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Traditional machine learning

* Why learning?
* Nearest neighbors

* Bayesian classification

* Logistic regression

e Support vector machines
* Clustering
* Principal component analysis

Richard Szeliski UW CSE 576 - Machine Learning



... Tinish off previous lecture ...

Richard Szeliski UW CSE 576 - Machine Learning



Why Bayesian (probabilistic) modeling?

* Merge uncertain measurement
in an optimal way

e Estimate the uncertainty in
the final answer

 Build in (quantitative)
prior assumptions

Richard Szeliski UW CSE 576 - Machine Learning
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Example: merge GPS readings

* Measurement 1: 10.1 £ 0.1667 (1/6) Gaussian noise
* Measurement 2: 10.2 £ 0.1250 (1/8) Gaussian noise
* What is the optimal combined measurement?

Exercise for next lecture
(send me your answer on Slack)

10.0 10.1 10.2 10.3 10.4

Richard Szeliski UW CSE 576 - Machine Learning 8



Answer: use inverse variances (Appendix B)

yi = fi(x) + n;

L =plylx) = Hp yilx) = [ [ plyilf:(x))
- H 27|~ 1/2 exp <_§HY7L - fz-(x)||22i_1)

B=—logL =3 Y (vi— ()" 57" (yi — () + &
fZ(X) = HzX C’L — 27/_1
E=>) |I§; - Hix|g-1 =Y (5 — Hix)"Ci(§; — H;x) (B.16) H, =1

(5e) (Tes)
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Nathan Hatch 4:32 pm
| think the answer you're looking for is 10.164 \pm 0.1

Answer: merge GPS readings

Yes! Excellent work! What's your academic background?

Nathan Hatch 4:54 pm
Robotics and machine learning.

* Measurement 1: 10.1 £ 0.1667 (1/6) Gaussian noise
* Measurement 2: 10.2 £ 0.1250 (1/8) Gaussian noise
* What is the optimal combined measurement?

(5o [geo)

wght.
Measurement value std.dev. variance inv.var. contr.

1 10.1 0.166667 0.02778 36 363.6
2 10.2 0.125 0.01563 64 652.8
summed 10.16 0.1 0.01 100 1016

10.0 10.1 10.2 10.3 10.4

Richard Szeliski UW CSE 576 - Machine Learning 10



Why a Bayesian formulation?

* Wider range of probability distributions

Global Opti-

e Learn distributions from data

* Wider range of inference algorithms
[Kappes, Andres, et al., [JCV 2015]

iiiiiiiiii
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Energy minimization

(a) initial labeling (b) standard move (¢) a-3-swap (d) a-expansion

Figure 4.15  Multi-level graph optimization from (Bovkov, Veksler, and Zabih 2001) (C)
2001 IEEE: (a) initial problem configuration; (b) the standard move only changes one pixel;
(c) the a-3-swap optimally exchanges all o and [(3-labeled pixels; (d) the c-expansion move
optimally selects among current pixel values and the « label.

Richard Szeliski UW CSE 576 - Machine Learning
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Digital Photomontage

Figure 4.17  An unordered label MRF (Agarwala, Dontcheva, Agrawala et al. 2004) (C)
2004 ACM: Strokes in each of the source images on the left are used as constraints on an
MRF optimization, which is solved using graph cuts. The resulting multi-valued label field is
shown as a color overlay in the middle image, and the final composite is shown on the right.

Richard Szeliski UW CSE 576 - Machine Learning
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Markov Random Fields

According to Bayes’ Rule (Appendix B.4), the posterior distribution for a given set of

measurements y, p(y|x), combined with a prior p(x) over the unknowns x, is given by

Py[x)p(x) (4.33)

p(xly) = oY)

where p(y) = fx p(y|x)p(x) is a normalizing constant used to make the p(x|y) distribution
proper (integrate to 1). Taking the negative logarithm of both sides of (4.33), we get

—logp(x|y) = —log p(y|x) — log p(x) + C, (4.34)

which is the negative posterior log likelihood.

