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Traditional machine learning

• Why learning?
• Nearest neighbors
• Bayesian classification
• Logistic regression
• Support vector machines
• Clustering
• Principal component analysis
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… finish off previous lecture …
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Why Bayesian (probabilistic) modeling?

• Merge uncertain measurement
in an optimal way
• Estimate the uncertainty in

the final answer
• Build in (quantitative)

prior assumptions
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Example: merge GPS readings

• Measurement 1: 10.1 ± 0.1667 (1/6) Gaussian noise
• Measurement 2: 10.2 ± 0.1250 (1/8) Gaussian noise
• What is the optimal combined measurement?

Exercise for next lecture
(send me your answer on Slack)
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10.0 10.1 10.2 10.3 10.4



Answer: use inverse variances (Appendix B)
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Answer: merge GPS readings

• Measurement 1: 10.1 ± 0.1667 (1/6) Gaussian noise
• Measurement 2: 10.2 ± 0.1250 (1/8) Gaussian noise
• What is the optimal combined measurement?

Richard Szeliski UW CSE 576 - Machine Learning 10

10.0 10.1 10.2 10.3 10.4

Measurement value std.dev. variance inv.var.
wght. 
contr.

1 10.1 0.166667 0.02778 36 363.6
2 10.2 0.125 0.01563 64 652.8

summed 10.16 0.1 0.01 100 1016



Why a Bayesian formulation?

• Wider range of probability distributions
• Learn distributions from data
• Wider range of inference algorithms

[Kappes, Andres, et al., IJCV 2015]
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Energy minimization
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Digital Photomontage

Richard Szeliski UW CSE 576 - Machine Learning 13



Markov Random Fields
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Conditional Random Fields
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• Interaction potentials depend on guide image
(sound familiar?)



Dense CRF [Krähenbühl and Koltun 2011]

• Use a wide color-based support region (like bilateral solver)
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Traditional machine learning (today’s lecture)

• Why learning?
• Nearest neighbors
• Bayesian classification
• Logistic regression
• Support vector machines
• Clustering
• Principal component analysis
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I’ll be borrowing slides from
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Justin Johnson Fall 2019

Lecture 2:
Image Classification

Lecture 2 - 19



Justin Johnson Fall 2019

Image Classification

Lecture 2 - 20

cat
bird
deer
dog
truck

Output: Assign image to one 
of a fixed set of categories

This image by Nikita is 
licensed under CC-BY 2.0

Input: image

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/


Justin Johnson Fall 2019

This image by Nikita is 
licensed under CC-BY 2.0

Problem: Semantic Gap

Lecture 2 - 21

What the computer sees

An image is just a big grid of 
numbers between [0, 255]:

e.g. 800 x 600 x 3
(3 channels RGB)

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/


Justin Johnson Fall 2019

Challenges: Viewpoint Variation

Lecture 2 - 22

All pixels change when 
the camera moves!

This image by Nikita is 
licensed under CC-BY 2.0

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/


Justin Johnson Fall 2019

Challenges: Intraclass Variation

Lecture 2 - 23

This image is CC0 1.0 public domain

http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Challenges: Fine-Grained Categories

Lecture 2 - 24

This image is free for for use under the Pixabay License

Maine Coon Ragdoll

This image is CC0 public domain

American Shorthair

This image is CC0 public domain

https://pixabay.com/photos/maine-coon-cat-animal-portrait-3347769/
https://pixabay.com/service/license/
https://www.publicdomainpictures.net/en/view-image.php%3Fimage=99009&picture=ragdoll-cat-with-green-eyes
http://creativecommons.org/publicdomain/zero/1.0/
https://pxhere.com/en/photo/1374002
https://creativecommons.org/publicdomain/zero/1.0/
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Challenges: Background Clutter

Lecture 2 - 25

This image is CC0 1.0 public domain This image is CC0 1.0 public domain

https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.pexels.com/photo/view-of-cat-in-snow-248276/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Justin Johnson Fall 2019

Challenges: Illumination Changes

Lecture 2 - 26

This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain

https://pixabay.com/en/cat-cat-in-the-dark-eyes-staring-987528/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Cats-Silhouette-Cats-Eyes-Silhouette-Cat-694730
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/red-cat-animals-cat-face-cat-red-1451799/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Animals-Tree-Sun-Cat-In-Tree-Cat-Feline-Titus-63683
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Challenges: Deformation

