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Information Content in Dynamic Imagery
...extract information behind pixel data...

Scene 
Geometry

Temporal
Persistence

Layers with 2D/3D
Scene ModelsLayers & Mosaics

Motion Analysis provides
Compact Representation for Manipulation & Recognition of Scene Content

Segment,Track,Fingerprint
Moving Objects

Foreground
Background



Motion is a powerful perceptual cue

• Sometimes, it is the only cue

via Svetlana



Motion is a powerful perceptual cue
• Even “impoverished” motion data can evoke a strong percept

G. Johansson, “Visual Perception of Biological Motion and a Model For Its 
Analysis", Perception and Psychophysics 14, 201-211, 1973.

via Svetlana
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Motion Field   & Optical Flow
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Motion Field : 2D projections of 3D
displacement vectors due to camera 
and/or object motion 

Optical Flow : Image displacement field
that measures the apparent motion of
brightness patterns
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Motion Field  vs. Optical Flow

Courtesy : Michael Black @ Brown.edu
Image : http://www.evl.uic.edu/aej/488/ 

Lambertian ball rotating in 3D 

Motion Field ? 

Optical Flow ? 



Motion Field  vs. Optical Flow

Stationary Lambertian ball with a moving point light source

Motion Field ? 

Optical Flow ? 

Courtesy : Michael Black @ Brown.edu
Image : http://www.evl.uic.edu/aej/488/ 



Typical Motion Fields via Jason Corso



Motion Field : Induced by Camera Motion
3D Rotations : Pan / Tilt



3D Translations



3D Translations

𝑦! − 𝑦 = 𝑓
𝑇"
𝑍

𝑦! − 𝑦 = −𝑦!
𝑇#
𝑍



Sparse Correspondences versus Dense Optical Flow

2D Flow Vectors Hue (Angle) – Saturation (Length) Visualization



Computing Optical Flow

Brightness Constancy:  Appearance of a point / patch remains constant under small motions
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Computing Optical Flow:  Basic Constraint

Brightness Constancy:  Appearance of a point / patch remains constant under small motions

𝐼$(𝑝!) 𝐼%(𝑝)

𝑝
𝑝 − 𝑢(𝑝)

𝐼!(𝑝; 𝑡) = 𝐼"(𝑝 − 𝑢 𝑝; Θ ; 𝑡 − 1) = 𝐼"(𝑝#; 𝑡 − 1)

Using Taylor series expansion and rearranging terms (dropping t for simplicity)

𝐼! 𝑝 − 𝐼" 𝑝 + ∇𝐼" (𝑝)$ 𝑢 𝑝; Θ = 0

𝛿𝐼(𝑝) + ∇𝐼" (𝑝)$ 𝑢 𝑝; Θ = 0



Computing Optical Flow:  Basic Constraint

Using Taylor series expansion and rearranging terms (dropping t for simplicity)

𝐼% 𝑝 − 𝐼$ 𝑝 + ∇𝐼$ (𝑝)& 𝑢 𝑝; Θ = 0

𝛿𝐼(𝑝) + ∇𝐼$ (𝑝)& 𝑢 𝑝; Θ = 0

The component of the flow perpendicular to the gradient (i.e., parallel to the edge) is unknown!

∇𝐼 ⋅ (𝑢′, 𝑣′) = 0

edge

(u,v)

(u’,v’)

gradient

(u+u’,v+v’)

If (u, v) satisfies the equation, 
so does (u+u’, v+v’) if



The Aperture Problem in Motion

An example of the barberpole illusion. The grating is actually 
drifting downwards and to the right at 45 degrees, but its 
motion is captured by the elongated axis of the aperture.

https://en.wikipedia.org/wiki/Barberpole_illusion

https://en.wikipedia.org/wiki/Barberpole_illusion










Solving the aperture problem

• How to get more equations for a pixel?

• Spatial coherence constraint: assume the pixel’s neighbors have the same (u,v)
o E.g., if we use a 5x5 window, that gives us 25 equations per pixel

B. Lucas and T. Kanade. An iterative image registration technique with an application to
stereo vision. In Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674–679, 1981.

∇𝐼(𝐱6) ⋅ [𝑢, 𝑣] + 𝐼7(𝐱6) = 0

𝐼!(𝐱") 𝐼#(𝐱")
𝐼!(𝐱$) 𝐼#(𝐱$)
⋮ ⋮

𝐼!(𝐱%) 𝐼#(𝐱%)

𝑢
𝑣 = −

𝐼&(𝐱")
𝐼&(𝐱$)
⋮

𝐼&(𝐱%)

via Svetlana



Lucas-Kanade flow

• Linear least squares problem:

(summations are over 
all pixels in the 

window)

• Solution given by

𝐼!(𝐱") 𝐼#(𝐱")
𝐼!(𝐱$) 𝐼#(𝐱$)
⋮ ⋮

𝐼!(𝐱%) 𝐼#(𝐱%)

𝑢
𝑣 = −

𝐼&(𝐱")
𝐼&(𝐱$)
⋮

𝐼&(𝐱%)

𝐀
%×$

𝐝
$×"

= 𝐛
%×"