To find the most likely (maximum a posteriori or MAP) solution x given some measure-
ments y, we simply minimize this negative log likelihood, which can also be thought of as an
energy,

Ex,y) = Ep(x,y) + Ep(X). (4.35)

(We drop the constant C' because its value does not matter during energy minimization.)
The first term Ep(x,y) is the data energy or data penalty; it measures the negative log
likelihood that the data were observed given the unknown state x. The second term E'p(x) is
the prior energy: it plays a role analogous to the smoothness energy in regularization. Note
Richard Szeliski UW CSE 576 - Machine Learning
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Conditional Random Fields

* Interaction potentials depend on guide image 4. fGHL+D)

(sound familiar?) G.1)

Since the smoothness term now depends on the data, Bayes™ Rule (4.44) no longer ap- = —

plies. Instead, we use a direct model for the posterior distribution p(x|y), whose negative log
likelithood can be written as

E(x|ly) = Ep(x,y) + Es(x.y)

= Vo(@p.y)+ Y Viglwp 24.¥). (4.45)
P (P.a)EN

using the notation introduced in (4.43). The resulting probability distribution is called a con-
ditional random field (CRF) and was first introduced to the computer vision field by Kumar
and Hebert (2003), based on earlier work in text modeling by Lafferty, McCallum, and Pereira
(2001).

Figure 4.18 shows a graphical model where the smoothness terms depend on the data
values. In this particular model, each smoothness term depends only on its adjacent pair of

data values, i.e., terms are of the form|V}, ,(z,. x4, yp. y4)|in (4.45).
Richard Szeliski UW CSE'576 - Machine Learning 15




Dense CRF [Krahenbiihl and Koltun 2011]

* Use a wide color-based support region (like bilateral solver)

P
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(a) Image (b) Unary classifiers (c) Robust P™ CRF (d) Fully connected CRF, (e) Fully connected CRF,
MCMC inference, 36 hrs our approach, 0.2 seconds
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Traditional machine learning (today’s lecture)

* Why learning?

Richard Szeliski UW CSE 576 - Machine Learning
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EECS 498-007 / 598-005

Deep Learning for Computer Vision
MICHIGAN Fall 2019

UNIVERSITY OF

Course Description

Computer Vision has become ubiquitous in our society, with applications in search, image understanding,
apps, mapping, medicine, drones, and self-driving cars. Core to many of these applications are visual
recognition tasks such as image classification and object detection. Recent developments in neural
network approaches have greatly advanced the performance of these state-of-the-art visual recognition
systems. This course is a deep dive into details of neural-network based deep learning methods for
computer vision. During this course, students will learn to implement, train and debug their own neural
networks and gain a detailed understanding of cutting-edge research in computer vision. We will cover
learning algorithms, neural network architectures, and practical engineering tricks for training and fine-

tuning networks for visual recognition tasks.

Instructor Graduate Student Instructors

UW CSE 576 - Machine Learning
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Lecture 2:
Image Classification

Justin Johnson Lecture 2 - 19 Fall 2019



Image Classification

Input: image Output: Assign image to one
T T of a fixed set of categories

cat

Fall 2019

Justin Johnson Lecture 2 - 20



https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

(]
° [[105 112 108 111 104 99 106 99 96 103 112 119 104 97 93 87]
r | I l | I l I . | [ 91 98 102 106 104 79 98 103 99 105 123 136 110 105 94 85]
° [ 76 85 9@ 105 128 105 87 96 95 99 115 112 106 103 99 85]

[128 112 96 117 150 144 120 115 104 107 102 93 87 81 72 79]
[123 107 96 86 83 112 153 149 122 109 104 75 80 107 112 99]
[122 121 102 80 82 86 94 117 145 148 153 102 58 78 92 107]
[122 164 148 103 71 56 78 83 93 103 119 139 102 61 69 84]]

. What the computer sees

An image is just a big grid of
numbers between [0, 255]:

e.g. 800 x 600 x 3
(3 channels RGB)

Justin Johnson Lecture 2 - 21 Fall 2019



https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Challenges: Viewpoint Variation

Justin Johnson

[[105 112
[91 98
[ 76 85
[99 81
[106 91
[114 108
[133 137
[128 137
[125 133
[127 125
[115 114
[ 89 93
[ 63 77
[ 62 65
[ 63 65
[ 87 65
[118 97
(164 146
[157 170
(130 128
[128 112
[123 107
[122 121
[122 164

153
119

139 102

87]
85]
85]
94]
95]
91]
82]
101]
98]
84]
78]
80]
87]
119]
118]
112]
107]
109]
94]
86]
79]
99]
107]
84]]

Lecture 2 - 22

All pixels change when
the camera moves!