Lecture 2 - 27

This image by Umberto Salvagnin is 
licensed under CC-BY 2.0

This image by Tom Thai is licensed 
under CC-BY 2.0 

This image by sare bear is licensed 
under CC-BY 2.0

This image by Umberto Salvagnin is 
licensed under CC-BY 2.0

https://www.flickr.com/photos/kaibara/3625964429/in/photostream/
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/
https://c1.staticflickr.com/5/4101/4877610923_52c9a5fedf_b.jpg
https://www.flickr.com/photos/eviltomthai/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/sarahcord/364252525
https://www.flickr.com/photos/sarahcord/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/34745138@N00/4068996309
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/


Justin Johnson Fall 2019

Challenges: Occlusion

Lecture 2 - 28

This image is CC0 1.0 public domain This image by jonsson is licensed 
under CC-BY 2.0This image is CC0 1.0 public domain

https://pixabay.com/p-393294/%3Fno_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://commons.wikimedia.org/wiki/File:New_hiding_place_(4224719255).jpg
https://www.flickr.com/people/81571077@N00%3Frb=1
https://creativecommons.org/licenses/by/2.0/
https://pixabay.com/en/cat-hidden-meadow-green-summer-1009957/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Justin Johnson Fall 2019

Image Classification: Building Block for other tasks!

Lecture 2 - 29

This image is free to use under the Pexels license

Example: Object Detection

Horse

Person

https://www.pexels.com/photo/man-beach-water-ocean-36348/
https://www.pexels.com/creative-commons-images/


Justin Johnson Fall 2019

Image Classification: Building Block for other tasks!

Lecture 2 - 30

This image is free to use under the Pexels license

Example: Object Detection

Background
Horse
Person
Car
Truck

https://www.pexels.com/photo/man-beach-water-ocean-36348/
https://www.pexels.com/creative-commons-images/


Justin Johnson Fall 2019

Image Classification: Building Block for other tasks!

Lecture 2 - 31

This image is free to use under the Pexels license

Example: Object Detection

Background
Horse
Person
Car
Truck

https://www.pexels.com/photo/man-beach-water-ocean-36348/
https://www.pexels.com/creative-commons-images/


Justin Johnson Fall 2019

Image Classification: Building Block for other tasks!

Lecture 2 - 32

This image is free to use under the Pexels license

Example: Image Captioning

riding
cat
horse
man
when
…
<STOP>

What word 
to say next?

Caption:
Man riding horse

https://www.pexels.com/photo/man-beach-water-ocean-36348/
https://www.pexels.com/creative-commons-images/


Justin Johnson Fall 2019

Image Classification: Building Block for other tasks!

Lecture 2 - 33

This image is free to use under the Pexels license

Example: Image Captioning

riding
cat
horse
man
when
…
<STOP>

What word 
to say next?

Caption:
Man riding horse

https://www.pexels.com/photo/man-beach-water-ocean-36348/
https://www.pexels.com/creative-commons-images/


Justin Johnson Fall 2019

Image Classification: Building Block for other tasks!

Lecture 2 - 34

This image is free to use under the Pexels license

Example: Image Captioning

riding
cat
horse
man
when
…
<STOP>

What word 
to say next?

Caption:
Man riding horse

https://www.pexels.com/photo/man-beach-water-ocean-36348/
https://www.pexels.com/creative-commons-images/


Justin Johnson Fall 2019

Image Classification: Building Block for other tasks!

Lecture 2 - 35

This image is free to use under the Pexels license

Example: Image Captioning

riding
cat
horse
man
when
…
<STOP>

What word 
to say next?

Caption:
Man riding horse

https://www.pexels.com/photo/man-beach-water-ocean-36348/
https://www.pexels.com/creative-commons-images/
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An Image Classifier

Lecture 2 - 36

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm 
for recognizing a cat, or other classes.
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You could try …

Lecture 2 - 37

John Canny, “A Computational Approach to Edge Detection”, IEEE TPAMI 1986

Find edges Find corners

?



