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Class calendar
Date Topic Slides Reading Homework
April 9 Filters and convolutions Google Slides Szeliski, Chapter 3 HW1 

due, HW2 assigned
April 14 Interpolation and Optimization pdf, pptx Szeliski, Chapter 4

April 16 Machine Learning pdf, pptx Szeliski, Chapter 5.1-5.2

April 21 Deep Neural Networks Szeliski, Chapter 5.3

April 23 Convolutional Neural Networks Szeliski, Chapter 5.4 HW2 due, HW3 
assigned

April 28 Network Architectures Szeliski, Chapter 5.4-5.5

April 30 Object Detection Szeliski, Chapter 6.3

May 5 Detection and Instance Segmentation Szeliski, Chapter 6.4

May 7 Edges, features, matching, RANSAC Szeliski, Chapter 7.1-7.2, 
8.1-8.2

HW3 due, HW4 
assigned
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https://docs.google.com/presentation/d/1Yp0UiqlAUxsnGCyeEwfmYXMunxSNdqqMWtMSfyI8UUU/
http://szeliski.org/Book/2ndEdition.htm
https://github.com/holynski/cse576_sp20_hw2
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture5-interpolationandoptimization.pdf
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture5-interpolationandoptimization.pptx
http://szeliski.org/Book/2ndEdition.htm
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture6_machinelearning_v5.pdf
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture6_machinelearning_v5.pptx
http://szeliski.org/Book/2ndEdition.htm
http://szeliski.org/Book/2ndEdition.htm
http://szeliski.org/Book/2ndEdition.htm
http://szeliski.org/Book/2ndEdition.htm
http://szeliski.org/Book/2ndEdition.htm
http://szeliski.org/Book/2ndEdition.htm
http://szeliski.org/Book/2ndEdition.htm
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https://d2l.ai/

(Thanks, Matt Dietke, for the 
very helpful comments.)

https://d2l.ai/


Readings
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Deep neural networks (today’s lecture)

• Loss functions
• Regularization
• Weights and layers
• Activation functions
• Backpropagation
• Training and optimization (?)
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Machine learning (previous lecture)

• Why learning?
• Nearest neighbors
• Bayesian classification
• Logistic regression
• Support vector machines
• Clustering
• Principal component analysis
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Supervised learning

• Goal: provide best output predictions for novel inputs
• How can we predict future performance?
• Placeholder answer: minimize empirical risk

• What are potential models and loss functions?
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Traditional and deep learning
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Bayesian classification
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current decision 
threshold

Bayes’ Rule



Logistic regression
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As before, I’m borrowing slides from
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Justin Johnson Fall 2019

Lecture 3:
Linear Classifiers

Lecture 3 - 12
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This image is CC0 1.0 public domain

Neural Network

Linear 
classifiers

http://maxpixel.freegreatpicture.com/Play-Wooden-Blocks-Tower-Kindergarten-Child-Toys-1864718
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Justin Johnson Fall 2019

Linear Classifier: Three Viewpoints

Lecture 3 - 14

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template 
per class

Hyperplanes 
cutting up space
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So Far: Defined a linear score function

Lecture 3 - 15

f(x,W) = Wx + b

-3.45
-8.87
0.09
2.9
4.48
8.02
3.78
1.06
-0.36
-0.72

-0.51
6.04
5.31
-4.22
-4.19
3.58
4.49
-4.37
-2.09
-2.93

3.42
4.64
2.65
5.1
2.64
5.55
-4.34
-1.5
-4.79
6.14

Given a W, we can 
compute class scores 
for an image x.

But how can we 
actually choose a 
good W?

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://www.pexels.com/photo/audi-cabriolet-car-red-2568/
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg
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Choosing a good W

Lecture 3 - 16

f(x,W) = Wx + b

-3.45
-8.87
0.09
2.9
4.48
8.02
3.78
1.06
-0.36
-0.72

-0.51
6.04
5.31
-4.22
-4.19
3.58
4.49
-4.37
-2.09
-2.93

3.42
4.64
2.65
5.1
2.64
5.55
-4.34
-1.5
-4.79
6.14

TODO:

1. Use a loss function to 
quantify how good a 
value of W is

2. Find a W that minimizes 
the loss function 
(optimization)
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Loss Function

Lecture 3 - 17

A loss function tells how good our 
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function; 
cost function)



Justin Johnson Fall 2019

Loss Function

Lecture 3 - 18

A loss function tells how good our 
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function; 
cost function)

Negative loss function sometimes 
called reward function, profit 
function, utility function, fitness 
function, etc



Justin Johnson Fall 2019

Loss Function

Lecture 3 - 19

A loss function tells how good our 
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function; 
cost function)

Negative loss function sometimes 
called reward function, profit 
function, utility function, fitness 
function, etc

Given a dataset of examples

Where       is image and 
is (integer) label



Justin Johnson Fall 2019

Loss Function

Lecture 3 - 20

A loss function tells how good our 
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function; 
cost function)