Fall 2019



https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Challenges: Intraclass Variation

Justin Johnson Lecture 2 - 23 Fall 2019


http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Fine-Grained Categories

Maine Coon Ragdoll American Shorthair

Justin Johnson Lecture 2 - 24 Fall 2019


https://pixabay.com/photos/maine-coon-cat-animal-portrait-3347769/
https://pixabay.com/service/license/
https://www.publicdomainpictures.net/en/view-image.php%3Fimage=99009&picture=ragdoll-cat-with-green-eyes
http://creativecommons.org/publicdomain/zero/1.0/
https://pxhere.com/en/photo/1374002
https://creativecommons.org/publicdomain/zero/1.0/

Challenges: Background Clutter

Justin Johnson Lecture 2 - 25 Fall 2019



https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.pexels.com/photo/view-of-cat-in-snow-248276/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: lllumination Changes

Justin Johnson Lecture 2 - 26 Fall 2019


https://pixabay.com/en/cat-cat-in-the-dark-eyes-staring-987528/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Cats-Silhouette-Cats-Eyes-Silhouette-Cat-694730
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/red-cat-animals-cat-face-cat-red-1451799/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Animals-Tree-Sun-Cat-In-Tree-Cat-Feline-Titus-63683
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Deformation

Justin Johnson Lecture 2 - 27 Fall 2019



https://www.flickr.com/photos/kaibara/3625964429/in/photostream/
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/
https://c1.staticflickr.com/5/4101/4877610923_52c9a5fedf_b.jpg
https://www.flickr.com/photos/eviltomthai/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/sarahcord/364252525
https://www.flickr.com/photos/sarahcord/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/34745138@N00/4068996309
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/

Challenges: Occlusion

Fall 2019
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https://pixabay.com/p-393294/%3Fno_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://commons.wikimedia.org/wiki/File:New_hiding_place_(4224719255).jpg
https://www.flickr.com/people/81571077@N00%3Frb=1
https://creativecommons.org/licenses/by/2.0/
https://pixabay.com/en/cat-hidden-meadow-green-summer-1009957/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Image Classification: Building Block for other tasks!

Example: Object Detection

Justin Johnson Lecture 2 - 29 Fall 2019


https://www.pexels.com/photo/man-beach-water-ocean-36348/
https://www.pexels.com/creative-commons-images/

Image Classification: Building Block for other tasks!

Example: Object Detection

Background

Justin Johnson Lecture 2 - 30 Fall 2019


https://www.pexels.com/photo/man-beach-water-ocean-36348/
https://www.pexels.com/creative-commons-images/

Image Classification: Building Block for other tasks!

Example: Object Detection

Justin Johnson Lecture 2 - 31 Fall 2019


https://www.pexels.com/photo/man-beach-water-ocean-36348/
https://www.pexels.com/creative-commons-images/

Image Classification: Building Block for other tasks!

Example: Image Captioning

What word
to say next?

Caption:
Man

Justin Johnson Lecture 2 - 32 Fall 2019


https://www.pexels.com/photo/man-beach-water-ocean-36348/
https://www.pexels.com/creative-commons-images/

Image Classification: Building Block for other tasks!

Example: Image Captioning

riding What word
to say next?

Caption:
Man riding

Justin Johnson Lecture 2 - 33 Fall 2019


https://www.pexels.com/photo/man-beach-water-ocean-36348/
https://www.pexels.com/creative-commons-images/

Image Classification: Building Block for other tasks!

Example: Image Captioning

What word
to say next?

Caption:
Man riding horse

Justin Johnson Lecture 2 - 34 Fall 2019


https://www.pexels.com/photo/man-beach-water-ocean-36348/
https://www.pexels.com/creative-commons-images/

Image Classification: Building Block for other tasks!

