
Deep Neural Networks

Computer Vision (UW EE/CSE 576)

Richard Szeliski
Facebook & UW

Lecture 7 – Apr 21, 2020

Class calendar
Date Topic Slides Reading Homework
April 9 Filters and convolutions Google Slides Szeliski, Chapter 3 HW1

due, HW2 assigned
April 14 Interpolation and Optimization pdf, pptx Szeliski, Chapter 4

April 16 Machine Learning pdf, pptx Szeliski, Chapter 5.1-5.2

April 21 Deep Neural Networks Szeliski, Chapter 5.3

April 23 Convolutional Neural Networks Szeliski, Chapter 5.4 HW2 due, HW3
assigned

April 28 Network Architectures Szeliski, Chapter 5.4-5.5

April 30 Object Detection Szeliski, Chapter 6.3

May 5 Detection and Instance Segmentation Szeliski, Chapter 6.4

May 7 Edges, features, matching, RANSAC Szeliski, Chapter 7.1-7.2,
8.1-8.2

HW3 due, HW4
assigned

Richard Szeliski UW CSE 576 - Deep Neural Networks 2

https://docs.google.com/presentation/d/1Yp0UiqlAUxsnGCyeEwfmYXMunxSNdqqMWtMSfyI8UUU/
http://szeliski.org/Book/2ndEdition.htm
https://github.com/holynski/cse576_sp20_hw2
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture5-interpolationandoptimization.pdf
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture5-interpolationandoptimization.pptx
http://szeliski.org/Book/2ndEdition.htm
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture6_machinelearning_v5.pdf
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture6_machinelearning_v5.pptx
http://szeliski.org/Book/2ndEdition.htm
http://szeliski.org/Book/2ndEdition.htm
http://szeliski.org/Book/2ndEdition.htm
http://szeliski.org/Book/2ndEdition.htm
http://szeliski.org/Book/2ndEdition.htm
http://szeliski.org/Book/2ndEdition.htm
http://szeliski.org/Book/2ndEdition.htm

References

Richard Szeliski UW CSE 576 - Deep Neural Networks 3

https://d2l.ai/

(Thanks, Matt Dietke, for the
very helpful comments.)

https://d2l.ai/

Readings

Richard Szeliski UW CSE 576 - Deep Neural Networks 4

Deep neural networks (today’s lecture)

• Loss functions
• Regularization
• Weights and layers
• Activation functions
• Backpropagation
• Training and optimization (?)

UW CSE 576 - Deep Neural Networks 5Richard Szeliski

Machine learning (previous lecture)

• Why learning?
• Nearest neighbors
• Bayesian classification
• Logistic regression
• Support vector machines
• Clustering
• Principal component analysis

UW CSE 576 - Deep Neural Networks 6Richard Szeliski

Supervised learning

• Goal: provide best output predictions for novel inputs
• How can we predict future performance?
• Placeholder answer: minimize empirical risk

• What are potential models and loss functions?

Richard Szeliski UW CSE 576 - Deep Neural Networks 7

Traditional and deep learning

Richard Szeliski UW CSE 576 - Deep Neural Networks 8

Bayesian classification

Richard Szeliski UW CSE 576 - Deep Neural Networks 9

current decision
threshold

Bayes’ Rule

Logistic regression

Richard Szeliski UW CSE 576 - Deep Neural Networks 10

As before, I’m borrowing slides from

Richard Szeliski UW CSE 576 - Deep Neural Networks 11

Justin Johnson Fall 2019

Lecture 3:
Linear Classifiers

Lecture 3 - 12

Justin Johnson Fall 2019Lecture 3 - 13

This image is CC0 1.0 public domain

Neural Network

Linear
classifiers

http://maxpixel.freegreatpicture.com/Play-Wooden-Blocks-Tower-Kindergarten-Child-Toys-1864718
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Justin Johnson Fall 2019

Linear Classifier: Three Viewpoints

Lecture 3 - 14

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template
per class

Hyperplanes
cutting up space

Justin Johnson Fall 2019

So Far: Defined a linear score function

Lecture 3 - 15

f(x,W) = Wx + b

-3.45
-8.87
0.09
2.9
4.48
8.02
3.78
1.06
-0.36
-0.72

-0.51
6.04
5.31
-4.22
-4.19
3.58
4.49
-4.37
-2.09
-2.93

3.42
4.64
2.65
5.1
2.64
5.55
-4.34
-1.5
-4.79
6.14

Given a W, we can
compute class scores
for an image x.

But how can we
actually choose a
good W?

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://www.pexels.com/photo/audi-cabriolet-car-red-2568/
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg

Justin Johnson Fall 2019

Choosing a good W

Lecture 3 - 16

f(x,W) = Wx + b

-3.45
-8.87
0.09
2.9
4.48
8.02
3.78
1.06
-0.36
-0.72

-0.51
6.04
5.31
-4.22
-4.19
3.58
4.49
-4.37
-2.09
-2.93

3.42
4.64
2.65
5.1
2.64
5.55
-4.34
-1.5
-4.79
6.14

TODO:

1. Use a loss function to
quantify how good a
value of W is

2. Find a W that minimizes
the loss function
(optimization)

Justin Johnson Fall 2019

Loss Function

Lecture 3 - 17

A loss function tells how good our
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function;
cost function)

Justin Johnson Fall 2019

Loss Function

Lecture 3 - 18

A loss function tells how good our
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function;
cost function)

Negative loss function sometimes
called reward function, profit
function, utility function, fitness
function, etc

Justin Johnson Fall 2019

Loss Function

Lecture 3 - 19

A loss function tells how good our
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function;
cost function)

Negative loss function sometimes
called reward function, profit
function, utility function, fitness
function, etc

Given a dataset of examples

Where is image and
is (integer) label

Justin Johnson Fall 2019

Loss Function

Lecture 3 - 20

A loss function tells how good our
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function;
cost function)