Negative loss function sometimes 
called reward function, profit 
function, utility function, fitness 
function, etc

Given a dataset of examples

Where       is image and 
is (integer) label

Loss for a single example is
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Loss Function

Lecture 3 - 21

A loss function tells how good our 
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function; 
cost function)

Negative loss function sometimes 
called reward function, profit 
function, utility function, fitness 
function, etc

Given a dataset of examples

Where       is image and 
is (integer) label

Loss for a single example is

Loss for the dataset is average of 
per-example losses:
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Regularization: Beyond Training Error

Lecture 3 - 22

Data loss: Model predictions 
should match training data
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Regularization: Beyond Training Error

Lecture 3 - 23

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

= regularization strength
(hyperparameter)

Simple examples
L2 regularization: 
L1 regularization: 
Elastic net (L1 + L2): 

More complex:
Dropout
Batch normalization
Cutout, Mixup, Stochastic depth, etc…
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Regularization: Beyond Training Error

Lecture 3 - 24

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

= regularization strength
(hyperparameter)

Purpose of Regularization:
- Express preferences in among models beyond ”minimize training error”
- Avoid overfitting: Prefer simple models that generalize better
- Improve optimization by adding curvature
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 25

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0

0.18

0.13
0.87

0.00

Probabilities 
must be >= 0

Probabilities 
must sum to 1

exp normalize

Softmax
function

Li = -log(0.13)
= 2.04

Maximum Likelihood Estimation
Choose weights to maximize the 
likelihood of the observed data
(next lecture)unnormalized

probabilities probabilitiesUnnormalized log-
probabilities / logits
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 26

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0

0.18

0.13
0.87

0.00

Probabilities 
must be >= 0

Probabilities 
must sum to 1

exp normalize

Softmax
function

unnormalized
probabilities probabilitiesUnnormalized log-

probabilities / logits

1.00
0.00

0.00
Correct 
probs

Compare

Kullback–Leibler
divergence
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 27

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0

0.18

0.13
0.87

0.00

Probabilities 
must be >= 0

Probabilities 
must sum to 1

exp normalize

Softmax
function

unnormalized
probabilities probabilitiesUnnormalized log-

probabilities / logits

1.00
0.00

0.00
Correct 
probs

Compare

Cross Entropy
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Recap: Three ways to think about linear classifiers

Lecture 3 - 30

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template 
per class

Hyperplanes 
cutting up space
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Recap: Loss Functions quantify preferences

Lecture 3 - 31

- We have some dataset of (x, y)
- We have a score function: 
- We have a loss function: 

Softmax
SVM

Full loss

Linear classifier
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Recap: Loss Functions quantify preferences

Lecture 3 - 32

- We have some dataset of (x, y)
- We have a score function: 
- We have a loss function: 

Softmax
SVM

Full loss

Q: How do we find the best W?

Linear classifier
A: Later in this lecture



Machine learning

• Why learning?
• Nearest neighbors
• Bayesian classification
• Logistic regression
• Support vector machines
• Clustering
• Principal component analysis
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Support vector machines (SVMs)

• Maximize the margin between 
the decision surfaces
• The only points that matter are 

the circled support vectors
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Kernelized support vector machines

• Replace linear function with a 
sum of kernel functions
(e.g., Gaussian bumps)

• Circled points are
support vectors,
lie on f = ± 1 surfaces
(f = 0 is the dark curve)
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Hinge loss vs. logistic regression
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Deep neural networks (today’s lecture)

• Loss functions
• Regularization
• Weights and layers
• Activation functions
• Backpropagation
• Training and optimization

UW CSE 576 - Deep Neural Networks 41Richard Szeliski



Justin Johnson Fall 2019

Lecture 5:
Neural Networks

Lecture 5 - 42
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Problem: Linear Classifiers aren’t that powerful

Lecture 5 - 43

x

y
Geometric Viewpoint Visual Viewpoint

One template per class:
Can’t recognize different 

modes of a class
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One solution: Feature Transforms

Lecture 5 - 44

x

y
Original space

r = (x2 + y2)1/2

θ = tan-1(y/x)

Feature 
transform



Justin Johnson Fall 2019

One solution: Feature Transforms

Lecture 5 - 45

x

y
Original space

r = (x2 + y2)1/2

θ = tan-1(y/x)

Feature space

Feature 
transform

r

θ
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One solution: Feature Transforms

Lecture 5 - 46

x

y
Original space

r = (x2 + y2)1/2

θ = tan-1(y/x)

Feature space

Feature 
transform

r

θ

Linear classifier 
in feature space
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One solution: Feature Transforms

Lecture 5 - 47

x

y
Original space

r = (x2 + y2)1/2

θ = tan-1(y/x)

Feature space

Feature 
transform

r

θ

Linear classifier 
in feature space

Nonlinear classifier 
in original space!
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Image Features: Color Histogram

Lecture 5 - 48

+1
Ignores texture, 
spatial positions

Frog image is in the public domain

https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg
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Image Features: Histogram of Oriented Gradients 
(HoG)