Justin Johnson Fall 2019

Machine Learning: Data-Driven Approach

Lecture 2 - 38

1. Collect a dataset of images and labels
2. Use Machine Learning to train a classifier
3. Evaluate the classifier on new images

Example training set



Supervised learning

• Goal: provide best output predictions for novel inputs

Richard Szeliski UW CSE 576 - Machine Learning 39



Supervised learning

• Goal: provide best output predictions for novel inputs
• How can we predict future performance?
• Placeholder answer: minimize empirical risk

• Where have we seen this before?
• What are potential models and loss functions?
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Traditional and deep learning
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Traditional machine learning

• Why learning?
• Nearest neighbors
• Bayesian classification
• Logistic regression
• Support vector machines
• Clustering
• Principal component analysis

UW CSE 576 - Machine Learning 42Richard Szeliski



Justin Johnson Fall 2019

Nearest neighbors

Lecture 2 - 43
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First classifier: Nearest Neighbor

Lecture 2 - 44

Memorize all data 
and labels

Predict the label of 
the most similar 
training image
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Distance Metric to compare images

Lecture 2 - 45

L1 distance:

add



Justin Johnson Fall 2019Lecture 2 - 46

Nearest Neighbor Classifier
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Nearest Neighbor Classifier

Memorize training data
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Nearest Neighbor Classifier

For each test image:
Find nearest training image
Return label of nearest image
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Nearest Neighbor Classifier

Q: With N examples, 
how fast is training?
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Nearest Neighbor Classifier

Q: With N examples, 
how fast is training?
A: O(1)



Justin Johnson Fall 2019Lecture 2 - 51

Nearest Neighbor Classifier

Q: With N examples, 
how fast is training?
A: O(1)

Q: With N examples, 
how fast is testing?
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Nearest Neighbor Classifier

Q: With N examples, 
how fast is training?
A: O(1)

Q: With N examples, 
how fast is testing?
A: O(N)
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Nearest Neighbor Classifier

Q: With N examples, 
how fast is training?
A: O(1)

Q: With N examples, 
how fast is testing?
A: O(N)

This is bad: We can 
afford slow training, but 
we need fast testing!
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Nearest Neighbor Classifier

There are many methods for 
fast / approximate nearest 
neighbors; e.g. see

https://github.com/facebookresearch/faiss

https://github.com/facebookresearch/faiss
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What does this look like?

Lecture 2 - 55
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What does this look like?

Lecture 2 - 56



Justin Johnson Fall 2019

Nearest Neighbor Decision Boundaries

Lecture 2 - 57



Justin Johnson Fall 2019

Nearest Neighbor Decision Boundaries

Lecture 2 - 58

x0

x1

Nearest neighbors
in two dimensions 



Justin Johnson Fall 2019

Nearest Neighbor Decision Boundaries

Lecture 2 - 59

x0

x1

Nearest neighbors
in two dimensions 

Points are training 
examples; colors 
give training labels



Justin Johnson Fall 2019

Nearest Neighbor Decision Boundaries

Lecture 2 - 60

x0

x1

Nearest neighbors
in two dimensions 

Points are training 
examples; colors 
give training labels

Background colors 
give the category 
a test point would 
be assigned 

x



Justin Johnson Fall 2019

Nearest Neighbor Decision Boundaries

Lecture 2 - 61

x0

x1

Nearest neighbors
in two dimensions 

Points are training 
examples; colors 
give training labels

Background colors 
give the category 
a test point would 
be assigned 

x

Decision boundary 
is the boundary 
between two 
classification regions



Justin Johnson Fall 2019

Nearest Neighbor Decision Boundaries

Lecture 2 - 62

x0

x1

Nearest neighbors
in two dimensions 

Points are training 
examples; colors 
give training labels

Background colors 
give the category 
a test point would 
be assigned 

x

Decision boundary 
is the boundary 
between two 
classification regions

Decision boundaries 
can be noisy; 
affected by outliers
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Nearest Neighbor Decision Boundaries

Lecture 2 - 63

x0

x1

Nearest neighbors
in two dimensions 

Points are training 
examples; colors 
give training labels

Background colors 
give the category 
a test point would 
be assigned 

x

Decision boundary 
is the boundary 
between two 
classification regions

Decision boundaries 
can be noisy; 
affected by outliers

How to smooth out 
decision boundaries?
Use more neighbors!
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K-Nearest Neighbors

Lecture 2 - 64

K = 1 K = 3

Instead of copying label from nearest neighbor, 
take majority vote from K closest points