Negative loss function sometimes
called reward function, profit
function, utility function, fitness
function, etc

Given a dataset of examples

Where is image and
is (integer) label

Loss for a single example is

Justin Johnson Fall 2019

Loss Function

Lecture 3 - 21

A loss function tells how good our
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function;
cost function)

Negative loss function sometimes
called reward function, profit
function, utility function, fitness
function, etc

Given a dataset of examples

Where is image and
is (integer) label

Loss for a single example is

Loss for the dataset is average of
per-example losses:

Justin Johnson Fall 2019

Regularization: Beyond Training Error

Lecture 3 - 22

Data loss: Model predictions
should match training data

Justin Johnson Fall 2019

Regularization: Beyond Training Error

Lecture 3 - 23

Data loss: Model predictions
should match training data

Regularization: Prevent the model
from doing too well on training data

= regularization strength
(hyperparameter)

Simple examples
L2 regularization:
L1 regularization:
Elastic net (L1 + L2):

More complex:
Dropout
Batch normalization
Cutout, Mixup, Stochastic depth, etc…

Justin Johnson Fall 2019

Regularization: Beyond Training Error

Lecture 3 - 24

Data loss: Model predictions
should match training data

Regularization: Prevent the model
from doing too well on training data

= regularization strength
(hyperparameter)

Purpose of Regularization:
- Express preferences in among models beyond ”minimize training error”
- Avoid overfitting: Prefer simple models that generalize better
- Improve optimization by adding curvature

Justin Johnson Fall 2019

Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 25

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0

0.18

0.13
0.87

0.00

Probabilities
must be >= 0

Probabilities
must sum to 1

exp normalize

Softmax
function

Li = -log(0.13)
= 2.04

Maximum Likelihood Estimation
Choose weights to maximize the
likelihood of the observed data
(next lecture)unnormalized

probabilities probabilitiesUnnormalized log-
probabilities / logits

Justin Johnson Fall 2019

Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 26

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0

0.18

0.13
0.87

0.00

Probabilities
must be >= 0

Probabilities
must sum to 1

exp normalize

Softmax
function

unnormalized
probabilities probabilitiesUnnormalized log-

probabilities / logits

1.00
0.00

0.00
Correct
probs

Compare

Kullback–Leibler
divergence

Justin Johnson Fall 2019

Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 27

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0

0.18

0.13
0.87

0.00

Probabilities
must be >= 0

Probabilities
must sum to 1

exp normalize

Softmax
function

unnormalized
probabilities probabilitiesUnnormalized log-

probabilities / logits

1.00
0.00

0.00
Correct
probs

Compare

Cross Entropy

Justin Johnson Fall 2019

Recap: Three ways to think about linear classifiers

Lecture 3 - 30

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template
per class

Hyperplanes
cutting up space

Justin Johnson Fall 2019

Recap: Loss Functions quantify preferences

Lecture 3 - 31

- We have some dataset of (x, y)
- We have a score function:
- We have a loss function:

Softmax
SVM

Full loss

Linear classifier

Justin Johnson Fall 2019

Recap: Loss Functions quantify preferences

Lecture 3 - 32

- We have some dataset of (x, y)
- We have a score function:
- We have a loss function:

Softmax
SVM

Full loss

Q: How do we find the best W?

Linear classifier
A: Later in this lecture

Machine learning

• Why learning?
• Nearest neighbors
• Bayesian classification
• Logistic regression
• Support vector machines
• Clustering
• Principal component analysis

Richard Szeliski UW CSE 576 - Deep Neural Networks 33

Support vector machines (SVMs)

• Maximize the margin between
the decision surfaces
• The only points that matter are

the circled support vectors

Richard Szeliski UW CSE 576 - Deep Neural Networks 34

Kernelized support vector machines

• Replace linear function with a
sum of kernel functions
(e.g., Gaussian bumps)

• Circled points are
support vectors,
lie on f = ± 1 surfaces
(f = 0 is the dark curve)

Richard Szeliski UW CSE 576 - Deep Neural Networks 35

Hinge loss vs. logistic regression

Richard Szeliski UW CSE 576 - Deep Neural Networks 36

Deep neural networks (today’s lecture)

• Loss functions
• Regularization
• Weights and layers
• Activation functions
• Backpropagation
• Training and optimization

UW CSE 576 - Deep Neural Networks 41Richard Szeliski

Justin Johnson Fall 2019

Lecture 5:
Neural Networks

Lecture 5 - 42

Justin Johnson Fall 2019

Problem: Linear Classifiers aren’t that powerful

Lecture 5 - 43

x

y
Geometric Viewpoint Visual Viewpoint

One template per class:
Can’t recognize different

modes of a class

Justin Johnson Fall 2019

One solution: Feature Transforms

Lecture 5 - 44

x

y
Original space

r = (x2 + y2)1/2

θ = tan-1(y/x)

Feature
transform

Justin Johnson Fall 2019

One solution: Feature Transforms

Lecture 5 - 45

x

y
Original space

r = (x2 + y2)1/2

θ = tan-1(y/x)

Feature space

Feature
transform

r

θ

Justin Johnson Fall 2019

One solution: Feature Transforms

Lecture 5 - 46

x

y
Original space

r = (x2 + y2)1/2

θ = tan-1(y/x)

Feature space

Feature
transform

r

θ

Linear classifier
in feature space

Justin Johnson Fall 2019

One solution: Feature Transforms

Lecture 5 - 47

x

y
Original space

r = (x2 + y2)1/2

θ = tan-1(y/x)

Feature space

Feature
transform

r

θ

Linear classifier
in feature space

Nonlinear classifier
in original space!