Lecture 5 - 49

1. Compute edge direction / 
strength at each pixel

2. Divide image into 8x8 regions
3. Within each region compute a 

histogram of edge directions 
weighted by edge strength Lowe, “Object recognition from local scale-invariant features”, ICCV 1999

Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005
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Image Features: Histogram of Oriented Gradients 
(HoG)

Lecture 5 - 50

1. Compute edge direction / 
strength at each pixel

2. Divide image into 8x8 regions
3. Within each region compute a 

histogram of edge directions 
weighted by edge strength 

Example: 320x240 image gets 
divided into 40x30 bins; 8 
directions per bin; feature vector 
has 30*40*9 = 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005
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Image Features: Histogram of Oriented Gradients 
(HoG)

Lecture 5 - 51

1. Compute edge direction / 
strength at each pixel

2. Divide image into 8x8 regions
3. Within each region compute a 

histogram of edge directions 
weighted by edge strength 

Example: 320x240 image gets 
divided into 40x30 bins; 8 
directions per bin; feature vector 
has 30*40*9 = 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Strong diagonal 
edges

Edges in all 
directions

Weak edges

Captures 
texture and 
position, 
robust to 
small image 
changes
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Image Features: Bag of Words (Data-Driven!)

Lecture 5 - 52

Extract random 
patches 

Cluster patches to 
form “codebook” 
of “visual words”

Step 1: Build codebook

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories”, CVPR 2005
Car image is CC0 1.0 public domain

https://www.pexels.com/photo/audi-cabriolet-car-red-2568/
https://creativecommons.org/publicdomain/zero/1.0/
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Image Features: Bag of Words (Data-Driven!)

Lecture 5 - 53

Extract random 
patches 

Cluster patches to 
form “codebook” 
of “visual words”

Step 1: Build codebook

Step 2: Encode images

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories”, CVPR 2005
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Image Features

Lecture 5 - 54



Justin Johnson Fall 2019

Example: Winner of 2011 ImageNet challenge

Lecture 5 - 55

F. Perronnin, J. Sánchez, “Compressed Fisher vectors for LSVRC”, PASCAL VOC / ImageNet workshop, ICCV, 2011.
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Image Features

Lecture 5 - 56

Feature Extraction
f

10 numbers giving 
scores for classes

training
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Image Features vs Neural Networks

Lecture 5 - 57

Feature Extraction
f

training

training

10 numbers giving 
scores for classes

Krizhevsky, Sutskever, and Hinton, “Imagenet classification 
with deep convolutional neural networks”, NIPS 2012.
Figure copyright Krizhevsky, Sutskever, and Hinton, 2012. 
Reproduced with permission.

10 numbers giving 
scores for classes
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Neural Networks

Lecture 5 - 58

(Before) Linear score function:
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Neural Networks

Lecture 5 - 59

(Before) Linear score function:

(Now) 2-layer Neural Network

(In practice we will usually add a learnable bias at each layer as well)
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Neural Networks

Lecture 5 - 60

(Before) Linear score function:

(Now) 2-layer Neural Network
or 3-layer Neural Network

(In practice we will usually add a learnable bias at each layer as well)
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Neural Networks

Lecture 5 - 61

(Before) Linear score function:

(Now) 2-layer Neural Network

x hW1 sW2
Input:
3072

Hidden layer:
100

Output: 10
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Neural Networks

Lecture 5 - 62

(Before) Linear score function:

(Now) 2-layer Neural Network

x h sInput:
3072

Hidden layer:
100

Output: 10

Element (i, j) 
of W1 gives 
the effect on 
hi from xj

Element (i, j) 
of W2 gives 
the effect on 
si from hj

W1 W2
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Neural Networks

Lecture 5 - 63

(Before) Linear score function:

(Now) 2-layer Neural Network

x hW1 sW2
Input:
3072

Hidden layer:
100

Output: 10

Element (i, j) of W1 
gives the effect on 
hi from xj

Element (i, j) of W2 
gives the effect on 
si from hj

All elements 
of x affect all 
elements of h

All elements 
of h affect all 
elements of s

Fully-connected neural network
Also “Multi-Layer Perceptron” (MLP)
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Neural Networks

Lecture 5 - 64

x hW1 sW2
Input:
3072

Hidden layer:
100

Output: 10

Linear classifier: One template per class

(Before) Linear score function:

(Now) 2-layer Neural Network
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Neural Networks

Lecture 5 - 65

(Before) Linear score function:

(Now) 2-layer Neural Network

x h sInput:
3072

Hidden layer:
100

Output: 10

Neural net: first layer is bank of templates;
Second layer recombines templates

W1 W2
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Neural Networks

Lecture 5 - 66

(Before) Linear score function:

(Now) 2-layer Neural Network

x h sInput:
3072

Hidden layer:
100

Output: 10

Can use different templates to 
cover multiple modes of a class!