Justin Johnson Fall 2019

K-Nearest Neighbors

Lecture 2 - 65

K = 1 K = 3

Using more neighbors helps smooth 
out rough decision boundaries
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K-Nearest Neighbors

Lecture 2 - 66

K = 1 K = 3

Using more neighbors helps 
reduce the effect of outliers



Justin Johnson Fall 2019

K-Nearest Neighbors

Lecture 2 - 67

K = 1 K = 3

When K > 1 there can be 
ties between classes. 
Need to break somehow!
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K-Nearest Neighbors: Distance Metric

Lecture 2 - 68

L1 (Manhattan) distance L2 (Euclidean) distance
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K-Nearest Neighbors: Distance Metric

Lecture 2 - 69

L1 (Manhattan) distance L2 (Euclidean) distance

K = 1K = 1
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K-Nearest Neighbors: Distance Metric

Lecture 2 - 70

With the right choice of distance metric, we can 
apply K-Nearest Neighbor to any type of data!
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K-Nearest Neighbors: 
Web Demo

Lecture 2 - 71

http://vision.stanford.edu/teaching/cs231n-demos/knn/

Interactively move points around 
and see decision boundaries change

Play with L1 vs L2 metrics

Play with changing number of 
training points, value of K

http://vision.stanford.edu/teaching/cs231n-demos/knn/


Justin Johnson Fall 2019

Hyperparameters

What is the best value of K to use?
What is the best distance metric to use?

These are examples of hyperparameters: choices about our 
learning algorithm that we don’t learn from the training 
data; instead we set them at the start of the learning process

Lecture 2 - 72



Justin Johnson Fall 2019

Hyperparameters

What is the best value of K to use?
What is the best distance metric to use?

These are examples of hyperparameters: choices about our 
learning algorithm that we don’t learn from the training 
data; instead we set them at the start of the learning process

Lecture 2 - 73

Very problem-dependent. In general need to try them all and 
see what works best for our data / task.
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Setting Hyperparameters

Lecture 2 - 74

Idea #1: Choose hyperparameters that 
work best on the data

Your Dataset



Justin Johnson Fall 2019

Setting Hyperparameters

Lecture 2 - 75

Idea #1: Choose hyperparameters that 
work best on the data

BAD: K = 1 always works 
perfectly on training data

Your Dataset
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Setting Hyperparameters

Lecture 2 - 76

Idea #1: Choose hyperparameters that 
work best on the data

BAD: K = 1 always works 
perfectly on training data

Idea #2: Split data into train and test, choose 
hyperparameters that work best on test data

Your Dataset

train test
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Setting Hyperparameters

Lecture 2 - 77

Idea #1: Choose hyperparameters that 
work best on the data

BAD: K = 1 always works 
perfectly on training data

Idea #2: Split data into train and test, choose 
hyperparameters that work best on test data

BAD: No idea how algorithm 
will perform on new data

Your Dataset

train test
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Setting Hyperparameters

Lecture 2 - 78

Idea #1: Choose hyperparameters that 
work best on the data

BAD: K = 1 always works 
perfectly on training data

Idea #2: Split data into train and test, choose 
hyperparameters that work best on test data

BAD: No idea how algorithm 
will perform on new data

Your Dataset

train test

Idea #3: Split data into train, val, and test; choose 
hyperparameters on val and evaluate on test

Better!

train testvalidation
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Setting Hyperparameters

Lecture 2 - 79

Your Dataset

testfold 1 fold 2 fold 3 fold 4 fold 5

Idea #4: Cross-Validation: Split data into folds, try each 
fold as validation and average the results

testfold 1 fold 2 fold 3 fold 4 fold 5

testfold 1 fold 2 fold 3 fold 4 fold 5

Useful for small datasets, but (unfortunately) not used too frequently in deep learning
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Setting Hyperparameters

Lecture 2 - 80

Example of 5-fold cross-validation for 
the value of k.

Each point: single outcome. 

The line goes through the mean, bars
indicated standard deviation

(Seems that k ~ 7 works best
for this data)
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K-Nearest Neighbor on raw pixels is seldom used

Lecture 2 - 81

- Very slow at test time
- Distance metrics on pixels are not informative

(all 3 images have same L2 distance to the one on the left)

Original Boxed Shifted Tinted

Original image is 
CC0 public domain

https://www.pexels.com/photo/blonde-haired-woman-in-blue-shirt-y-27411/
https://creativecommons.org/publicdomain/zero/1.0/
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Nearest Neighbor with ConvNet features works well!