Justin Johnson Fall 2019

Image Features: Color Histogram

Lecture 5 - 48

+1
Ignores texture,
spatial positions

Frog image is in the public domain

https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg

Justin Johnson Fall 2019

Image Features: Histogram of Oriented Gradients
(HoG)

Lecture 5 - 49

1. Compute edge direction /
strength at each pixel

2. Divide image into 8x8 regions
3. Within each region compute a

histogram of edge directions
weighted by edge strength Lowe, “Object recognition from local scale-invariant features”, ICCV 1999

Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Justin Johnson Fall 2019

Image Features: Histogram of Oriented Gradients
(HoG)

Lecture 5 - 50

1. Compute edge direction /
strength at each pixel

2. Divide image into 8x8 regions
3. Within each region compute a

histogram of edge directions
weighted by edge strength

Example: 320x240 image gets
divided into 40x30 bins; 8
directions per bin; feature vector
has 30*40*9 = 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Justin Johnson Fall 2019

Image Features: Histogram of Oriented Gradients
(HoG)

Lecture 5 - 51

1. Compute edge direction /
strength at each pixel

2. Divide image into 8x8 regions
3. Within each region compute a

histogram of edge directions
weighted by edge strength

Example: 320x240 image gets
divided into 40x30 bins; 8
directions per bin; feature vector
has 30*40*9 = 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Strong diagonal
edges

Edges in all
directions

Weak edges

Captures
texture and
position,
robust to
small image
changes

Justin Johnson Fall 2019

Image Features: Bag of Words (Data-Driven!)

Lecture 5 - 52

Extract random
patches

Cluster patches to
form “codebook”
of “visual words”

Step 1: Build codebook

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories”, CVPR 2005
Car image is CC0 1.0 public domain

https://www.pexels.com/photo/audi-cabriolet-car-red-2568/
https://creativecommons.org/publicdomain/zero/1.0/

Justin Johnson Fall 2019

Image Features: Bag of Words (Data-Driven!)

Lecture 5 - 53

Extract random
patches

Cluster patches to
form “codebook”
of “visual words”

Step 1: Build codebook

Step 2: Encode images

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories”, CVPR 2005

Justin Johnson Fall 2019

Image Features

Lecture 5 - 54

Justin Johnson Fall 2019

Example: Winner of 2011 ImageNet challenge

Lecture 5 - 55

F. Perronnin, J. Sánchez, “Compressed Fisher vectors for LSVRC”, PASCAL VOC / ImageNet workshop, ICCV, 2011.

Justin Johnson Fall 2019

Image Features

Lecture 5 - 56

Feature Extraction
f

10 numbers giving
scores for classes

training

Justin Johnson Fall 2019

Image Features vs Neural Networks

Lecture 5 - 57

Feature Extraction
f

training

training

10 numbers giving
scores for classes

Krizhevsky, Sutskever, and Hinton, “Imagenet classification
with deep convolutional neural networks”, NIPS 2012.
Figure copyright Krizhevsky, Sutskever, and Hinton, 2012.
Reproduced with permission.

10 numbers giving
scores for classes

Justin Johnson Fall 2019

Neural Networks

Lecture 5 - 58

(Before) Linear score function:

Justin Johnson Fall 2019

Neural Networks

Lecture 5 - 59

(Before) Linear score function:

(Now) 2-layer Neural Network

(In practice we will usually add a learnable bias at each layer as well)

Justin Johnson Fall 2019

Neural Networks

Lecture 5 - 60

(Before) Linear score function:

(Now) 2-layer Neural Network
or 3-layer Neural Network

(In practice we will usually add a learnable bias at each layer as well)

Justin Johnson Fall 2019

Neural Networks

Lecture 5 - 61

(Before) Linear score function:

(Now) 2-layer Neural Network

x hW1 sW2
Input:
3072

Hidden layer:
100

Output: 10

Justin Johnson Fall 2019

Neural Networks

Lecture 5 - 62

(Before) Linear score function:

(Now) 2-layer Neural Network

x h sInput:
3072

Hidden layer:
100

Output: 10

Element (i, j)
of W1 gives
the effect on
hi from xj

Element (i, j)
of W2 gives
the effect on
si from hj

W1 W2

Justin Johnson Fall 2019

Neural Networks

Lecture 5 - 63

(Before) Linear score function:

(Now) 2-layer Neural Network

x hW1 sW2
Input:
3072

Hidden layer:
100

Output: 10

Element (i, j) of W1
gives the effect on
hi from xj

Element (i, j) of W2
gives the effect on
si from hj

All elements
of x affect all
elements of h

All elements
of h affect all
elements of s

Fully-connected neural network
Also “Multi-Layer Perceptron” (MLP)

Justin Johnson Fall 2019

Neural Networks

Lecture 5 - 64

x hW1 sW2
Input:
3072

Hidden layer:
100

Output: 10

Linear classifier: One template per class

(Before) Linear score function:

(Now) 2-layer Neural Network

Justin Johnson Fall 2019

Neural Networks

Lecture 5 - 65

(Before) Linear score function:

(Now) 2-layer Neural Network

x h sInput:
3072

Hidden layer:
100

Output: 10

Neural net: first layer is bank of templates;
Second layer recombines templates

W1 W2

Justin Johnson Fall 2019

Neural Networks

Lecture 5 - 66

(Before) Linear score function:

(Now) 2-layer Neural Network

x h sInput:
3072

Hidden layer:
100

Output: 10

Can use different templates to
cover multiple modes of a class!

W1 W2

Justin Johnson Fall 2019

Neural Networks

Lecture 5 - 67

(Before) Linear score function:

(Now) 2-layer Neural Network

x h sInput:
3072

Hidden layer:
100

Output: 10

“Distributed representation”:
Most templates not interpretable!

W1 W2

Justin Johnson Fall 2019

Deep Neural Networks

Lecture 5 - 68

x h1W1 sW6

Input:
3072

Output: 10

h2 h3 h4 h5W2 W3 W4 W5

Depth = number of layers

Width:
Size of
each
layer

Justin Johnson Fall 2019

Activation Functions

Lecture 5 - 69

2-layer Neural Network
The function
is called “Rectified Linear Unit”

This is called the activation function of
the neural network

Justin Johnson Fall 2019

Activation Functions

Lecture 5 - 70

2-layer Neural Network
The function
is called “Rectified Linear Unit”

This is called the activation function of
the neural network

Q: What happens if we build a neural
network with no activation function?