W1 W2
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Neural Networks

Lecture 5 - 67

(Before) Linear score function:

(Now) 2-layer Neural Network

x h sInput:
3072

Hidden layer:
100

Output: 10

“Distributed representation”: 
Most templates not interpretable!

W1 W2
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Deep Neural Networks

Lecture 5 - 68

x h1W1 sW6

Input:
3072

Output: 10

h2 h3 h4 h5W2 W3 W4 W5

Depth = number of layers

Width:
Size of 
each 
layer



Justin Johnson Fall 2019

Activation Functions

Lecture 5 - 69

2-layer Neural Network
The function                                                   
is called “Rectified Linear Unit”

This is called the activation function of 
the neural network
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Activation Functions

Lecture 5 - 70

2-layer Neural Network
The function                                                   
is called “Rectified Linear Unit”

This is called the activation function of 
the neural network

Q: What happens if we build a neural 
network with no activation function?
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Activation Functions

Lecture 5 - 71

2-layer Neural Network
The function                                                   
is called “Rectified Linear Unit”

This is called the activation function of 
the neural network

Q: What happens if we build a neural 
network with no activation function?

A: We end up with a linear classifier!
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Activation Functions

Lecture 5 - 72

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU
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Activation Functions

Lecture 5 - 73

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

ReLU is a good default choice 
for most problems
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Neural Net in <20 lines!

Lecture 5 - 74

Initialize weights 
and data

Compute loss 
(sigmoid activation, 
L2 loss)

Compute 
gradients

Stochastic Gradient 
Descent (SGD) step
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Our brains are made of Neurons

Lecture 5 - 75

Cell 
body

Axon

Dendrite

Presynaptic 
terminal

Synapse

Impulses 
carried toward 
cell body

Impulses carried 
away from cell body

Firing rate is a 
nonlinear function 
of inputs
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Neuron image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell 
body

axon

presynaptic   
terminal

Biological Neuron
Artificial Neuron

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/
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Setting the number of layers and their sizes

Lecture 5 - 77

More hidden units = more capacity

3 hidden units 6 hidden units 20 hidden units
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Don’t regularize with size; instead use stronger L2

Lecture 5 - 78

(Web demo with ConvNetJS: 
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html)

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
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Summary

Lecture 5 - 79

x

y
Original	space

r	=	(x2 +	y2)1/2
θ =	tan-1(y/x)

Feature	space

Feature	
transform

r

θ

Linear	classifier	
in	feature	space

Nonlinear	classifier	
in	original	space!

Feature transform + Linear classifier 
allows nonlinear decision boundaries

Feature	Extraction

training

training

10 numbers	giving	

scores	for	classes

Krizhevsky,	Sutskever,	and	Hinton,	“Imagenet	classification	

with	deep	convolutional	neural	networks”,	NIPS	2012.

Figure	copyright	Krizhevsky,	Sutskever,	and	Hinton,	2012.	

Reproduced	 with	permission.

10 numbers	giving	

scores	for	classes

Neural Networks as learnable feature transforms
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Summary

Lecture 5 - 80

x hW1 sW2
Input:
3072

Hidden	layer:
100

Output:	10

From linear classifiers to 
fully-connected networks

Linear classifier: One template per class

Neural networks: Many reusable templates



Deep neural networks

• Loss functions
• Regularization
• Weights and layers
• Activation functions
• Backpropagation
• Training and optimization
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Lecture 6:
Backpropagation

Lecture 6 - 82
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Problem: How to compute gradients?

Lecture 6 - 83

If we can compute                         then we can learn W1 and W2

Nonlinear score function

SVM Loss on predictions

Regularization

Total loss: data loss + regularization
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(Bad) Idea: Derive              on paper 

Lecture 6 - 84

Problem: What if we want to change 
loss? E.g. use softmax instead of 
SVM? Need to re-derive from 
scratch. Not modular!

Problem: Very tedious: Lots of matrix 
calculus, need lots of paper

Problem: Not feasible for very 
complex models!
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Better Idea: Computational Graphs

Lecture 6 - 85

x

W

hinge 
loss

R

+ Ls (scores)*
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Backpropagation:
Simple Example

Lecture 6 - 86
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Backpropagation:
Simple Example

Lecture 6 - 87

e.g. x = -2, y = 5, z = -4
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Backpropagation:
Simple Example

Lecture 6 - 88

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs
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Backpropagation:
Simple Example

Lecture 6 - 89

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want: 



Justin Johnson Fall 2019

Backpropagation:
Simple Example

Lecture 6 - 90

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want: 
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Backpropagation:
Simple Example

Lecture 6 - 91

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want: 
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Backpropagation:
Simple Example

Lecture 6 - 92

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want: 
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Backpropagation:
Simple Example

Lecture 6 - 93

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want: 
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Backpropagation:
Simple Example

Lecture 6 - 94

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want: 
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Backpropagation:
Simple Example

Lecture 6 - 95

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want: 
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Backpropagation:
Simple Example

