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How do you align and build a panorama?

o Humans are not generally good at alignment!

o This is a task where machines are superior : Fast, Accurate, Precise

o Ingredients for a solution?



How do you align and build a panorama?
o Humans are not generally good at alignment!

o This is a task where machines are superior : Fast, Accurate, Precise

o Ingredients for a solution?

1. Features that are invariant or quasi-invariant to larger changes in viewpoint and illumination.
1. Patches used in the last lecture will be hopelessly inadequate. Why?

2. Aligning with limited overlap
Local Alignment

3. Aligning and constraining the placement of multiple pictures simultaneously
Global Alignment

4. Bundle Adjustment



http://matthewalunbrown.com/papers/ijcv2007.pdf

International Journal of Computer Vision. 74(1), pages 59-73, 2007

http://matthewalunbrown.com/autostitch/autostitch.html#publications

http://matthewalunbrown.com/autostitch/autostitch.html


Location Recognition with Pre-built Image and SfM Database

Yunpeng Li Noah Snavely Dan 
Huttenlocher

Location Recognition using Prioritized Feature Matching

https://research.cs.cornell.edu/p2f/

ECCV 2010

Again need is for Long-range feature Matching under large time gaps between 
database images and query images. 

http://www.cs.cornell.edu/~yuli/
http://www.cs.cornell.edu/~snavely/
http://www.cs.cornell.edu/~dph/
https://research.cs.cornell.edu/p2f/


Instance Recognition & Retrieval: Specific Entity in a Large Database

o Again long range feature matching against a large database of objects



Intuition behind Scale / Rotation / Affine Invariant Feature 

o How can we detect all the flowers?

o A Blob detector computed over scale-space is a stable localizer of a feature’s position

o And if we can make its descriptor invariant to Rotations and/or Affine transformations we can match it under large 
scale transformations



Are Harris corners good features for Long Range Matching?

o Recall the Second Moment Matrix and its use in Corner Detection:

𝑀 = 𝑅! 𝜆"#$ 0
0 𝜆"%&

R

o Geometrically this is an ellipse with orientation R and axes determined by the eigenvalues.

o Cornerness determined by both eigenvalues non-zero and almost equal.

via Svetlana



Cornerness : Variations with Affine intensity change

Only derivatives are used, so invariant to intensity shift I® I + b

Intensity scaling: I ® a I

R

x (image coordinate)

threshold

R

x (image coordinate)

Partially invariant to affine intensity change

I ® a I + b

via Svetlana



Image translation

Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation

via Svetlana



Image rotation

Second moment ellipse rotates but its 
shape (i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation

via Svetlana



Scaling

All points will be 
classified as edges

Corner

Corner location is not covariant w.r.t. scaling!

via Svetlana



Scale & Rotation Covariance are Required for Long Range Matching

o Independently detect corresponding locations in scaled, rotated versions of an imaged scene

o Need scale covariant detector and rotation and scale normalization



Blob detection in 2D

o Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

∇'𝑔 =
𝜕'𝑔
𝜕𝑥' +

𝜕'𝑔
𝜕𝑦'

via Svetlana



Scale selection

• At what scale does the Laplacian achieve a maximum response to a blob of radius r?

• The Laplacian is given by (up to scale):

• Therefore, the maximum response occurs at 

r

image

(𝑥' + 𝑦' − 2𝜎')𝑒((*!+,!)/'/!

