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Jumble of Disparate Photos

LR




How do you align and build a panorama?

o Humans are not generally good at alignment!

o Thisis a task where machines are superior : Fast, Accurate, Precise

o Ingredients for a solution?



How do you align and build a panorama?

o Humans are not generally good at alignment!

o Thisis a task where machines are superior : Fast, Accurate, Precise

o Ingredients for a solution?

1. Features that are invariant or quasi-invariant to larger changes in viewpoint and illumination.

1. Patches used in the last lecture will be hopelessly inadequate. Why?

2. Aligning with limited overlap

Local Alignment

3. Aligning and constraining the placement of multiple pictures simultaneously

Global Alignment

4. Bundle Adjustment



Automatic Panoramic Image Stitching using Invariant Features

Matthew Brown and David G. Lowe
{mbrown|lowe}@cs.ubc.ca
Department of Computer Science,

University of British Columbia,
Vancouver, Canada.

International Journal of Computer Vision. 74(1), pages 59-73, 2007
hitp://matthewalunbrown.com/papers/ijcv2007.pdf

AutoStitch: a new dimension in automatic image stitching

http://matthewalunbrown.com/autostitch/autostitch.himl#publications



http://matthewalunbrown.com/autostitch/autostitch.html

Location Recognition with Pre-built Image and SfM Database

Location Recognition using Prioritized Feature Matching

Dan

Yunpeng Li Noah Snavely Huttenlocher

https://research.cs.cornell.edu/p2f/

ECCV 2010

Fig. 5. Visualization of registration and localization on the Dubrovnik data set, showing the cam-
era locations and their corresponding views (i.e. registered test images), as well as the 3D point
cloud of the (full) model. Two more examples are shown in Figure 6.

Again need is for Long-range feature Matching under large time gaps between
database images and query images.


http://www.cs.cornell.edu/~yuli/
http://www.cs.cornell.edu/~snavely/
http://www.cs.cornell.edu/~dph/
https://research.cs.cornell.edu/p2f/

Instance Recognition & Retrieval: Specific Entity in a Large Database

Recognizing or retrieving Recognizing or retrieving
specific objects specific objects

Example I: Visual search in feature films Example ll. Search photos on the web for particular places

Visually defined query “Groundhog Day” [Rammis, 1993]

“Find this
clock”

“Find this
place” [

Find these landmarks ...In these images and 1M more

Slide credit: J. Sivic

o Again long range feature matching against a large database of objects



Intuition behind Scale / Rotation / Affine Invariant Feature

o How can we detect all the flowers?
o A Blob detector computed over scale-space is a stable localizer of a feature’s position

And if we can make its descriptor invariant to Rotations and/or Affine transformations we can match it under large

scale transformations



via Svetlana

Are Harris corners good features for Long Range Matching?

o Recall the Second Moment Matrix and its use in Corner Detection:

A 0
M = RT|"max ] R
0 Amin

o Geometrically this is an ellipse with orientation R and axes determined by the eigenvalues.

direction of the
fastest change

direction of the
slowest change

o Cornerness determined by both eigenvalues non-zero and almost equal.



Cornerness : Variations with Affine intensity change via Svetlana

Only derivatives are used, so invariant to intensity shift /> 7+ 5

Intensity scaling: I —>al

R
threshold

X (image coordinate) X (image coordinate)

Partially invariant to affine intensity change




via Svetlana

Image translation

[ .

Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. franslation




via Svetlana

Image rotation

Second moment ellipse rotates but its
shape (i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation



via Svetlana

Scaling

& I
Corner

All points will be
classified as

Corner location is not covariant w.r.t. scaling!



Scale & Rotation Covariance are Required for Long Range Matching

o Independently detect corresponding locations in scaled, rotated versions of an imaged scene

o Need scale covariant detector and rotation and scale normalization




via Svetlana

Blob detection in 2D

o Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D




. ERYEHERE
Scale selection

e At what scale does the Laplacian achieve a maximum response to a blob of radius r?

e The Laplacian is given by (up to scale): (xz . yz B 20.2)8—(x2+y2)/262

e Therefore, the maximum response occursat o0 = r/\/f.