Justin Johnson Fall 2019

Activation Functions

Lecture 5 - 71

2-layer Neural Network
The function
is called “Rectified Linear Unit”

This is called the activation function of
the neural network

Q: What happens if we build a neural
network with no activation function?

A: We end up with a linear classifier!

Justin Johnson Fall 2019

Activation Functions

Lecture 5 - 72

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Justin Johnson Fall 2019

Activation Functions

Lecture 5 - 73

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

ReLU is a good default choice
for most problems

Justin Johnson Fall 2019

Neural Net in <20 lines!

Lecture 5 - 74

Initialize weights
and data

Compute loss
(sigmoid activation,
L2 loss)

Compute
gradients

Stochastic Gradient
Descent (SGD) step

Justin Johnson Fall 2019

Our brains are made of Neurons

Lecture 5 - 75

Cell
body

Axon

Dendrite

Presynaptic
terminal

Synapse

Impulses
carried toward
cell body

Impulses carried
away from cell body

Firing rate is a
nonlinear function
of inputs

Justin Johnson Fall 2019Lecture 5 - 76

Neuron image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell
body

axon

presynaptic
terminal

Biological Neuron
Artificial Neuron

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Justin Johnson Fall 2019

Setting the number of layers and their sizes

Lecture 5 - 77

More hidden units = more capacity

3 hidden units 6 hidden units 20 hidden units

Justin Johnson Fall 2019

Don’t regularize with size; instead use stronger L2

Lecture 5 - 78

(Web demo with ConvNetJS:
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html)

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Justin Johnson Fall 2019

Summary

Lecture 5 - 79

x

y
Original	space

r	=	(x2 +	y2)1/2
θ =	tan-1(y/x)

Feature	space

Feature	
transform

r

θ

Linear	classifier	
in	feature	space

Nonlinear	classifier	
in	original	space!

Feature transform + Linear classifier
allows nonlinear decision boundaries

Feature	Extraction

training

training

10 numbers	giving	

scores	for	classes

Krizhevsky,	Sutskever,	and	Hinton,	“Imagenet	classification	

with	deep	convolutional	neural	networks”,	NIPS	2012.

Figure	copyright	Krizhevsky,	Sutskever,	and	Hinton,	2012.	

Reproduced	 with	permission.

10 numbers	giving	

scores	for	classes

Neural Networks as learnable feature transforms

Justin Johnson Fall 2019

Summary

Lecture 5 - 80

x hW1 sW2
Input:
3072

Hidden	layer:
100

Output:	10

From linear classifiers to
fully-connected networks

Linear classifier: One template per class

Neural networks: Many reusable templates

Deep neural networks

• Loss functions
• Regularization
• Weights and layers
• Activation functions
• Backpropagation
• Training and optimization

Richard Szeliski UW CSE 576 - Deep Neural Networks 81

Justin Johnson Fall 2019

Lecture 6:
Backpropagation

Lecture 6 - 82

Justin Johnson Fall 2019

Problem: How to compute gradients?

Lecture 6 - 83

If we can compute then we can learn W1 and W2

Nonlinear score function

SVM Loss on predictions

Regularization

Total loss: data loss + regularization

Justin Johnson Fall 2019

(Bad) Idea: Derive on paper

Lecture 6 - 84

Problem: What if we want to change
loss? E.g. use softmax instead of
SVM? Need to re-derive from
scratch. Not modular!

Problem: Very tedious: Lots of matrix
calculus, need lots of paper

Problem: Not feasible for very
complex models!

Justin Johnson Fall 2019

Better Idea: Computational Graphs

Lecture 6 - 85

x

W

hinge
loss

R

+ Ls (scores)*

Justin Johnson Fall 2019

Backpropagation:
Simple Example

Lecture 6 - 86

Justin Johnson Fall 2019

Backpropagation:
Simple Example

Lecture 6 - 87

e.g. x = -2, y = 5, z = -4

Justin Johnson Fall 2019

Backpropagation:
Simple Example

Lecture 6 - 88

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

Justin Johnson Fall 2019

Backpropagation:
Simple Example

Lecture 6 - 89

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want:

Justin Johnson Fall 2019

Backpropagation:
Simple Example

Lecture 6 - 90

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want:

Justin Johnson Fall 2019

Backpropagation:
Simple Example

Lecture 6 - 91

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want:

Justin Johnson Fall 2019

Backpropagation:
Simple Example

Lecture 6 - 92

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want:

Justin Johnson Fall 2019

Backpropagation:
Simple Example

Lecture 6 - 93

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want:

Justin Johnson Fall 2019

Backpropagation:
Simple Example

Lecture 6 - 94

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want:

Justin Johnson Fall 2019

Backpropagation:
Simple Example

Lecture 6 - 95

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want:

Justin Johnson Fall 2019

Backpropagation:
Simple Example

Lecture 6 - 96

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want:

Justin Johnson Fall 2019

Backpropagation:
Simple Example

Lecture 6 - 97

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want:

Chain Rule

Justin Johnson Fall 2019

Backpropagation:
Simple Example

Lecture 6 - 98

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want:

Chain Rule

Local
Gradient

Upstream
Gradient

Downstream
Gradient

Justin Johnson Fall 2019

Backpropagation:
Simple Example

Lecture 6 - 99

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want:

Chain Rule

Local
Gradient

Upstream
Gradient

Downstream
Gradient

Justin Johnson Fall 2019

Backpropagation:
Simple Example

Lecture 6 - 100

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want:

Chain Rule

Local
Gradient

Upstream
Gradient

Downstream
Gradient

Justin Johnson Fall 2019

Backpropagation:
Simple Example

Lecture 6 - 101

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want:

Chain Rule

Local
Gradient

Upstream
Gradient

Downstream
Gradient

Justin Johnson Fall 2019Lecture 6 - 102

f

Justin Johnson Fall 2019Lecture 6 - 103

f

Upstream
gradient

Justin Johnson Fall 2019Lecture 6 - 104

f
Local

gradients

Upstream
gradient

Justin Johnson Fall 2019Lecture 6 - 105

f
Local

gradients

Upstream
gradient

Downstream
gradients

Justin Johnson Fall 2019Lecture 6 - 106

f
Local

gradients

Upstream
gradient

Downstream
gradients

Justin Johnson Fall 2019

Another Example

Lecture 6 - 107

Justin Johnson Fall 2019

Another Example

Lecture 6 - 108

Forward pass: Compute outputs

Justin Johnson Fall 2019

Another Example

Lecture 6 - 109

Base Case

Backward pass: Compute gradients

Justin Johnson Fall 2019

Another Example

Lecture 6 - 110

Backward pass: Compute gradients

Upstream
Gradient

Local Gradient

Downstream
Gradient

Justin Johnson Fall 2019

Another Example

Lecture 6 - 111

Backward pass: Compute gradients

Upstream
Gradient

Local Gradient

Downstream
Gradient

Justin Johnson Fall 2019

Another Example

Lecture 6 - 112

Backward pass: Compute gradients

Upstream
Gradient

Local Gradient

Downstream
Gradient

Justin Johnson Fall 2019

Another Example

Lecture 6 - 113

Backward pass: Compute gradients

Upstream
Gradient

Local Gradient

Downstream
Gradient

Justin Johnson Fall 2019

Another Example

Lecture 6 - 114

Backward pass: Compute gradients

Local Gradient

Downstream
Gradient

Upstream
Gradient

Justin Johnson Fall 2019

Another Example

Lecture 6 - 115

Backward pass: Compute gradients

Local Gradient

Downstream
Gradient

Upstream
Gradient

Justin Johnson Fall 2019

Another Example

Lecture 6 - 116

Backward pass: Compute gradients

Local Gradient

Downstream Gradient Upstream
Gradient

Justin Johnson Fall 2019

Another Example

Lecture 6 - 117

Backward pass: Compute gradients

Local Gradient

Downstream Gradient Upstream
Gradient

Justin Johnson Fall 2019

Another Example

Lecture 6 - 118

Backward pass: Compute gradients

Sigmoid

Computational graph is not
unique: we can use primitives
that have simple local gradients

Justin Johnson Fall 2019

Another Example

Lecture 6 - 119

Backward pass: Compute gradients

Sigmoid

Computational graph is not
unique: we can use primitives
that have simple local gradients

Sigmoid local
gradient:

Justin Johnson Fall 2019

Another Example

Lecture 6 - 120

Backward pass: Compute gradients

Sigmoid

Computational graph is not
unique: we can use primitives
that have simple local gradients

[Downstream] = [Local] * [Upstream]
= (1 – 0.73) * 0.73 * 1.0 = 0.2

Sigmoid local
gradient:

Justin Johnson Fall 2019

Gradients of other Activation Functions?

Lecture 5 - 121

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Gradients of activation functions?

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

Richard Szeliski UW CSE 576 - Deep Neural Networks 122

Sigmoid local
gradient:

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

Justin Johnson Fall 2019

Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 123

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0

0.18

0.13
0.87

0.00

Probabilities
must be >= 0

Probabilities
must sum to 1

exp normalize

Softmax
function

Li = -log(0.13)
= 2.04

Maximum Likelihood Estimation
Choose weights to maximize the
likelihood of the observed data
(next lecture)unnormalized

probabilities probabilitiesUnnormalized log-
probabilities / logits

Gradients of softmax?

https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/

Richard Szeliski UW CSE 576 - Deep Neural Networks 124

https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/

Justin Johnson Fall 2019

Patterns in Gradient Flow

Lecture 6 - 125

add gate: gradient distributor

+

3

4
7
2

2

2

Justin Johnson Fall 2019

Patterns in Gradient Flow

Lecture 6 - 126

add gate: gradient distributor

+

3

4
7
2

2

2

copy gate: gradient adder
7

7
7

4+2=6

4

2

Justin Johnson Fall 2019

Patterns in Gradient Flow

Lecture 6 - 127

add gate: gradient distributor

+

3

4
7
2

2

2

mul gate: “swap multiplier”

copy gate: gradient adder

×

2

3
6
5

5*3=15

2*5=10

7

7
7

4+2=6

4

2

Justin Johnson Fall 2019

Patterns in Gradient Flow

Lecture 6 - 128

add gate: gradient distributor

+

3

4
7
2

2

2

mul gate: “swap multiplier”

max

copy gate: gradient adder

×

2

3
6
5

5*3=15

2*5=10

4

5
5
9

0

9

7

7
7

4+2=6

4

2

max gate: gradient router

Justin Johnson Fall 2019

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 129

Forward pass:
Compute output

Justin Johnson Fall 2019

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 130

Forward pass:
Compute output

Backward pass:
Compute grads

Justin Johnson Fall 2019

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 131

Forward pass:
Compute output

Base case

Justin Johnson Fall 2019

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 132

Forward pass:
Compute output

Sigmoid

Justin Johnson Fall 2019

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 133

Forward pass:
Compute output

Add

Justin Johnson Fall 2019

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 134

Forward pass:
Compute output

Add

Justin Johnson Fall 2019

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 135

Forward pass:
Compute output

Multiply

Justin Johnson Fall 2019

Backprop Implementation:
”Flat” gradient code:

Lecture 6 - 136

Forward pass:
Compute output

Multiply

Justin Johnson Fall 2019

Backprop Implementation: Modular API

Lecture 6 - 139

Graph (or Net) object (rough pseudo code)

Justin Johnson Fall 2019

Example: PyTorch Autograd Functions

Lecture 6 - 140

(x,y,z are scalars)

x

y

z
*

Need to stash some
values for use in
backward

Upstream
gradient

Multiply upstream
and local gradients

Write something
similar in HW3

Justin Johnson Fall 2019

Example: PyTorch operators

Lecture 6 - 141

Justin Johnson Fall 2019Lecture 6 - 142

Source

PyTorch sigmoid layer

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c

Justin Johnson Fall 2019Lecture 6 - 143

Source

Forward

PyTorch sigmoid layer

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c

Justin Johnson Fall 2019Lecture 6 - 144

Source

Forward

PyTorch sigmoid layer

Forward actually defined elsewhere...