Example: Image Captioning

What word
to say next?

Caption:
Man riding horse

<STOP>

Justin Johnson Lecture 2 - 35 Fall 2019


https://www.pexels.com/photo/man-beach-water-ocean-36348/
https://www.pexels.com/creative-commons-images/

An Image Classifier

def classify_image(image):
return cléss_label
Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm
for recognizing a cat, or other classes.

Justin Johnson Lecture 2 - 36 Fall 2019



You could try ...

Justin Johnson

; "‘ Find edges

Lecture 2 - 37

Fall 2019




Machine Learning: Data-Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning to train a classifier
3. Evaluate the classifier on new images

Example training set

4 '3
.
~
A

def train(images, labels):
# Machine learning!
return model

airplane

#e Lyl

def predict(model, test_images):
# Use model to predict labels
return test_labels

i
{
|

S Gl
Al B~ B

s T
>

Justin Johnson Lecture 2 - 38 Fall 2019



Supervised learning

* Goal: provide best output predictions for novel inputs

| |
[ [
Training inputs J—> S:Jper\{|sed < Training labels
earning
Input > Model —> Output

Richard Szeliski UW CSE 576 - Machine Learning



Supervised learning

* Goal: provide best output predictions for novel inputs
* How can we predict future performance?
* Placeholder answer: minimize empirical risk

Training inputs

Supervised
learning

|
Training labels ‘u

!

Input

Model

Output

. 1 .
Erisk(W) = = > Llyi £(xi:w)).

The loss function L measures the “cost” of predicting an output f(x;; w) for input x; and

model parameters w when the corresponding target is y;.

* Where have we seen this before?

* What are potential models and loss functions?

Richard Szeliski UW CSE 576 - Machine Learning
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Traditional and deep learning

Richard Szeliski

Hand-crafted

Hand-crafted

Input - —> : —»  Output
P teatures algorithm P
(a) Traditional vision pipeline

Hand-crafted Machine
Input ‘ ) —> o —»  Output
teatures learning « - -
(b) Classic machine learning pipeline
Tnput Learned Machine Output
features « - Learning « - |

(c) Deep learning pipeline

UW CSE 576 - Machine Learning
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Traditional machine learning

* Nearest neighbors

Richard Szeliski UW CSE 576 - Machine Learning
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Nearest neighbors

Justin Johnson Lecture 2 - 43 Fall 2019



First classifier: Nearest Neighbor

def train(images, labels): Memorize all data

return model and labels

def predict(model, test_images): Predict the label of
3¢ model to predict Labels * the most similar
training image

return test_labéls

Justin Johnson Lecture 2 - 44 Fall 2019



Distance Metric to compare images

L1 distance:

test image

56

32

10

18

p

di(Ii, L) =) |I7 - IZ|

training image

90

23

128

133

10

20

24

17

24

26

178

200

8

10

89

100

295

220

12

16

178

170

Justin Johnson

32

233

112

Lecture 2 - 45

pixel-wise absolute value differences

46 | 12 | 14 | 1
82 | 13 | 39 | 33 | 44
> 456
12 10 | 0 | 30
2 | 32|22 108

Fall 2019




import numpy as np

Nearest Neighbor Classifier

class NearestNeighbor:
def init ( )=
pass

def train( r X ¥)o
"t X is N x D where each row is an example. Y is 1-dimension of size N """

Xtr
Jytr

X
y

def predict( 09,6 b
"u® X is N x D where each row is an example we wish to predict label for """
num test = X.shape[0]

Ypred = np.zeros(num test, dtype = .ytr.dtype)

for i in xrange(num test):

distances = np.sum(np.abs( Xtr - X[1,:]), axis = 1)

min _index = np.argmin(distances)
Ypred[i] = ytr[min_index]

return Ypred

Justin Johnson Lecture 2 - 46 Fall 2019



import numpy as np . . .
Nearest Neighbor Classifier
class NearestNeighbor:
def  init  ( ):
pass

def train( R )
'"" X is N x D where each row is an example. Y is 1l-dimension of size N """