𝜎 = 𝑟/ 2.

circle

Laplacian

0

via Svetlana



Basic idea
Convolve the image with a “blob filter” at multiple scales 

and 

Compute extrema of filter response in the resulting scale space

T. Lindeberg, Feature detection with automatic scale selection, IJCV 30(2), pp 77-116, 1998

via Svetlana

http://www.nada.kth.se/cvap/abstracts/cvap198.html


Blob detection

Find maxima and minima of blob filter response in space and scale

* =

maxima

minima

Source: N. Snavely

via Svetlana



Scale-space blob detector

1. Convolve image with scale-normalized Laplacian at several scales

2. Find maxima of squared Laplacian response in scale-space

via Svetlana



Scale-space blob detector: Example via Svetlana



Basis for SIFT Keypoint Detection

D. Lowe, Distinctive image features from scale-invariant keypoints, 
IJCV 60 (2), pp. 91-110, 2004 

via Svetlana

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Approximating the Laplacian with a difference of Gaussians:

( )2 ( , , ) ( , , )xx yyL G x y G x ys s s= +

( , , ) ( , , )DoG G x y k G x ys s= -

(Laplacian)

(Difference of Gaussians)

Efficient implementation via Svetlana



Efficient implementation

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), pp. 91-110, 2004. 

via Svetlana

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


• Descriptor computation:

o Divide patch into 4x4 sub-patches

o Compute histogram of gradient orientations (8 reference angles) inside each sub-patch

o Resulting descriptor: 4x4x8 = 128 dimensions

Feature descriptors: SIFT

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), pp. 91-110, 2004. 

via Svetlana

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


• Descriptor computation:
o Divide patch into 4x4 sub-patches

o Compute histogram of gradient orientations (8 reference angles) inside each sub-patch

o Resulting descriptor: 4x4x8 = 128 dimensions

• Advantage over raw vectors of pixel values
o Gradients less sensitive to illumination change

o Pooling of gradients over the sub-patches achieves robustness to small shifts, but still preserves some 
spatial information

Feature descriptors: SIFT

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), pp. 91-110, 2004. 

via Svetlana

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Rotational Normalization of SIFT Feature

To assign a unique orientation to circular image windows:
o Create histogram of local gradient directions in the patch

o Assign canonical orientation at peak of smoothed histogram

0 2 p

via Svetlana



Normalization: From covariant regions to invariant features

Extract affine regions Normalize regions
Eliminate rotational 

ambiguity
Compute appearance

descriptors

SIFT (Lowe ’04)

via Svetlana



Invariance vs. covariance

o Invariance:

o features(transform(image)) = features(image)

o Covariance:

o features(transform(image)) = transform(features(image))

Covariant detection => invariant description

via Svetlana



Problem: Ambiguous putative matches

Source: Y. Furukawa



Rejection of unreliable matches

• How can we tell which putative matches are more reliable?

• Heuristic: compare distance of nearest neighbor to that of second nearest neighbor

o Ratio of closest distance to second-closest distance will be high for features that are not distinctive

Threshold of 0.8 provides 
good separation

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), pp. 91-110, 2004. 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Application: Panoramas from a Jumble of Pictures

o Extract SIFT features from all images

o Find Pairwise Homographies

o Find Connected Components over the pair connections

o Bundle adjust the connected component to find image 
to panorama transformation

o Render panorama with blending



Application: Scalable Images based Search

o Find location of a Query image by matching against a large database of images indexed with their respective locations

o Find instances of objects / images in a database of images 

Worldwide Pose Estimation
Yunpeng Li, Noah Snavely, Dan Huttenlocher, Pascal Fua
ECCV 2012

David G. Lowe. "Distinctive image features from 
scale-invariant keypoints.” IJCV 60 (2), pp. 91-110, 
2004. 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Efficient indexing technique: Vocabulary trees

D. Nistér and H. Stewénius, Scalable Recognition with a Vocabulary Tree, CVPR 2006

Test image

Database

Vocabulary tree 
with inverted 

index

http://www.vis.uky.edu/~stewe/publications/nister_stewenius_cvpr2006.pdf


Populating the vocabulary tree/inverted index

Slide credit: D. Nister

Model images



Populating the vocabulary tree/inverted index
Slide credit: D. Nister

Model images



Populating the vocabulary tree/inverted index
Slide credit: D. Nister

Model images



Populating the vocabulary tree/inverted index
Slide credit: D. Nister

Model images



Looking up a test image Slide credit: D. Nister

Test imageModel images



Google Cloud Anchors

o Google ‘Cloud Anchors’ will help synchronize group AR 
experiences across iOS and Android devices

o Employ Wide Baseline Matching 

o https://mediafocus.biz/google-cloud-anchors-will-help-
synchronize-group-ar-experiences-across-ios-and-
android-devices/

https://mediafocus.biz/google-cloud-anchors-will-help-synchronize-group-ar-experiences-across-ios-and-android-devices/