circle

image Laplacian 7



via Svetlana

Basic idea

Convolve the image with a “blob filter” at multiple scales
and

Compute extrema of filter response in the resulting scale space

T. Lindeberg, Feature detection with automatic scale selection, I/CV 30(2), pp 77-116, 1998



http://www.nada.kth.se/cvap/abstracts/cvap198.html

via Svetlana

Blob detection

minima

maxima

Find maxima and minima of blob filter response in space and scale

Source: N. Snavely



via Svetlana

Scale-space blob detector

1. Convolve image with scale-normalized Laplacian at several scales

2. Find maxima of squared Laplacian response in scale-space




via Svetlana
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Example

Scale-space blob detector




via Svetlana

Basis for SIFT Keypoint Detection

D. Lowe, Distinctive image features from scale-invariant keypoints,
IJCV 60 (2), pp. 21-110, 2004



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

via Svetlana

Efficient implementation

Approximating the Laplacian with a difference of Gaussians:

L=oc" (Gxx(x, ,0)+G,, (X, G))

(Laplacian)

DoG = G(xayakg)_G(an’»G)

(Difference of Gaussians)




via Svetlana

Efficient implementation

octave)

Difference of
Gaussian Gaussian (DOG)

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), pp. 91-110, 2004.



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

via Svetlana

Feature descriptors: SIFT

e Descriptor computation:
o Divide patch into 4x4 sub-patches
o Compute histogram of gradient orientations (8 reference angles) inside each sub-patch

o Resulting descriptor: 4x4x8 = 128 dimensions

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), pp. 91-110, 2004.



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

via Svetlana

Feature descriptors: SIFT

e Descriptor computation:
o Divide patch into 4x4 sub-patches
o Compute histogram of gradient orientations (8 reference angles) inside each sub-patch

o Resulting descriptor: 4x4x8 = 128 dimensions

e Advantage over raw vectors of pixel values
o Gradients less sensitive to illumination change

o Pooling of gradients over the sub-patches achieves robustness to small shifts, but still preserves some
spatial information

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), pp. 91-110, 2004.


http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

via Svetlana

Rotational Normalization of SIFT Feature

To assign a unique orientation to circular image windows:
o  Create histogram of local gradient directions in the patch

o  Assign canonical orientation at peak of smoothed histogram




via Svetlana

Normalization: From covariant regions to invariant features

_ _ _ . Eliminate rotational Compute appearance
Extract affine regions Normalize regions ambiguity descriptors




via Svetlana

Invariance vs. covariance

o Invariance:

o features(transform(image)) = features(image)

o Covariance:

o features(transform(image)) = transform(features(image))

o '
q1/

Covariant detection => invariant description



Problem: Ambiguous putative matches
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Rejection of unreliable matches

e How can we tell which putative matches are more reliable?

e Heuristic: compare distance of nearest neighbor to that of second nearest neighbor

o Ratio of closest distance to second-closest distance will be high for features that are not distinctive

PDF for correct matches
PDF for incorrect matches --—-x---

Threshold of 0.8 provides
good separation

02 03 04 05 06 07 08 09 1
Ratio of distances (closest/next closest)

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), pp. 91-110, 2004.



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Application: Panoramas from a Jumble of Pictures

o Extract SIFT features from all images
o Find Pairwise Homographies
o Find Connected Components over the pair connections

o Bundle adjust the connected component to find image
to panorama transformation

o Render panorama with blending




Application: Scalable Images based Search

Output pose estimate

Fig. 1. A worldwide point cloud database. In order to compute the pose of a query image, we
match it to a database of georeferenced structure from motion point clouds assembled from photos
of places around the world. Our database (left) includes a street view image database of downtown

David G. Lowe. "Distinctive image features from Worldwide Pose Estimation
scale-invariant keypoints.” IJCV 60 (2), pp. 91-110, Yunpeng Li, Noah Snavely, Dan Huttenlocher, Pascal Fua
2004 ECCV 2012

o Find location of a Query image by matching against a large database of images indexed with their respective locations

o Find instances of objects / images in a database of images


http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Efficient indexing technique: Vocabulary trees

Test image

Vocabulary tree
with inverted
index

Database

D. Nistér and H. Stewénius, ., CVPR 2006


http://www.vis.uky.edu/~stewe/publications/nister_stewenius_cvpr2006.pdf

Model images

Populating the vocabulary tree/inverted index

Slide credit: D. Nister



Model images

Populating the vocabulary tree/inverted index
Slide credit: D. Nister



Model images

Populating the vocabulary tree/inverted index
Slide credit: D. Nister



Model images

Populating the vocabulary tree/inverted index
Slide credit: D. Nister
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Model images