(𝐀!𝐀)𝐝 = 𝐀!𝐛

-𝐼!𝐼! -𝐼!𝐼#

-𝐼!𝐼# -𝐼#𝐼#

𝑢
𝑣 = −

-𝐼!𝐼&

-𝐼#𝐼&

M = ATA is the second 
moment matrix!

via Svetlana



Recall: Structure / Second Moment Matrix

l1

l2

“Corner” /
Texture / Multiple Edges
l1 and l2 are large,
l1 ~ l2

l1 and l2 are small “Edge” 
l1 >> l2

“Edge” 
l2 >> l1

“Flat” 
region

Estimation of optical flow is well-conditioned precisely for regions with multiple orientations:

via Svetlana



Aligned Images with Flow Warping

Original Pair Flow Aligned Pair



Aligned Images with Flow Warping

Original Pair Flow Aligned Pair



Limitation of Optical Flow:  Small Motion Assumption

𝐼"(𝑝#) 𝐼$(𝑝)

𝑝
𝑝 − 𝑢(𝑝)

Using Taylor series expansion and rearranging terms (dropping t for simplicity)

𝐼! 𝑝 − 𝐼" 𝑝 + ∇𝐼" (𝑝)$ 𝑢 𝑝; Θ = 0

𝛿𝐼(𝑝) + ∇𝐼" (𝑝)$ 𝑢 𝑝; Θ = 0

Valid only for small motions  < 1 pixel or so

So how do we handle larger motions?



o Parametric motion models
o 2D translation, affine, projective, 3D pose

o Piecewise parametric motion models
o 2D parametric motion/structure layers

o Quasi-parametric
o 3D R, T & depth per pixel
o Plane + parallax

o Piecewise quasi-parametric motion models
o 2D parametric layers + parallax per layer

o Non-parametric
o Optic flow: 2D vector per pixel

A Hierarchy of Models

Taxonomy by Bergen,Anandan et al.’92



Large Motions: Iterative Coarse-to-fine Pyramid based Motion Estimation Primer
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Optical Flow VFX:         PAINTING THE AFTERLIFE IN WHAT DREAMS MAY COME

The final shot was enabled with extensive development of tracking techniques, optical flow and a specialized 
particles tool to produce the painterly effects.



Separation of Moving Pixels into Layers
...motion and scene structure analysis...

Separate coherent & significant motion & structure components 

• Coherence : Align images using 2D/3D models of motion and structure

Separate backgrounds and moving objects with layers

• Significance : Regions of support for various motion & structure components

Unknown pixel assignments to objects 
& 

Unknown object motion/structure



Scale and motion 
parameters initial
estimates

E-step:
computation of 
ownership
probabilitities

M-step:
computation of
motion and scale
parameters

MDL-step:
selection of the 
number of models
and outlier detection

INITIALIZATION EM-step

MDL-stepMAP segmentation

MAP-step:
motion labeling
using a MAP
criterion

Layered Motion Algorithm



Automatic Extraction
of 2D Layers

Input Sequence

Layers



Deep Learning Approaches



PWC-Net : Inspired by Pyramid Processing for Flow Estimation

o Replace the fixed image pyramid with learnable feature pyramids

o Warping, as in traditional estimation, is a layer to estimate large motion

o Cost volume is computed using features of the first image and the warped features of the second image

o The cost volume, features of the first image, and the upsampeld flow are fed to a CNN to estimate flow at the current 
level, which is then upsampled to the next (third) level.

o The process repeats until the desired level



Traditional Coarse-to-Fine vs. PWC-Net

o Feature Pyramid Extractor:  L layers of Conv filters with 16, 32, 64, 96, 128 and 192 feature channels

o Warping Layer: Upsample to the next finest level and warp with rescaled flow:

o Cost Volume Layer:  Correlation with motion range of d pixels è

o Optical Flow Estimator: Multi-layer CNN with Cost Volume, Image 1 Features and Upsampled flow as inputs.



Sample Results



Sample Results



DGC-Net: Dense Geometric Correspondence Network

o Closely related to optical flow estimation where ConvNets (CNNs)

o Optical flow methods do not deal well  with the strong geometric transformations

o Coarse-to-fine CNN-based framework leverages the advantages of optical flow approaches and extends them 
to the case of large transformations providing dense and subpixel accurate estimates. 

o Trained on synthetic transformations and demonstrates very good performance to unseen, realistic, data. 

o Apply to the problem of relative camera pose estimation: Outperforms existing dense approaches.

Reference                        Target Flow based warping DGC-Net based warping



1. Feature pyramid creator. 

2. Correlation layer estimates the 
pairwise similarity score of the 
source and target feature 
descriptors.

3. Fully convolutional 
correspondence map decoders 
predict the dense correspondence 
map between input image pair at 
each level of the feature pyramid.

4. Warping layer warps features of 
the source image using the 
upsampled transforming grid from 
a correspondence map decoder.

5. The matchability decoder is a tiny 
CNN that predicts a confidence 
map with higher scores for those 
pixels in the source image that 
have correspondences in the 
target.



3D Motion Estimation with Dense Correspondences