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
https://github.com/pytorch/pytorch/blob/82b570528db0a43fc04bb90f5d4538c01e4a5582/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp

Justin Johnson Fall 2019Lecture 6 - 145

Source

Forward

Backward

PyTorch sigmoid layer

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c

Justin Johnson Fall 2019Lecture 6 - 146

So far: backprop with scalars

What about vector-valued functions?

Justin Johnson Fall 2019

Recap: Vector Derivatives

Lecture 6 - 147

Regular derivative:

If x changes by a small
amount, how much
will y change?

Justin Johnson Fall 2019

Recap: Vector Derivatives

Lecture 6 - 148

Regular derivative:

If x changes by a small
amount, how much
will y change?

Derivative is Gradient:

For each element of x, if
it changes by a small
amount then how much
will y change?

Justin Johnson Fall 2019

Recap: Vector Derivatives

Lecture 6 - 149

Regular derivative:

If x changes by a small
amount, how much
will y change?

Derivative is Gradient:

For each element of x, if
it changes by a small
amount then how much
will y change?

Derivative is Jacobian:

For each element of x, if it
changes by a small amount
then how much will each
element of y change?

Justin Johnson Fall 2019

Backprop with Vectors

Lecture 6 - 150

f

Dx

Dy

Dz

Justin Johnson Fall 2019

Backprop with Vectors

Lecture 6 - 151

f

Upstream Gradient

Dx

Dy

Dz

Dz

Loss L still a scalar!

For each element of z, how
much does it influence L?

Justin Johnson Fall 2019

Backprop with Vectors

Lecture 6 - 152

f

Upstream Gradient

Dx

Dy

Dz

Dz

Loss L still a scalar!

[Dy x Dz]

[Dx x Dz]

For each element of z, how
much does it influence L?

Local
Jacobian matrices

Justin Johnson Fall 2019

Backprop with Vectors

Lecture 6 - 153

f

Upstream Gradient

Downstream
Gradients

Dx

Dy

Dz

Dz

Loss L still a scalar!

[Dy x Dz]

[Dx x Dz]

For each element of z, how
much does it influence L?

Dy

Dx

Matrix-vector
multiply

Local
Jacobian matrices

Justin Johnson Fall 2019

Backprop with Vectors

Lecture 6 - 154

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

4D output y:
[1]
[0]
[3]
[0]

Justin Johnson Fall 2019

Backprop with Vectors

Lecture 6 - 155

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

4D output y:
[1]
[0]
[3]
[0]

4D dL/dy:
[4]
[-1]
[5]
[9]

Upstream
gradient

Justin Johnson Fall 2019

Backprop with Vectors

Lecture 6 - 156

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

4D output y:
[1]
[0]
[3]
[0]

4D dL/dy:
[4]
[-1]
[5]
[9]

Jacobian dy/dx
[1 0 0 0]
[0 0 0 0]
[0 0 1 0]
[0 0 0 0]

Upstream
gradient

Justin Johnson Fall 2019

Backprop with Vectors

Lecture 6 - 157

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

4D output y:
[1]
[0]
[3]
[0]

4D dL/dy:
[4]
[-1]
[5]
[9]

[dy/dx] [dL/dy]
[1 0 0 0] [4]
[0 0 0 0] [-1]
[0 0 1 0] [5]
[0 0 0 0] [9]

Upstream
gradient

Justin Johnson Fall 2019

Backprop with Vectors

Lecture 6 - 158

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

4D output y:
[1]
[0]
[3]
[0]

4D dL/dy:
[4]
[-1]
[5]
[9]

[dy/dx] [dL/dy]
[1 0 0 0] [4]
[0 0 0 0] [-1]
[0 0 1 0] [5]
[0 0 0 0] [9]

Upstream
gradient

4D dL/dx:
[4]
[0]
[5]
[0]

Justin Johnson Fall 2019

Backprop with Vectors

Lecture 6 - 159

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

4D output y:
[1]
[0]
[3]
[0]

4D dL/dy:
[4]
[-1]
[5]
[9]

[dy/dx] [dL/dy]
[1 0 0 0] [4]
[0 0 0 0] [-1]
[0 0 1 0] [5]
[0 0 0 0] [9]

Upstream
gradient

Jacobian is sparse: off-diagonal entries
all zero! Never explicitly form Jacobian;
instead use implicit multiplication

4D dL/dx:
[4]
[0]
[5]
[0]

Justin Johnson Fall 2019

Backprop with Vectors

Lecture 6 - 160

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

4D output y:
[1]
[0]
[3]
[0]

4D dL/dy:
[4]
[-1]
[5]
[9]

[dy/dx] [dL/dy]

Upstream
gradient

Jacobian is sparse: off-diagonal entries
all zero! Never explicitly form Jacobian;
instead use implicit multiplication

4D dL/dx:
[4]
[0]
[5]
[0]

Justin Johnson Fall 2019

Backpropagation: Another View

Lecture 6 - 187

x0
D0

x1
D1

L
scalar

x2
D2

x3
D3

f1 f2 f3 f4

Chain
rule

Justin Johnson Fall 2019

Backpropagation: Another View

Lecture 6 - 188

x0
D0

x1
D1

L
scalar

x2
D2

x3
D3

f1 f2 f3 f4

D3D2 x D3D1 x D2D0 x D1

Matrix multiplication is associative: we can compute products in any order

Chain
rule

Justin Johnson Fall 2019Lecture 6 - 189

x0
D0

x1
D1

L
scalar

x2
D2

x3
D3

f1 f2 f3 f4

D3D2 x D3D1 x D2D0 x D1

Matrix multiplication is associative: we can compute products in any order
Computing products right-to-left avoids matrix-matrix products; only needs matrix-vector