Lecture 6 - 96

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want: 
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Backpropagation:
Simple Example

Lecture 6 - 97

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want: 

Chain Rule
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Backpropagation:
Simple Example

Lecture 6 - 98

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want: 

Chain Rule

Local
Gradient

Upstream
Gradient

Downstream
Gradient
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Backpropagation:
Simple Example

Lecture 6 - 99

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want: 

Chain Rule

Local
Gradient

Upstream
Gradient

Downstream
Gradient
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Backpropagation:
Simple Example

Lecture 6 - 100

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want: 

Chain Rule

Local
Gradient

Upstream
Gradient

Downstream
Gradient
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Backpropagation:
Simple Example

Lecture 6 - 101

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want: 

Chain Rule

Local
Gradient

Upstream
Gradient

Downstream
Gradient
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f
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f

Upstream 
gradient
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f
Local 

gradients

Upstream 
gradient



Justin Johnson Fall 2019Lecture 6 - 105

f
Local 

gradients

Upstream 
gradient

Downstream
gradients
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f
Local 

gradients

Upstream 
gradient

Downstream
gradients
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Another Example

Lecture 6 - 107
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Another Example

Lecture 6 - 108

Forward pass: Compute outputs
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Another Example

Lecture 6 - 109

Base Case

Backward pass: Compute gradients
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Another Example

Lecture 6 - 110

Backward pass: Compute gradients

Upstream 
Gradient

Local Gradient

Downstream
Gradient
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Another Example

Lecture 6 - 111

Backward pass: Compute gradients

Upstream 
Gradient

Local Gradient

Downstream
Gradient
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Another Example

Lecture 6 - 112

Backward pass: Compute gradients

Upstream 
Gradient

Local Gradient

Downstream
Gradient
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Another Example

Lecture 6 - 113

Backward pass: Compute gradients

Upstream 
Gradient

Local Gradient

Downstream
Gradient
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Another Example

Lecture 6 - 114

Backward pass: Compute gradients

Local Gradient

Downstream
Gradient

Upstream 
Gradient
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Another Example

Lecture 6 - 115

Backward pass: Compute gradients

Local Gradient

Downstream
Gradient

Upstream 
Gradient
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Another Example

Lecture 6 - 116

Backward pass: Compute gradients

Local Gradient

Downstream Gradient Upstream 
Gradient
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Another Example

Lecture 6 - 117

Backward pass: Compute gradients

Local Gradient

Downstream Gradient Upstream 
Gradient
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Another Example

Lecture 6 - 118

Backward pass: Compute gradients

Sigmoid

Computational graph is not 
unique: we can use primitives 
that have simple local gradients
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Another Example

Lecture 6 - 119

Backward pass: Compute gradients

Sigmoid

Computational graph is not 
unique: we can use primitives 
that have simple local gradients

Sigmoid local 
gradient:
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Another Example

Lecture 6 - 120

Backward pass: Compute gradients

Sigmoid

Computational graph is not 
unique: we can use primitives 
that have simple local gradients

[Downstream] = [Local] * [Upstream]
= (1 – 0.73) * 0.73 * 1.0 = 0.2

Sigmoid local 
gradient:
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Gradients of other Activation Functions?

Lecture 5 - 121

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU



Gradients of activation functions?

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

Richard Szeliski UW CSE 576 - Deep Neural Networks 122

Sigmoid local 
gradient:

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 123

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0

0.18

0.13
0.87

0.00

Probabilities 
must be >= 0

Probabilities 
must sum to 1

exp normalize

Softmax
function

Li = -log(0.13)
= 2.04

Maximum Likelihood Estimation
Choose weights to maximize the 
likelihood of the observed data
(next lecture)unnormalized

probabilities probabilitiesUnnormalized log-
probabilities / logits



Gradients of softmax?

https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/

Richard Szeliski UW CSE 576 - Deep Neural Networks 124

https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/
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Patterns in Gradient Flow

Lecture 6 - 125

add gate: gradient distributor

+

3

4
7
2

2

2
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Patterns in Gradient Flow

Lecture 6 - 126

add gate: gradient distributor

+

3

4
7
2

2

2

copy gate: gradient adder
7

7
7

4+2=6

4

2
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Patterns in Gradient Flow

Lecture 6 - 127

add gate: gradient distributor

+

3

4
7
2

2

2

mul gate: “swap multiplier”

copy gate: gradient adder

×

2

3
6
5

5*3=15

2*5=10

7

7
7

4+2=6

4

2
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Patterns in Gradient Flow

Lecture 6 - 128

add gate: gradient distributor

+

3

4
7
2

2

2

mul gate: “swap multiplier”

max

copy gate: gradient adder

×

2

3
6
5

5*3=15

2*5=10

4

5
5
9

0

9

7

7
7

4+2=6

4

2

max gate: gradient router
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Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 129

Forward pass:
Compute output
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Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 130

Forward pass:
Compute output

Backward pass:
Compute grads
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Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 131

Forward pass:
Compute output

Base case
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Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 132