Looking up a fest image Slide credit: D. Nister



Google Cloud Anchors

o Google ‘Cloud Anchors’ will help synchronize group AR
experiences across iOS and Android devices

o Employ Wide Baseline Matching

o https://mediafocus.biz/google-cloud-anchors-will-help-
synchronize-group-ar-experiences-across-ios-and-
android-devices/



https://mediafocus.biz/google-cloud-anchors-will-help-synchronize-group-ar-experiences-across-ios-and-android-devices/

Minecraft Earth via Azure Spatial Anchors

MIHECRAE W

https://www.theverge.com/2019/11/12/20961639/minecraft-earth-now-available-early-access-us-ios-android

https://youtu.be/AQEizp-VrvU

Spatial Anchors are built on Wide Baseline Matching and SfM / SLAM


https://www.theverge.com/2019/11/12/20961639/minecraft-earth-now-available-early-access-us-ios-android

How do Hand-Crafted Features Compare with Learned Features?

Comparative Evaluation of Hand-Crafted and Learned Local Features

Johannes L. Schonberger!  Hans Hardmeier'!  Torsten Sattler!  Marc Pollefeys!
! Department of Computer Science, ETH Ziirich > Microsoft Corp.
{jsch, harhans, sattlert,pomarc}@inf.ethz.ch

CVPR 2017

o “Hand-crafted features still perform on par or better than recent learned features for image-based reconstruction.

o The current generation of learned descriptors shows a high variance across different datasets and applications.

o The next generation of learned descriptors needs more training data.”



How do Hand-Crafted Features Compare with Learned Features?

Image Matching across Wide Baselines: From Paper to Practice

Yuhe Jin®  Dmytro Mishkin®  Anastasiia Mishchuk®
o, 2 3 . ) )
Jifi Matas®  Pascal Fua® Kwang Moo Yi'!  Eduard Trulls*

YUniversity of Victoria  2Czech Technical University in Prague  3Ecole Polytechnique Fédérale de Lausanne  *Google Research

Contributions
o Dataset with 30k images with depth maps and ground truth poses

o A modular pipeline incorporating dozens of methods for feature
extraction and matching, and pose estimation

abonyd ok % |, TR e O i o Two downstream tasks — stereo and multi-view reconstruction —
Figure 1. Every paper claims to outperform the state of the art. evaluated with downstream and intermediate metrics
[s this possible, or an artifact of insufficient validation? On the
left, we show stereo matches obtained with D2-Net (2019) [33],

a state-of-the-art local feature, using OpenCV RANSAC with its .
default settings. On the right, we show SIFT (1999) [48] with a o A thorough StUdy of dozens of methods and technlques, hand-crafted and

carefully tuned MAGSAC [29] — notice how the latter performs Iearnedr and their combination, anng with a procedure for hyper"

much better. We fill this gap with a new, modular benchmark for parameter selection
sparse image matching, with dozens of built-in methods.



“Hot Topic”

Image Matching: Local Features & Beyond




Viewpoint and lllumination Variations Dataset

HPatches: A benchmark and evaluation of handcrafted and learned local
descriptors‘

https://github.com/hpatches/hpatches-dataset

Krystian Mikolajczyk
Imperial College London

k.mikolajczyk@imperial.ac.uk

o Reproducible, patch-based: Descriptor evaluation should be done on patches to
eliminate the detector related factors.

o Diverse: Representative of many different scenes and image capturing conditions.

o Real: Real data more challenging than a synthesized one due to nuisance factors
that cannot be modelled in image transformations.

o Large: For accurate and stable evaluation; to provide substantial training sets for
learning based descriptors.

e i = & >

o Multitask: Use cases, from matching image pairs to image retrieval.

Figure 1. Examples of image sequences; note the diversity of

scenes and nuisance factors, including viewpoint, illumination, fo-
cus, reflections and other changes.



https://github.com/hpatches/hpatches-dataset

A Contemporary Example of Learned Features

SuperPoint: Self-Supervised Interest Point Detection and Description

CVPR 2018 Point

Image Pair SuperPoint Network Correspondence

o Self-supervised framework for training interest point
detectors and descriptors

o Fully-convolutional model operates on full-sized images and
jointly computes pixel-level interest point locations and
associated descriptors in one forward pass.