Chain
rule

Reverse-Mode Automatic Differentiation

Justin Johnson Fall 2019

Reverse-Mode Automatic Differentiation

Lecture 6 - 190

x0
D0

x1
D1

L
scalar

x2
D2

x3
D3

f1 f2 f3 f4

D3D2 x D3D1 x D2D0 x D1

Matrix multiplication is associative: we can compute products in any order
Computing products right-to-left avoids matrix-matrix products; only needs matrix-vector

Chain
rule

Compute grad of scalar output
w/respect to all vector inputs

Justin Johnson Fall 2019

Summary

Lecture 6 - 198

x

W

hinge	
loss

R

+ Ls (scores)*

Represent complex expressions
as computational graphs

Forward pass computes outputs

Backward pass computes gradients

f
Local	

gradients

Upstream	
gradient

Downstream
gradients

During the backward pass, each node in
the graph receives upstream gradients
and multiplies them by local gradients to
compute downstream gradients

Justin Johnson Fall 2019

Summary

Lecture 6 - 199

Backprop can be implemented with “flat” code
where the backward pass looks like forward pass
reversed (Use this for A2!)

Backprop can be implemented with a modular API,
as a set of paired forward/backward functions
(We will do this on A3!)

Deep neural networks

• Loss functions
• Regularization
• Weights and layers
• Activation functions
• Backpropagation
• Training and optimization

Richard Szeliski UW CSE 576 - Deep Neural Networks 200

Justin Johnson Fall 2019

Lecture 4:
Optimization

Lecture 4 - 201

Justin Johnson Fall 2019Lecture 4 - 202

Loss Functions quantify preferences

- We have some dataset of (x, y)
- We have a score function:
- We have a loss function:

Softmax
SVM

Full loss

Linear classifier

Q: How do we find the best W?

Justin Johnson Fall 2019

Follow the slope

Lecture 4 - 203

In 1-dimension, the derivative of a function gives the slope:

In multiple dimensions, the gradient is the vector of (partial derivatives) along each
dimension

The slope in any direction is the dot product of the direction with the gradient
The direction of steepest descent is the negative gradient

Justin Johnson Fall 2019Lecture 4 - 204

Loss is a function of W: Analytic Gradient

This image is in the public domain This image is in the public domain

Use calculus to compute an
analytic gradient

want

https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz

Justin Johnson Fall 2019

Computing Gradients

Lecture 4 - 205

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation
with numerical gradient. This is called a gradient check.

Justin Johnson Fall 2019

Computing Gradients

Lecture 4 - 206

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation
with numerical gradient. This is called a gradient check.

Justin Johnson Fall 2019

Computing Gradients

Lecture 4 - 207

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation
with numerical gradient. This is called a gradient check.

Justin Johnson Fall 2019

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation
with numerical gradient. This is called a gradient check.

Computing Gradients

Lecture 4 - 208

Justin Johnson Fall 2019Lecture 4 - 209

Gradient Descent
Iteratively step in the direction of
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate

Justin Johnson Fall 2019Lecture 4 - 210

negative
gradient
direction

W_1

W_2 original W
Gradient Descent

Iteratively step in the direction of
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate

Justin Johnson Fall 2019

Batch Gradient Descent

Lecture 4 - 212

Full sum expensive
when N is large!

Justin Johnson Fall 2019

Stochastic Gradient Descent (SGD)

Lecture 4 - 213

Full sum expensive
when N is large!

Approximate sum using
a minibatch of examples
32 / 64 / 128 common

Hyperparameters:
- Weight initialization
- Number of steps
- Learning rate
- Batch size
- Data sampling

Justin Johnson Fall 2019

Stochastic Gradient Descent (SGD)

Lecture 4 - 214

Think of loss as an
expectation over the full
data distribution pdata

Approximate
expectation via sampling

Justin Johnson Fall 2019

Stochastic Gradient Descent (SGD)

Lecture 4 - 215

Think of loss as an
expectation over the full
data distribution pdata

Approximate
expectation via sampling

Justin Johnson Fall 2019

Recall: Reverse-Mode Automatic Differentiation

Lecture 6 - 216

x0
D0

x1
D1

L
scalar

x2
D2

x3
D3

f1 f2 f3 f4

D3D2 x D3D1 x D2D0 x D1

Matrix multiplication is associative: we can compute products in any order
Computing products right-to-left avoids matrix-matrix products; only needs matrix-vector

Chain
rule

Compute grad of scalar output
w/respect to all vector inputs

Mini-batch evaluation with matrices (HW3)

• DNNs are described as passing vectors
between layers
• Why not pass all samples in a mini-batch

as a matrix?
• What used to be column vectors are now rows
• Need to adjust weight-vector multiplies

s = W x
becomes

S = X WT

• Need to adjust gradients (Jacobians) as well
• Fix this description after doing homework…

Richard Szeliski UW CSE 576 - Deep Neural Networks 217

Justin Johnson Fall 2019

Problems with SGD

Lecture 4 - 219

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Loss function has high condition number: ratio of largest to smallest singular value
of the Hessian matrix is large

Justin Johnson Fall 2019

Problems with SGD

Lecture 4 - 220

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest singular value
of the Hessian matrix is large

Justin Johnson Fall 2019

Problems with SGD

Lecture 4 - 221

What if the loss function
has a local minimum or
saddle point?

Local
Minimum

Saddle
point

Justin Johnson Fall 2019

Problems with SGD

Lecture 4 - 222

What if the loss function
has a local minimum or
saddle point?