Memorize training data
Xtr

Jytr

X
y

def predict( 996 -
“ X is N x D where each row is an example we wish to predict label for
num test = X.shape[0]

Ypred = np.zeros(num test, dtype = .ytr.dtype)
for i in xrange(num test):

distances = np.sum(np.abs( Xtr - X[1,:]), axis = 1)

min _index = np.argmin(distances)
Ypred[i] = ytr[min_index]

return Ypred

Justin Johnson Lecture 2 - 47 Fall 2019



import numpy as np . . fe
Nearest Neighbor Classifier

class NearestNeighbor:
def init ( )=
pass

def train( r X ¥)o
" X is N x D where each row is an example. Y is 1-dimension of size N """

Xtr
Jytr

X
y

def predict( X
" X is N x D where each row is an example we wish to predict label for """
num test = X.shape[0]

Ypred = np.zeros(num test, dtype = .ytr.dtype)

for i in xrange(num test): For eaCh test image:

. . _ , Find nearest training image
distances = np.sum(np.abs( Xtr - X[1,:]), axis = 1) ]
e s | nce Return label of nearest image
Ypred[i] = ytr[min_index] [ of ¢

return Ypred

Justin Johnson Lecture 2 - 48 Fall 2019



import numpy as np . . .
Nearest Neighbor Classifier
class NearestNeighbor:
def _init  (self):
pass

Q: With N examples,

def train( r X ¥)o

" X is N x D where each row is an example. Y is 1-dimension of size N """ hOW faSt IS tra|n|ng?
Xtr =X
Ytr =y

def predict( 9,4 -
" X is N x D where each row is an example we wish to predict label for """
num test = X.shape[0]

Ypred = np.zeros(num test, dtype = .ytr.dtype)

for i in xrange(num test):

distances = np.sum(np.abs( Xtr - X[1,:]), axis = 1)
min _index = np.argmin(distances)
Ypred[i] = ytr[min_index]

return Ypred

Justin Johnson Lecture 2 - 49 Fall 2019



import numpy as np . . ;.
Nearest Neighbor Classifier
class NearestNeighbor:
def _init  (self):
pass

Q: With N examples,

def train( , X, y):

" X is N x D where each row is an example. Y is 1-dimension of size N """ hOW faSt iS training?
Xtr = X A: 0(1)
Yir =y

def predict( 99 4 -
" X is N x D where each row is an example we wish to predict label for """
num_test = X.shape[0]

Ypred = np.zeros(num test, dtype = .ytr.dtype)

for i in xrange(num test):

distances = np.sum(np.abs( Xtr - X[1,:]), axis = 1)
min _index = np.argmin(distances)
Ypred[i] = ytr[min_index]

return Ypred

Justin Johnson Lecture 2 - 50 Fall 2019



import numpy as np . . ;.
Nearest Neighbor Classifier
class NearestNeighbor:
def _init  (self):
pass

Q: With N examples,

def train( , X, y):

" X is N x D where each row is an example. Y is 1-dimension of size N """ hOW faSt iS training?
Xtr = X A: 0(1)
Yir =y

def predict( 9,4 -
" X is N x D where each row is an example we wish to predict label for """

num_test = X.shape[0] Q: With N examp|es,
Ypred = np.zeros(num test, dtype = .ytr.dtype) hOW faSt iS tESting?

for i in xrange(num test):

distances = np.sum(np.abs( Xtr - X[1,:]), axis = 1)
min _index = np.argmin(distances)
Ypred[i] = ytr[min_index]

return Ypred

Justin Johnson Lecture 2 - 51 Fall 2019



import numpy as np . . ;.
Nearest Neighbor Classifier
class NearestNeighbor:
def _init  (self):
pass

Q: With N examples,

def train( , X, y):

" X is N x D where each row is an example. Y is 1-dimension of size N """ hOW faSt iS training?
Xtr = X A: 0(1)
Yir =y
def predict( 9,4 -
num_ieii E ;-Eh:gzigleach row is an example we wish to predict label for Q: Wlth N examplesl
Ypred = np.zeros(num test, dtype = .ytr.dtype) hOW faSt iS tESting?