Lecture 2 - 82

Devlin et al, “Exploring Nearest Neighbor Approaches for Image Captioning”, 2015
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Nearest Neighbor with ConvNet features works well!

Lecture 2 - 83

Devlin et al, “Exploring Nearest Neighbor Approaches for Image Captioning”, 2015

Example: Image Captioning with Nearest Neighbor



Machine learning

• Why learning?
• Nearest neighbors
• Bayesian classification
• Logistic regression
• Support vector machines
• Clustering
• Principal component analysis

Richard Szeliski UW CSE 576 - Machine Learning 84



Bayesian classification

Richard Szeliski UW CSE 576 - Machine Learning 85

What do the colors mean?

current decision 
threshold

Bayes’ Rule



Bayesian classification
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Logistic sigmoid function

Richard Szeliski UW CSE 576 - Machine Learning 87



Multivariate Gaussian distributions

Richard Szeliski UW CSE 576 - Machine Learning 88

• How do we determine the class posterior?



Multivariate Gaussian distribution
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Logistic regression

Richard Szeliski UW CSE 576 - Machine Learning 90



Multiple classes & linear discriminant analysis

Richard Szeliski UW CSE 576 - Machine Learning 91



Quadratic discriminant analysis

Richard Szeliski UW CSE 576 - Machine Learning 92

• What are the white lines on the right called?



Machine learning

• Why learning?
• Nearest neighbors
• Bayesian classification
• Logistic regression (linear classifiers)
• Support vector machines
• Clustering
• Principal component analysis

Richard Szeliski UW CSE 576 - Machine Learning 93



Justin Johnson Fall 2019

Lecture 3:
Linear Classifiers

Lecture 3 - 94
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This image is CC0 1.0 public domain

Neural Network

Linear 
classifiers

http://maxpixel.freegreatpicture.com/Play-Wooden-Blocks-Tower-Kindergarten-Child-Toys-1864718
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Recall CIFAR10

Lecture 3 - 96

50,000 training images
each image is 32x32x3

10,000 test images.
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Parametric Approach

Lecture 3 - 97

Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)
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Parametric Approach: Linear Classifier

Lecture 3 - 98

Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx



Justin Johnson Fall 2019

Parametric Approach: Linear Classifier

Lecture 3 - 99

Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx
(10,) (10, 3072)

(3072,)
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Parametric Approach: Linear Classifier

Lecture 3 - 100

Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx + b
(10,) (10, 3072)

(3072,)
(10,)
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Example for 2x2 image, 3 classes (cat/dog/ship)

Lecture 3 - 101

Input image
(2, 2)

56

231

24

2

56 231

24 2

Stretch pixels into column

(4,)

f(x,W) = Wx + b



Justin Johnson Fall 2019

Example for 2x2 image, 3 classes (cat/dog/ship)

Lecture 3 - 102

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input image

(2, 2)

56

231

24

2

56 231

24 2

Stretch pixels into column

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=

b(4,)
(3, 4)

(3,)

(3,)

f(x,W) = Wx + b
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Linear Classifier: Algebraic Viewpoint

Lecture 3 - 103

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input image

(2, 2)

56

231

24

2

56 231

24 2

Stretch pixels into column

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=

b(4,)
(3, 4)

(3,)

(3,)

f(x,W) = Wx + b
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Linear Classifier: Bias Trick

Lecture 3 - 104

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input image

(2, 2)

56

231

24

2

56 231

24 2

Stretch pixels into column

1.1

3.2

-1.2

-96.8

437.9

61.95

=

(5,)
(3, 5) (3,)

1

Add extra one to data vector; 
bias is absorbed into last 
column of weight matrix
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Linear Classifier: Predictions are Linear!

Lecture 3 - 105

f(x, W) = Wx (ignore bias)

f(cx, W) = W(cx) = c * f(x, W)
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Linear Classifier: Predictions are Linear!