Figure 1. SuperPoint for Geometric Correspondences. We
present a fully-convolutional neural network that computes SIFT-
like 2D interest point locations and descriptors in a single forward
pass and runs at 70 FPS on 480 x 640 images with a Titan X GPU.




Self-Supervised Training

(a) Interest Point Pre-Training (b) Interest Point Self-Labeling (c) Joint Training

LaPk;eiLetcilr;n;e;esst Unlabeled Image Pseudo-Ground : w; Iqterest
g Truth Interest i ade® $ S Point Loss

‘ '; Base Detector : Points

Interest
Point Loss

[see Section 4] [see Section 5] [see Section 3]

Figure 2. Self-Supervised Training Overview. In our self-supervised approach, we (a) pre-train an initial interest point detector on
synthetic data and (b) apply a novel Homographic Adaptation procedure to automatically label images from a target, unlabeled domain.
The generated labels are used to (c) train a fully-convolutional network that jointly extracts interest points and descriptors from an image.




Superpoint Architecture

Interest Point Decoder

Figure 3. SuperPoint Decoders. Both decoders operate on a
shared and spatially reduced representation of the input. To keep
the model fast and easy to train, both decoders use non-learned
upsampling to bring the representation back to R¥*"W

o The interest point detector head computes Hc x Wc x 65 and o The descriptor head computes Hc x Wc x D and outputs a tensor
outputs a tensor sized H x W. sized Hx W x D.

o The 65 channels correspond to local, non-overlapping 8 x8 o To oujcput a dgnse map of L2-n.ormalized. fixed Ieng.th
grid regions of pixels plus an extra “no interest point” descriptors, first output a semi-dense grid of descriptors (e.g.,
dustbin. one every 8 pixels).

o After a channel-wise softmax, the dustbin dimension is o The decoder then performs bicubic interpolation of the

removed and Hc x Wc x 64 = H x W reshape is performed. descriptor and then L2-normalizes to unit length.



Joint Geometric and Classification Loss
LX, X', D,D:Y,Y'S) =

L (X.Y)+ L, (X',Y')+ NCqy(D, D', S).

H:. W,
o The interest point detector loss function Lp is a fully convolutional L,(X,Y) z Ly (Xhaw's Yhw )

cross-entropy c’e = !

w=

where

EXP(Xhwy,
ZP(.X/UU:.U) = —log (#) .

Z;\”: 1 eXp(xh wk )

o The descriptor loss is applied to all pairs of descriptor cells, (h, w) and

(h’, w’)
o The homography-induced correspondence between the (h, w) cell ] 1, if H’H/pTu, — P || <8
and the (h’, w’) cell can be written as: Tl = 0 otherwise

L4(D,D',S) =
H. W, H. W,

H” Z Z Id dpuw, dh’u’ shuh’u’)'

h=1 HK' =1
w=1 Z_l

o The descriptor loss is given by:

where
lo(d,d’; s) = \g * 5 *x max(0,m, —d”d’)
+(1 = 5) * max(0,d”d’ —m,,).




Comparative Results

57 Mllumination Scenes 59 Viewpoint Scenes Homography Estimation | Detector Metrics Descriptor Metrics

IS=4  NMS=§ NMS=4 NMS=8 ,
NMS=4  NMB=5 NMS=4 WS e=1e¢=3 e=5 |Rep. MLE NNmAP M. Score

-:2: SuperPoint 310  .684 829 | .581 1.158 821 470
o I

28 598 44¢ 102 . 315
404 LIFT 284 )8 449 .10 664 315

461 ORB 150 395 3
453
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—
-

SuperPoint .65 631
MagicPoint .57 507
FAST 575 472
Harris .620 533
Shi .606 Sl
Random 101 103

]
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o !
O o

n
=)

SIFT 424 676 759 1.495  0.833 .694 313
3

8 |[.641 1.157 135 .266

Table 4. HPatches Homography Estimation. SuperPoint out-
Table 3. HPatches Detector Repeatability. SuperPoint is the performs LIFT and ORB and performs comparably to SIFT using
most repeatable under illumination changes, competitive on view- various e thresholds of correctness. We also report related metrics
point changes, and outperforms MagicPoint in all scenarios. which measure detector and descriptor performance individually.

o SIFT performs well for sub-pixel precision homographies and has the lowest mean localization error (MLE).

o SuperPoint scores strongly in descriptor-focused metrics such as nearest neighbor mAP and matching score (M. Score)