Minecraft Earth via Azure Spatial Anchors

Spatial Anchors are built on Wide Baseline Matching and SfM / SLAM

https://www.theverge.com/2019/11/12/20961639/minecraft-earth-now-available-early-access-us-ios-android

https://youtu.be/AQEizp-VrVU

https://www.theverge.com/2019/11/12/20961639/minecraft-earth-now-available-early-access-us-ios-android


How do Hand-Crafted Features Compare with Learned Features?

o “Hand-crafted features still perform on par or better than recent learned features for image-based  reconstruction. 

o The current generation of learned descriptors shows a high variance across different datasets and applications.

o The next generation of learned descriptors needs more training data.”

CVPR 2017



How do Hand-Crafted Features Compare with Learned Features?

Contributions

o Dataset with 30k images with depth maps and ground truth poses

o A modular pipeline incorporating dozens of methods for feature 
extraction and matching, and pose estimation

o Two downstream tasks – stereo and multi-view reconstruction –
evaluated with downstream and intermediate metrics

o A thorough study of dozens of methods and techniques, hand-crafted and 
learned, and their combination, along with a procedure for hyper-
parameter selection



“Hot Topic”



Viewpoint and Illumination Variations Dataset

o Reproducible, patch-based: Descriptor evaluation should be done on patches to 
eliminate the detector related factors. 

o Diverse: Representative of many different scenes and image capturing conditions.

o Real: Real data more challenging than a synthesized one due to nuisance factors 
that cannot be modelled in image transformations.

o Large: For accurate and stable evaluation; to provide substantial training sets for 
learning based descriptors.

o Multitask: Use cases, from matching image pairs to image retrieval.

https://github.com/hpatches/hpatches-dataset

https://github.com/hpatches/hpatches-dataset


A Contemporary Example of Learned Features

o Self-supervised framework for training interest point 
detectors and descriptors

o Fully-convolutional model operates on full-sized images and 
jointly computes pixel-level interest point locations and 
associated descriptors in one forward pass.

SuperPoint: Self-Supervised Interest Point Detection and Description

CVPR 2018



Self-Supervised Training



Superpoint Architecture

o The interest point detector head computes Hc x Wc x 65 and 
outputs a tensor sized H x W. 

o The 65 channels correspond to local, non-overlapping 8 x8 
grid regions of pixels plus an extra “no interest point” 
dustbin.

o After a channel-wise softmax, the dustbin dimension is 
removed and Hc x Wc x 64 è H x W reshape is performed.

o The descriptor head computes Hc x Wc x D and outputs a tensor 
sized H x W x D. 

o To output a dense map of L2-normalized fixed length 
descriptors, first output a semi-dense grid of descriptors (e.g., 
one every 8 pixels). 

o The decoder then performs bicubic interpolation of the 
descriptor and then L2-normalizes to unit length.



Joint Geometric and Classification Loss

o The interest point detector loss function Lp is a fully convolutional 
cross-entropy

o The descriptor loss is applied to all pairs of descriptor cells, (h, w) and 
(h’, w’)

o The homography-induced correspondence between the (h, w) cell 
and the (h’, w’) cell can be written as:

o The descriptor loss is given by:



Comparative Results

o SIFT performs well for sub-pixel precision homographies and has the lowest mean localization error (MLE). 

o SuperPoint scores strongly in descriptor-focused metrics such as nearest neighbor mAP and matching score (M. Score)