Forward pass:
Compute output

Sigmoid



Justin Johnson Fall 2019

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 133

Forward pass:
Compute output

Add
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Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 134

Forward pass:
Compute output

Add
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Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 135

Forward pass:
Compute output

Multiply
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Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 136

Forward pass:
Compute output

Multiply
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Backprop Implementation: Modular API

Lecture 6 - 139

Graph (or Net) object  (rough pseudo code)
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Example: PyTorch Autograd Functions

Lecture 6 - 140

(x,y,z are scalars)

x

y

z
*

Need to stash some 
values for use in 
backward

Upstream 
gradient

Multiply upstream 
and local gradients

Write something 
similar in HW3
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Example: PyTorch operators

Lecture 6 - 141
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Source

PyTorch sigmoid layer

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
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Source

Forward

PyTorch sigmoid layer

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
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Source

Forward

PyTorch sigmoid layer

Forward actually defined elsewhere...

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
https://github.com/pytorch/pytorch/blob/82b570528db0a43fc04bb90f5d4538c01e4a5582/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp
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Source

Forward

Backward

PyTorch sigmoid layer

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c


Justin Johnson Fall 2019Lecture 6 - 146

So far: backprop with scalars

What about vector-valued functions?
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Recap: Vector Derivatives

Lecture 6 - 147

Regular derivative:

If x changes by a small 
amount, how much 
will y change?
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Recap: Vector Derivatives

Lecture 6 - 148

Regular derivative:

If x changes by a small 
amount, how much 
will y change?

Derivative is Gradient:

For each element of x, if 
it changes by a small 
amount then how much 
will y change?
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Recap: Vector Derivatives

Lecture 6 - 149

Regular derivative:

If x changes by a small 
amount, how much 
will y change?

Derivative is Gradient:

For each element of x, if 
it changes by a small 
amount then how much 
will y change?

Derivative is Jacobian:

For each element of x, if it 
changes by a small amount 
then how much will each 
element of y change?
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Backprop with Vectors

Lecture 6 - 150

f

Dx

Dy

Dz
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Backprop with Vectors

Lecture 6 - 151

f

Upstream Gradient

Dx

Dy

Dz

Dz

Loss L still a scalar!

For each element of z, how 
much does it influence L?
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Backprop with Vectors

Lecture 6 - 152

f

Upstream Gradient

Dx

Dy

Dz

Dz

Loss L still a scalar!

[Dy x Dz] 

[Dx x Dz] 

For each element of z, how 
much does it influence L?

Local 
Jacobian matrices
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Backprop with Vectors

Lecture 6 - 153

f

Upstream Gradient

Downstream 
Gradients

Dx

Dy

Dz

Dz

Loss L still a scalar!

[Dy x Dz] 

[Dx x Dz] 

For each element of z, how 
much does it influence L?

Dy

Dx

Matrix-vector
multiply

Local 
Jacobian matrices
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Backprop with Vectors

Lecture 6 - 154

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

4D output y: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]
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Backprop with Vectors

Lecture 6 - 155

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

4D output y: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dy: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

Upstream
gradient
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Backprop with Vectors

Lecture 6 - 156

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

4D output y: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dy: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

Jacobian dy/dx
[ 1 0 0 0 ]
[ 0 0 0 0 ]
[ 0 0 1 0 ]
[ 0 0 0 0 ]

Upstream
gradient
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Backprop with Vectors

Lecture 6 - 157

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

4D output y: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dy: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dy/dx] [dL/dy]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient
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Backprop with Vectors

Lecture 6 - 158

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

4D output y: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dy: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dy/dx] [dL/dy]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient

4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]
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Backprop with Vectors

Lecture 6 - 159

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

4D output y: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dy: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dy/dx] [dL/dy]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient

Jacobian is sparse: off-diagonal entries 
all zero! Never explicitly form Jacobian;
instead use implicit multiplication

4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]



Justin Johnson Fall 2019

Backprop with Vectors

Lecture 6 - 160

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

4D output y: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dy: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dy/dx] [dL/dy]

Upstream
gradient

Jacobian is sparse: off-diagonal entries 
all zero! Never explicitly form Jacobian;
instead use implicit multiplication

4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]
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Backpropagation: Another View

Lecture 6 - 187

x0
D0

x1
D1

L
scalar

x2
D2

x3
D3

f1 f2 f3 f4

Chain 
rule
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Backpropagation: Another View

Lecture 6 - 188

x0
D0

x1
D1

L
scalar

x2
D2

x3
D3

f1 f2 f3 f4

D3D2 x D3D1 x D2D0 x D1

Matrix multiplication is associative: we can compute products in any order

Chain 
rule
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x0
D0

x1
D1

L
scalar

x2
D2

x3
D3

f1 f2 f3 f4

D3D2 x D3D1 x D2D0 x D1

Matrix multiplication is associative: we can compute products in any order
Computing products right-to-left avoids matrix-matrix products; only needs matrix-vector