Lecture 3 - 106

f(x, W) = Wx (ignore bias)

f(cx, W) = W(cx) = c * f(x, W)
Image 0.5 * ImageScores

-96.8

437.8

62.0

-48.4

218.9

31.0

0.5 * Scores
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Interpreting a Linear Classifier

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input	image

(2,	2)

56

231

24

2

56 231

24 2

Stretch	pixels	into	column

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=

b(4,)
(3,	4)

(3,)

(3,)

f(x,W) = Wx + b

Algebraic Viewpoint
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Interpreting a Linear Classifier

0.2 -0.5

0.1 2.0

1.5 1.3

2.1 0.0

0 .25

0.2 -0.3

1.1 3.2 -1.2

W

b

-96.8 437.9 61.95

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input	image

(2,	2)

56

231

24

2

56 231

24 2

Stretch	pixels	into	column

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=

b(4,)
(3,	4)

(3,)

(3,)

Algebraic Viewpoint

f(x,W) = Wx + b
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0.2 -0.5

0.1 2.0

1.5 1.3

2.1 0.0

0 .25

0.2 -0.3

1.1 3.2 -1.2

W

b

-96.8 437.9 61.95

Interpreting an Linear Classifier
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0.2 -0.5

0.1 2.0

1.5 1.3

2.1 0.0

0 .25

0.2 -0.3

1.1 3.2 -1.2

W

b

-96.8 437.9 61.95

Interpreting an Linear Classifier: Visual Viewpoint



Justin Johnson Fall 2019Lecture 3 - 111

0.2 -0.5

0.1 2.0

1.5 1.3

2.1 0.0

0 .25

0.2 -0.3

1.1 3.2 -1.2

W

b

-96.8 437.9 61.95

Interpreting an Linear Classifier: Visual Viewpoint

Linear classifier has one 
“template” per category



Justin Johnson Fall 2019Lecture 3 - 112

0.2 -0.5

0.1 2.0

1.5 1.3

2.1 0.0

0 .25

0.2 -0.3

1.1 3.2 -1.2

W

b

-96.8 437.9 61.95

Interpreting an Linear Classifier: Visual Viewpoint

Linear classifier has one 
“template” per category

A single template cannot capture 
multiple modes of the data

e.g. horse template has 2 heads!
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Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 113

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)Value of pixel (15, 8, 0)

Airplane 
Score

Car Score

Deer ScoreClassifier 
score
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Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 114

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Pixel
(15, 8, 0)

Car Score 
= 0

Pixel 
(11, 11, 0)

Car score 
increases 
this way
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Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 115

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Pixel
(15, 8, 0)

Car Score 
= 0

Pixel 
(11, 11, 0)

Car score 
increases 
this way

Car template 
on this line
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Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 116

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Pixel (15, 8, 0)

Car Score 
= 0

Pixel 
(11, 11, 0)

Car score 
increases 
this way

Car template 
on this line

Deer 
Score

Airplane 
Score
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Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 117

Pixel (15, 8, 0)

Car Score 
= 0

Pixel 
(11, 11, 0)

Car score 
increases 
this way

Car template 
on this line

Deer 
Score

Airplane 
Score

Plot created using Wolfram Cloud

Hyperplanes carving up a 
high-dimensional space

https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8
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Hard Cases for a Linear Classifier

Lecture 3 - 118

Class 1: 
First and third quadrants

Class 2: 
Second and fourth quadrants

Class 1: 
1 <= L2 norm <= 2

Class 2:
Everything else

Class 1: 
Three modes

Class 2:
Everything else
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Linear Classifier: Three Viewpoints

Lecture 3 - 119

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template 
per class

Hyperplanes 
cutting up space
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So Far: Defined a linear score function

Lecture 3 - 120

f(x,W) = Wx + b

-3.45
-8.87
0.09
2.9
4.48
8.02
3.78
1.06
-0.36
-0.72

-0.51
6.04
5.31
-4.22
-4.19
3.58
4.49
-4.37
-2.09
-2.93

3.42
4.64
2.65
5.1
2.64
5.55
-4.34
-1.5
-4.79
6.14

Given a W, we can 
compute class scores 
for an image x.

But how can we 
actually choose a 
good W?

