL) Track Length or number of observations per landmark;

o mAP at 5-10degs
o (ATE) Absolute Trajectory Error.



HardNet: Uses SIFT like Best-to-Next Distance for Training Descriptors

Distance matrix

Batch of input patches il Descriptors
D; D = pdist(a, p)

d(ay,pz) d(aq,ps) d(ay, ps)

~ Pa,in ‘ 3x3 Conv 3x3 Conv 3x3 Conv 3x3 Conv
d(az, p1) w pad 1 pad 1 pad1/2 pad 1
A2 min % BN + RelU BN + RelU BN +RelU BN +RelU
d(as, p1) .

32x32
d(as, p1) L

3x3 Conv 3x3 Conv 848 C
pad1/2 pad 1 xetonv %
Final triplet BN + RelU BN + RelU BN+ L2Norm
(one of n in batch) 128

d(ay, Pa,,,) > d(a,, ..,p1) = select a,

2 min

&= -
-~ [ k .

bl

max (0,1 4+ d(a;,p;) —min (d(a;,p;, .. ). dlak, . ,pi)))

o Choose the hardes?negative, i.e. minimum distance to a negative.

o Make gap between the matching and hard non-matching to be a maximum



“Hot Topic”

Image Matching: Local Features & Beyond




A Contemporary Example of Learned Features

SuperPoint: Self-Supervised Interest Point Detection and Description

CVPR 2018 Point

Image Pair SuperPoint Network Correspondence

o Self-supervised framework for training interest point
detectors and descriptors

o Fully-convolutional model operates on full-sized images and
jointly computes pixel-level interest point locations and
associated descriptors in one forward pass.

Figure 1. SuperPoint for Geometric Correspondences. We
present a fully-convolutional neural network that computes SIFT-
like 2D interest point locations and descriptors in a single forward
pass and runs at 70 FPS on 480 x 640 images with a Titan X GPU.




Self-Supervised Training

(a) Interest Point Pre-Training (b) Interest Point Self-Labeling (c) Joint Training

LaPk;eiLetcilr;n;e;esst Unlabeled Image Pseudo-Ground : w; Iqterest
g Truth Interest i ade® $ S Point Loss

‘ '; Base Detector : Points

Interest
Point Loss

[see Section 4] [see Section 5] [see Section 3]

Figure 2. Self-Supervised Training Overview. In our self-supervised approach, we (a) pre-train an initial interest point detector on
synthetic data and (b) apply a novel Homographic Adaptation procedure to automatically label images from a target, unlabeled domain.
The generated labels are used to (c) train a fully-convolutional network that jointly extracts interest points and descriptors from an image.




Superpoint Architecture

Interest Point Decoder

Figure 3. SuperPoint Decoders. Both decoders operate on a
shared and spatially reduced representation of the input. To keep
the model fast and easy to train, both decoders use non-learned
upsampling to bring the representation back to R¥*"W

o The interest point detector head computes Hc x Wc x 65 and o The descriptor head computes Hc x Wc x D and outputs a tensor
outputs a tensor sized H x W. sized Hx W x D.

o The 65 channels correspond to local, non-overlapping 8 x8 o To oujcput a dgnse map of L2-n.ormalized. fixed Ieng.th
grid regions of pixels plus an extra “no interest point” descriptors, first output a semi-dense grid of descriptors (e.g.,
dustbin. one every 8 pixels).

o After a channel-wise softmax, the dustbin dimension is o The decoder then performs bicubic interpolation of the

removed and Hc x Wc x 64 = H x W reshape is performed. descriptor and then L2-normalizes to unit length.



Joint Geometric and Classification Loss
LX, X', D,D:Y,Y'S) =

L (X.Y)+ L, (X',Y')+ NCqy(D, D', S).

H:. W,
o The interest point detector loss function Lp is a fully convolutional L,(X,Y) z Ly (Xhaw's Yhw )

cross-entropy c’e = !

w=

where

EXP(Xhwy,
ZP(.X/UU:.U) = —log (#) .

Z;\”: 1 eXp(xh wk )

o The descriptor loss is applied to all pairs of descriptor cells, (h, w) and

(h’, w’)
o The homography-induced correspondence between the (h, w) cell ] 1, if H’H/pTu, — P || <8
and the (h’, w’) cell can be written as: Tl = 0 otherwise

L4(D,D',S) =
H. W, H. W,

H” Z Z Id dpuw, dh’u’ shuh’u’)'

h=1 HK' =1
w=1 Z_l

o The descriptor loss is given by:

where
lo(d,d’; s) = \g * 5 *x max(0,m, —d”d’)
+(1 = 5) * max(0,d”d’ —m,,).




Comparative Results

57 Mllumination Scenes 59 Viewpoint Scenes Homography Estimation | Detector Metrics Descriptor Metrics

IS=4  NMS=§ NMS=4 NMS=8 ,
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SIFT 424 676 759 1.495  0.833 .694 313
3

8 |[.641 1.157 135 .266

Table 4. HPatches Homography Estimation. SuperPoint out-
Table 3. HPatches Detector Repeatability. SuperPoint is the performs LIFT and ORB and performs comparably to SIFT using
most repeatable under illumination changes, competitive on view- various e thresholds of correctness. We also report related metrics
point changes, and outperforms MagicPoint in all scenarios. which measure detector and descriptor performance individually.

o SIFT performs well for sub-pixel precision homographies and has the lowest mean localization error (MLE).

o SuperPoint scores strongly in descriptor-focused metrics such as nearest neighbor mAP and matching score (M. Score)