A: O(N)

for i in xrange(num test):

distances = np.sum(np.abs( Xtr - X[1,:]), axis = 1)
min _index = np.argmin(distances)
Ypred[i] = ytr[min_index]

return Ypred

Justin Johnson Lecture 2 - 52 Fall 2019



import numpy as np

Nearest Neighbor Classifier

class NearestNeighbor:
def init ( )=

pass .
Q: With N examples,
def train( , X, y): . .« .
‘" X is N x D where each row is an example. Y is 1-dimension of size N """ hOW faSt IS tra|n|ng?
Xtr = X A: 0(1)
ytr =y
def predict( 9,4 -
‘" X is N x D where each row is an example we wish to predict label for """ .
num_test = X.shape[0] Q: With N examp|es,
Ypred = np.zeros(num test, dtype = .ytr.dtype) hOW faSt iS tESting?
op. A: O(N)
for i in xrange(num test):
distances = np.sum(np.abs( Xtr - X[i,:]), axis = 1 Th|S iS bad: We can
min _index = np.argmin(distances) .« .
Ypred[i] = .ytr[min_index] afford SIOW tra|n|ng, bUt
return Ypred we need fast testing!
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import numpy as np

Nearest Neighbor Classifier

class NearestNeighbor:
def init ( )=
pass

def train( r X ¥)o
" X is N x D where each row is an example. Y is 1-dimension of size N """

Xtr
Jytr

: There are many methods for

def predict(self, X): fast / approximate nearest

" X is N x D where each row is an example we wish to predict label for """

num test = X.shape[0] neighbors; e.g. see

Ypred = np. test, dtype = .ytr.dt . .
= ID_ZERDS M e e ytr.dtype) https://github.com/facebookresearch/faiss

for i in xrange(num test):

distances = np.sum(np.abs( Xtr - X[1,:]), axis = 1)
min _index = np.argmin(distances)
Ypred[i] = ytr[min_index]

return Ypred
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What does this look like?

A~ HNIREE
EgOlw] | =
H-> RO

lllnﬂﬁxlﬂm
HENE=E oS
EEENEAHEE
EERIFENETE
HEEEE R« NS
BEEENESE END
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What does this look like?

HEEEEE 2 WA
BEEENSE END

BEERER BT

TR
B
ERNEE\2HN

Justin Johnson - Fall 2019



Nearest Neighbor Decision Boundaries

o °
a
o
® o g0
o
®e
) o
L4 [}
) °
° °
- e
°
e © ~ - [ ]
[ J ° Y
o
..
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® 4 e © ° @
°
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Nearest Neighbor Decision Boundaries

[ ]
X1 .'
® o .o.
Nearest neighbors *
. . . [ ]
in two dimensions o " -
® [}
[ ] o
° o o
e © ¢ e : o
® ® - _ o
L] o ... - - ¢ - - . °
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Nearest Neighbor Decision Boundaries

¢ ®
X4 h :
s}
. ® . e®
Nearest neighbors
. . . [
in two dimensions « ° .
[ ]
[ ] [
. ° [ [
Points are training . . . .
[ ]
examples; colors L
Q0
give training labels “ . o o o °
[
Q [ ]
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Nearest Neighbor Decision Boundaries
X4 - o

Nearest neighbors °
in two dimensions . 0

Points are training
examples; colors
give training labels

Background colors
give the category
a test point would
be assigned
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Nearest Neighbor Decision Boundaries

X4 .
Decision boundary
is the boundary
between two
classification regions

Nearest neighbors
in two dimensions .

Points are training
examples; colors
give training labels

Background colors
give the category
a test point would
be assigned
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Nearest Neighbor Decision Boundaries

X1
Decision boundary
is the boundary
between two
classification regions

Nearest neighbors
in two dimensions .

Points are training
examples; colors
give training labels’

Decision boundaries
can be noisy;

affected by outliers
Background colors | \
give the category x
a test point would
be assigned X
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Nearest Neighbor Decision Boundaries

X1
Decision boundary
is the boundary
between two
classification regions

Nearest neighbors
in two dimensions .