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://www.pexels.com/photo/audi-cabriolet-car-red-2568/
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg
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Choosing a good W

Lecture 3 - 121

f(x,W) = Wx + b

-3.45
-8.87
0.09
2.9
4.48
8.02
3.78
1.06
-0.36
-0.72

-0.51
6.04
5.31
-4.22
-4.19
3.58
4.49
-4.37
-2.09
-2.93

3.42
4.64
2.65
5.1
2.64
5.55
-4.34
-1.5
-4.79
6.14

TODO:

1. Use a loss function to 
quantify how good a 
value of W is

2. Find a W that minimizes 
the loss function 
(optimization)
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Loss Function

Lecture 3 - 122

A loss function tells how good our 
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function; 
cost function)
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Loss Function

Lecture 3 - 123

A loss function tells how good our 
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function; 
cost function)

Negative loss function sometimes 
called reward function, profit 
function, utility function, fitness 
function, etc
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Loss Function

Lecture 3 - 124

A loss function tells how good our 
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function; 
cost function)

Negative loss function sometimes 
called reward function, profit 
function, utility function, fitness 
function, etc

Given a dataset of examples

Where       is image and 
is (integer) label
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Loss Function

Lecture 3 - 125

A loss function tells how good our 
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function; 
cost function)

Negative loss function sometimes 
called reward function, profit 
function, utility function, fitness 
function, etc

Given a dataset of examples

Where       is image and 
is (integer) label

Loss for a single example is
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Loss Function

Lecture 3 - 126

A loss function tells how good our 
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function; 
cost function)

Negative loss function sometimes 
called reward function, profit 
function, utility function, fitness 
function, etc

Given a dataset of examples

Where       is image and 
is (integer) label

Loss for a single example is

Loss for the dataset is average of 
per-example losses:
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 127

Loss

Score for 
correct class
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 128

Loss

Score for 
correct class

Highest score 
among other classes
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 129

Loss

Score for 
correct class

Highest score 
among other classes

“Margin”

“Hinge Loss”
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 130

Loss

Score for 
correct class

Highest score 
among other classes

“Margin”

Given an example
(       is image,      is label)

Let                             be scores

Then the SVM loss has the form:
“Hinge Loss”
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Regularization: Beyond Training Error

Lecture 3 - 146

Data loss: Model predictions 
should match training data
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Regularization: Beyond Training Error

Lecture 3 - 147

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data
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Regularization: Beyond Training Error

Lecture 3 - 148

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

= regularization strength
(hyperparameter)
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Regularization: Beyond Training Error

Lecture 3 - 149

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

= regularization strength
(hyperparameter)

Simple examples
L2 regularization: 
L1 regularization: 
Elastic net (L1 + L2): 

More complex:
Dropout
Batch normalization
Cutout, Mixup, Stochastic depth, etc…
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Regularization: Beyond Training Error

Lecture 3 - 150

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

= regularization strength
(hyperparameter)

Purpose of Regularization:
- Express preferences in among models beyond ”minimize training error”
- Avoid overfitting: Prefer simple models that generalize better
- Improve optimization by adding curvature
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Regularization: Prefer Simpler Models

Lecture 3 - 153

x

y
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Regularization: Prefer Simpler Models

Lecture 3 - 154

x

y f2
f1

The model f1 fits the training data perfectly
The model f2 has training error, but is simpler
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Regularization: Prefer Simpler Models

Lecture 3 - 155

x

y
f1 f2

Regularization pushes against fitting the data 
too well so we don’t fit noise in the data

F1 is not a linear model; could 
be polynomial regression, etc
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Regularization: Prefer Simpler Models

Lecture 3 - 156

x

y
f1 f2

Regularization pushes against fitting the data 
too well so we don’t fit noise in the data

F1 is not a linear model; could 
be polynomial regression, etc

Regularization is 
important! You should 
(usually) use it.
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 157

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 158

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 159

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Unnormalized log-
probabilities / logits
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 160

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0

0.18

Probabilities 
must be >= 0

exp

Softmax
function

unnormalized
probabilities

Unnormalized log-
probabilities / logits
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 161