Chain 
rule

Reverse-Mode Automatic Differentiation
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Reverse-Mode Automatic Differentiation

Lecture 6 - 190

x0
D0

x1
D1

L
scalar

x2
D2

x3
D3

f1 f2 f3 f4

D3D2 x D3D1 x D2D0 x D1

Matrix multiplication is associative: we can compute products in any order
Computing products right-to-left avoids matrix-matrix products; only needs matrix-vector

Chain 
rule

Compute grad of scalar output
w/respect to all vector inputs
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Summary

Lecture 6 - 198

x

W

hinge	
loss

R

+ Ls (scores)*

Represent complex expressions 
as computational graphs

Forward pass computes outputs

Backward pass computes gradients

f
Local	

gradients

Upstream	
gradient

Downstream
gradients

During the backward pass, each node in 
the graph receives upstream gradients
and multiplies them by local gradients to 
compute downstream gradients
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Summary

Lecture 6 - 199

Backprop can be implemented with “flat” code 
where the backward pass looks like forward pass 
reversed (Use this for A2!)

Backprop can be implemented with a modular API, 
as a set of paired forward/backward functions
(We will do this on A3!)



Deep neural networks

• Loss functions
• Regularization
• Weights and layers
• Activation functions
• Backpropagation
• Training and optimization

Richard Szeliski UW CSE 576 - Deep Neural Networks 200
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Lecture 4:
Optimization

Lecture 4 - 201
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Loss Functions quantify preferences

- We have some dataset of (x, y)
- We have a score function: 
- We have a loss function: 

Softmax
SVM

Full loss

Linear classifier

Q: How do we find the best W?
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Follow the slope

Lecture 4 - 203

In 1-dimension, the derivative of a function gives the slope:

In multiple dimensions, the gradient is the vector of (partial derivatives) along each 
dimension

The slope in any direction is the dot product of the direction with the gradient
The direction of steepest descent is the negative gradient
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Loss is a function of W: Analytic Gradient

This image is in the public domain This image is in the public domain

Use calculus to compute an 
analytic gradient

want

https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz
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Computing Gradients

Lecture 4 - 205

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation 
with numerical gradient. This is called a gradient check.
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Computing Gradients

Lecture 4 - 206

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation 
with numerical gradient. This is called a gradient check.
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Computing Gradients

Lecture 4 - 207

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation 
with numerical gradient. This is called a gradient check.
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- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation 
with numerical gradient. This is called a gradient check.

Computing Gradients

Lecture 4 - 208
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Gradient Descent
Iteratively step in the direction of 
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate
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negative 
gradient 
direction

W_1

W_2 original W
Gradient Descent

Iteratively step in the direction of 
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate
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Batch Gradient Descent

Lecture 4 - 212

Full sum expensive 
when N is large!
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Stochastic Gradient Descent (SGD)

Lecture 4 - 213

Full sum expensive 
when N is large!

Approximate sum using 
a minibatch of examples
32 / 64 / 128 common

Hyperparameters:
- Weight initialization
- Number of steps
- Learning rate
- Batch size
- Data sampling
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Stochastic Gradient Descent (SGD)

Lecture 4 - 214

Think of loss as an 
expectation over the full 
data distribution pdata

Approximate 
expectation via sampling
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Stochastic Gradient Descent (SGD)

Lecture 4 - 215

Think of loss as an 
expectation over the full 
data distribution pdata

Approximate 
expectation via sampling
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Recall: Reverse-Mode Automatic Differentiation

Lecture 6 - 216

x0
D0

x1
D1

L
scalar

x2
D2

x3
D3

f1 f2 f3 f4

D3D2 x D3D1 x D2D0 x D1

Matrix multiplication is associative: we can compute products in any order
Computing products right-to-left avoids matrix-matrix products; only needs matrix-vector

Chain 
rule

Compute grad of scalar output
w/respect to all vector inputs



Mini-batch evaluation with matrices (HW3)

• DNNs are described as passing vectors
between layers
• Why not pass all samples in a mini-batch

as a matrix?
• What used to be column vectors are now rows
• Need to adjust weight-vector multiplies

s = W x
becomes

S = X WT

• Need to adjust gradients (Jacobians) as well
• Fix this description after doing homework…

Richard Szeliski UW CSE 576 - Deep Neural Networks 217
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Problems with SGD

Lecture 4 - 219

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Loss function has high condition number: ratio of largest to smallest singular value 
of the Hessian matrix is large
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Problems with SGD

Lecture 4 - 220

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest singular value 
of the Hessian matrix is large
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Problems with SGD

Lecture 4 - 221

What if the loss function 
has a local minimum or 
saddle point?

Local 
Minimum

Saddle 
point
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Problems with SGD

Lecture 4 - 222

What if the loss function 
has a local minimum or 
saddle point?