Zero gradient, gradient
descent gets stuck

Local
Minimum

Saddle
point

Justin Johnson Fall 2019

Problems with SGD

Lecture 4 - 223

Our gradients come from minibatches
so they can be noisy!

Justin Johnson Fall 2019

SGD

Lecture 4 - 224

SGD

Justin Johnson Fall 2019

SGD + Momentum

Lecture 4 - 225

SGD

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

Justin Johnson Fall 2019

SGD + Momentum

Lecture 4 - 226

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

You may see SGD+Momentum formulated different ways, but
they are equivalent - give same sequence of x

SGD+Momentum

Justin Johnson Fall 2019

SGD + Momentum

Lecture 4 - 227

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Local Minima Saddle points

Gradient Noise

SGD+MomentumSGD

Poor Conditioning

Justin Johnson Fall 2019

SGD + Momentum

Lecture 4 - 228

Gradient

Velocity

actual step

Momentum update:

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Combine gradient at current point
with velocity to get step used to
update weights

Justin Johnson Fall 2019

Nesterov Momentum

Lecture 4 - 229

Gradient

Velocity

actual step

Momentum update:

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Combine gradient at current point
with velocity to get step used to
update weights

Gradient
Velocity

actual step

Nesterov Momentum

“Look ahead” to the point where updating
using velocity would take us; compute
gradient there and mix it with velocity to
get actual update direction

Justin Johnson Fall 2019

Nesterov Momentum

Lecture 4 - 230

Gradient
Velocity

actual step

“Look ahead” to the point where updating
using velocity would take us; compute
gradient there and mix it with velocity to
get actual update direction

Justin Johnson Fall 2019

Nesterov Momentum

Lecture 4 - 231

Gradient
Velocity

actual step

“Look ahead” to the point where updating
using velocity would take us; compute
gradient there and mix it with velocity to
get actual update direction

Annoying, usually we want
update in terms of

Justin Johnson Fall 2019

Nesterov Momentum

Lecture 4 - 232

Change of variables
and rearrange:

Annoying, usually we want
update in terms of

Justin Johnson Fall 2019Lecture 4 - 233

Nesterov Momentum

SGD

SGD+Momentum

Nesterov

Justin Johnson Fall 2019Lecture 4 - 234

AdaGrad

Added element-wise scaling of the gradient based
on the historical sum of squares in each dimension

“Per-parameter learning rates”
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011

Justin Johnson Fall 2019Lecture 4 - 235

AdaGrad

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011

Justin Johnson Fall 2019Lecture 4 - 236

AdaGrad

Q: What happens with AdaGrad?

Justin Johnson Fall 2019Lecture 4 - 237

AdaGrad

Q: What happens with AdaGrad? Progress along “steep” directions is damped;
progress along “flat” directions is accelerated

Justin Johnson Fall 2019Lecture 4 - 238

RMSProp: “Leaky Adagrad”

AdaGrad

Tieleman and Hinton, 2012

RMSProp

Justin Johnson Fall 2019

RMSProp

Lecture 4 - 239

SGD

SGD+Momentum

RMSProp

Justin Johnson Fall 2019

Adam (almost): RMSProp + Momentum

Lecture 4 - 240

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Justin Johnson Fall 2019

Adam (almost): RMSProp + Momentum

Lecture 4 - 241

Momentum

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Adam

SGD+Momentum

Justin Johnson Fall 2019

Adam (almost): RMSProp + Momentum

Lecture 4 - 242

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

RMSProp

Adam

Momentum
AdaGrad / RMSProp

Justin Johnson Fall 2019

Adam (almost): RMSProp + Momentum

Lecture 4 - 243

Q: What happens at t=0?
(Assume beta2 = 0.999)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Adam

Bias correction

Momentum
AdaGrad / RMSProp

Justin Johnson Fall 2019

Adam (almost): RMSProp + Momentum

Lecture 4 - 244

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Bias correction

Bias correction for the fact
that first and second moment
estimates start at zero

Momentum
AdaGrad / RMSProp

Justin Johnson Fall 2019

Adam (almost): RMSProp + Momentum

Lecture 4 - 245

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Bias correction for the fact
that first and second moment
estimates start at zero

Adam with beta1 = 0.9,
beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1e-4
is a great starting point for many models!

Justin Johnson Fall 2019

Adam: Very Common in Practice!

Lecture 4 - 246

Adam with beta1 = 0.9,
beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1e-4
is a great starting point for many models!

Gkioxari, Malik, and Johnson, ICCV 2019 Zhu, Kaplan, Johnson, and Fei-Fei, ECCV 2018

Johnson, Gupta, and Fei-Fei, CVPR 2018

Gupta, Johnson, et al, CVPR 2018

Bakhtin, van der Maaten, Johnson, Gustafson, and Girshick, NeurIPS 2019

Justin Johnson Fall 2019

Adam

Lecture 4 - 247

SGD

SGD+Momentum

RMSProp

Adam

Justin Johnson Fall 2019

Optimization Algorithm Comparison

Lecture 4 - 248

Algorithm
Tracks first
moments

(Momentum)

Tracks second
moments
(Adaptive

learning rates)

Leaky second
moments

Bias correction
for moment

estimates

SGD 𝙭 𝙭 𝙭 𝙭
SGD+Momentum ✓ 𝙭 𝙭 𝙭
Nesterov ✓ 𝙭 𝙭 𝙭
AdaGrad 𝙭 ✓ 𝙭 𝙭
RMSProp 𝙭 ✓ ✓ 𝙭
Adam ✓ ✓ ✓ ✓

Justin Johnson Fall 2019

In practice:

Lecture 4 - 249

- Adam is a good default choice in many cases
SGD+Momentum can outperform Adam but may
require more tuning

- If you can afford to do full batch updates then try out
L-BFGS (and don’t forget to disable all sources of noise)

Deep neural networks

• Loss functions
• Regularization
• Weights and layers
• Activation functions
• Backpropagation
• Training and optimization

Richard Szeliski UW CSE 576 - Deep Neural Networks 250