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0

0.18

0.13
0.87

0.00

Probabilities 
must be >= 0

Probabilities 
must sum to 1

exp normalize

Softmax
function

unnormalized
probabilities probabilitiesUnnormalized log-

probabilities / logits



Justin Johnson Fall 2019

Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 162

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0

0.18

0.13
0.87

0.00

Probabilities 
must be >= 0

Probabilities 
must sum to 1

exp normalize

Softmax
function

Li = -log(0.13)
= 2.04

unnormalized
probabilities probabilitiesUnnormalized log-

probabilities / logits
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 163

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0

0.18

0.13
0.87

0.00

Probabilities 
must be >= 0

Probabilities 
must sum to 1

exp normalize

Softmax
function

Li = -log(0.13)
= 2.04

Maximum Likelihood Estimation
Choose weights to maximize the 
likelihood of the observed data
(next lecture)unnormalized

probabilities probabilitiesUnnormalized log-
probabilities / logits
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 164

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0

0.18

0.13
0.87

0.00

Probabilities 
must be >= 0

Probabilities 
must sum to 1

exp normalize

Softmax
function

unnormalized
probabilities probabilitiesUnnormalized log-

probabilities / logits

1.00
0.00

0.00
Correct 
probs

Compare
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 165

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0

0.18

0.13
0.87

0.00

Probabilities 
must be >= 0

Probabilities 
must sum to 1

exp normalize

Softmax
function

unnormalized
probabilities probabilitiesUnnormalized log-

probabilities / logits

1.00
0.00

0.00
Correct 
probs

Compare

Kullback–Leibler
divergence
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 166

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0

0.18

0.13
0.87

0.00

Probabilities 
must be >= 0

Probabilities 
must sum to 1

exp normalize

Softmax
function

unnormalized
probabilities probabilitiesUnnormalized log-

probabilities / logits

1.00
0.00

0.00
Correct 
probs

Compare

Cross Entropy
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 167

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Maximize probability of correct class Putting it all together:
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 168

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Maximize probability of correct class Putting it all together:

Q: What is the min / 
max possible loss Li?
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 169

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Maximize probability of correct class Putting it all together:

Q: What is the min / 
max possible loss Li?

A: Min 0, max +infinity
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 170

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Maximize probability of correct class Putting it all together:

Q: If all scores are 
small random values, 
what is the loss?
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 171

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Maximize probability of correct class Putting it all together:

Q: If all scores are 
small random values, 
what is the loss?

A: -log(1/C)
log(10) ≈ 2.3
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Recap: Three ways to think about linear classifiers

Lecture 3 - 178

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template 
per class

Hyperplanes 
cutting up space
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Recap: Loss Functions quantify preferences

Lecture 3 - 179

- We have some dataset of (x, y)
- We have a score function: 
- We have a loss function: 

Softmax
SVM

Full loss

Linear classifier
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Recap: Loss Functions quantify preferences

Lecture 3 - 180

- We have some dataset of (x, y)
- We have a score function: 
- We have a loss function: 

Softmax
SVM

Full loss

Q: How do we find the best W?

Linear classifier
A: Next lecture



Machine learning

• Why learning?
• Nearest neighbors
• Bayesian classification
• Logistic regression
• Support vector machines & random forests (lightening speed)
• Clustering
• Principal component analysis

Richard Szeliski UW CSE 576 - Machine Learning 181



Support vector machines (SVMs)

• Maximize the margin between 
the decision surfaces
• The only points that matter are 

the circled support vectors

Richard Szeliski UW CSE 576 - Machine Learning 182



Kernelized support vector machines

• Replace linear function with a 
sum of kernel functions
(e.g., Gaussian bumps)

• Circled points are
support vectors,
lie on f = ± 1 surfaces
(f = 0 is the dark curve)

Richard Szeliski UW CSE 576 - Machine Learning 183



Hinge loss vs. logistic regression

Richard Szeliski UW CSE 576 - Machine Learning 184



Decision trees (lighting speed)

Richard Szeliski UW CSE 576 - Machine Learning 185

D = tree depth



Random forest

T = # trees

Richard Szeliski UW CSE 576 - Machine Learning 186



Random forest

ρ = 500 ρ = 5

ρ = # samples at each node at construction time

Richard Szeliski UW CSE 576 - Machine Learning 187



Application: Kinect body pose estimation

Richard Szeliski UW CSE 576 - Machine Learning 188



Lecture recap: machine learning

• Why learning?
• Nearest neighbors
• Bayesian classification
• Logistic regression
• Support vector machines
• Unsupervised learning:
• Clustering
• Principal component analysis

Richard Szeliski UW CSE 576 - Machine Learning 189