Zero gradient, gradient 
descent gets stuck

Local 
Minimum

Saddle 
point
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Problems with SGD

Lecture 4 - 223

Our gradients come from minibatches 
so they can be noisy!
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SGD

Lecture 4 - 224

SGD
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SGD + Momentum

Lecture 4 - 225

SGD

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum
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SGD + Momentum

Lecture 4 - 226

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

You may see SGD+Momentum formulated different ways, but 
they are equivalent - give same sequence of x

SGD+Momentum
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SGD + Momentum

Lecture 4 - 227

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Local Minima Saddle points

Gradient Noise

SGD+MomentumSGD

Poor Conditioning
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SGD + Momentum

Lecture 4 - 228

Gradient

Velocity

actual step

Momentum update:

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Combine gradient at current point 
with velocity to get step used to 
update weights
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Nesterov Momentum

Lecture 4 - 229

Gradient

Velocity

actual step

Momentum update:

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Combine gradient at current point 
with velocity to get step used to 
update weights

Gradient
Velocity

actual step

Nesterov Momentum

“Look ahead” to the point where updating 
using velocity would take us; compute 
gradient there and mix it with velocity to 
get actual update direction
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Nesterov Momentum

Lecture 4 - 230

Gradient
Velocity

actual step

“Look ahead” to the point where updating 
using velocity would take us; compute 
gradient there and mix it with velocity to 
get actual update direction
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Nesterov Momentum

Lecture 4 - 231

Gradient
Velocity

actual step

“Look ahead” to the point where updating 
using velocity would take us; compute 
gradient there and mix it with velocity to 
get actual update direction

Annoying, usually we want 
update in terms of
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Nesterov Momentum

Lecture 4 - 232

Change of variables                                   
and rearrange: 

Annoying, usually we want 
update in terms of
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Nesterov Momentum

SGD

SGD+Momentum

Nesterov
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AdaGrad

Added element-wise scaling of the gradient based 
on the historical sum of squares in each dimension

“Per-parameter learning rates” 
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011
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AdaGrad

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011
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AdaGrad

Q: What happens with AdaGrad?
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AdaGrad

Q: What happens with AdaGrad? Progress along “steep” directions is damped; 
progress along “flat” directions is accelerated
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RMSProp: “Leaky Adagrad”

AdaGrad

Tieleman and Hinton, 2012

RMSProp
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RMSProp

Lecture 4 - 239

SGD

SGD+Momentum

RMSProp
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Adam (almost): RMSProp + Momentum

Lecture 4 - 240

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam (almost): RMSProp + Momentum

Lecture 4 - 241

Momentum

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Adam

SGD+Momentum
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Adam (almost): RMSProp + Momentum

Lecture 4 - 242

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

RMSProp

Adam

Momentum
AdaGrad / RMSProp
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Adam (almost): RMSProp + Momentum

Lecture 4 - 243

Q: What happens at t=0? 
(Assume beta2 = 0.999)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Adam

Bias correction

Momentum
AdaGrad / RMSProp
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Adam (almost): RMSProp + Momentum

Lecture 4 - 244

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Bias correction

Bias correction for the fact 
that first and second moment 
estimates start at zero

Momentum
AdaGrad / RMSProp
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Adam (almost): RMSProp + Momentum

Lecture 4 - 245

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Bias correction for the fact 
that first and second moment 
estimates start at zero

Adam with beta1 = 0.9, 
beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1e-4
is a great starting point for many models! 
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Adam: Very Common in Practice!

Lecture 4 - 246

Adam with beta1 = 0.9, 
beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1e-4
is a great starting point for many models! 

Gkioxari, Malik, and Johnson, ICCV 2019 Zhu, Kaplan, Johnson, and Fei-Fei, ECCV 2018

Johnson, Gupta, and Fei-Fei, CVPR 2018

Gupta, Johnson, et al, CVPR 2018

Bakhtin, van der Maaten, Johnson, Gustafson, and Girshick, NeurIPS 2019
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Adam

Lecture 4 - 247

SGD

SGD+Momentum

RMSProp

Adam
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Optimization Algorithm Comparison

Lecture 4 - 248

Algorithm
Tracks first 
moments 

(Momentum)

Tracks second 
moments 
(Adaptive

learning rates)

Leaky second 
moments

Bias correction 
for moment 

estimates

SGD 𝙭 𝙭 𝙭 𝙭
SGD+Momentum ✓ 𝙭 𝙭 𝙭
Nesterov ✓ 𝙭 𝙭 𝙭
AdaGrad 𝙭 ✓ 𝙭 𝙭
RMSProp 𝙭 ✓ ✓ 𝙭
Adam ✓ ✓ ✓ ✓
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In practice:

Lecture 4 - 249

- Adam is a good default choice in many cases 
SGD+Momentum can outperform Adam but may 
require more tuning

- If you can afford to do full batch updates then try out 
L-BFGS (and don’t forget to disable all sources of noise)



Deep neural networks

• Loss functions
• Regularization
• Weights and layers
• Activation functions
• Backpropagation
• Training and optimization

Richard Szeliski UW CSE 576 - Deep Neural Networks 250