Points are training
examples; colors
give training labels’

Decision boundaries
can be noisy;
affected by outliers

Background colors How to smooth out

give the .category kY decision boundaries?
a test point would Use more neighbors!
be assigned Xo
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K_ N earest N 2 Igh bO rs Instead of copying label from nearest neighbor,

take majority vote from K closest points

K=1 K=3

° P o °
o e}
o °
) ® e® ) L e®
° °
LI ®e
® L] Y o
[ ] [ L [
° ° ° [
° ° ° °
° - . °
°
° [ ] . - [ ] ® [ ] e . [ ]
° - ° ° ® - °
a o
Q e © o o ©
®gs 0 ()
* e o o ° ° ° % e o ° ®
L °
Q ® Q ®
e o e o
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Using more neighbors helps smooth
out rough decision boundaries

K-Nearest Neighbors

K=3
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Using more neighbors helps
reduce the effect of outliers

K-Nearest Neighbors

K=1 K=3
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When K> 1 there can be
K- N earest N e Ig h bO 'S ties between classes.

Need to break somehow!

K=1 K=3

. Ol L
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K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance
dy(I,, 1) Z|1P hed

’

AN

AN

/

Justin Johnson

L2 (Euclidean) distance

(I h) = |3 (17 - B2)?
/

Lecture 2 - 68

-
N

N
/
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K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance L2 (Euclidean) distance
Tk ) Z|I” ed d2(11.12)=\',."2(15_15)2
K=1 K=1
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K-Nearest Neighbors: Distance Metric

With the right choice of distance metric, we can
apply K-Nearest Neighbor to any type of data!
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K-Nearest Neighbors:
Web Demo - e

Interactively move points around

and see decision boundaries change T
Play with L1 vs L2 metrics e o 9
e
[] [} .:

Play with changing number of i

training points, value of K Metric Num Neighbors (K)
e 0] |
Num classes Num points

http://vision.stanford.edu/teaching/cs231n-demos/knn/ ElE n | 20 3 n ) 60

Fall 2019
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Hyperparameters

What is the best value of K to use?
What is the best distance metric to use?

These are examples of hyperparameters: choices about our
learning algorithm that we don’t learn from the training
data; instead we set them at the start of the learning process
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Hyperparameters

What is the best value of K to use?
What is the best distance metric to use?

These are examples of hyperparameters: choices about our
learning algorithm that we don’t learn from the training
data; instead we set them at the start of the learning process

Very problem-dependent. In general need to try them all and
see what works best for our data / task.
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Setting Hyperparameters

Idea #1: Choose hyperparameters that
work best on the data

Your Dataset
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Setting Hyperparameters

Idea #1: Choose hyperparameters that BAD: K = 1 always works
work best on the data perfectly on training data

Your Dataset
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Setting Hyperparameters

Idea #1: Choose hyperparameters that
work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose
hyperparameters that work best on test data

train

test

Justin Johnson Lecture 2 - 76
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Setting Hyperparameters

Idea #1: Choose hyperparameters that
work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose
hyperparameters that work best on test data

BAD: No idea how algorithm
will perform on new data

train

test

Justin Johnson Lecture 2 - 77
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Setting Hyperparameters

Idea #1: Choose hyperparameters that
work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose
hyperparameters that work best on test data

BAD: No idea how algorithm
will perform on new data

train test
Idea #3: Split data into train, val, and test; choose Better!
hyperparameters on val and evaluate on test
train validation test

Justin Johnson Lecture 2 - 78
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Setting Hyperparameters

Your Dataset

Idea #4: Cross-Validation: Split data into folds, try each
fold as validation and average the results

fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test

Useful for small datasets, but (unfortunately) not used too frequently in deep learning

Justin Johnson

Lecture 2 - 79
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Cross-validation accuracy

Setting Hyperparameters

0.32

Cross-validation on k

031 °

0.30

(=]
N
w0

0.28 |

o
~N
~

0.26

025}

0.24

=20 0

Justin Johnson

20

100 120

Lecture 2 - 80

Example of 5-fold cross-validation for
the value of k.

Each point: single outcome.

The line goes through the mean, bars
indicated standard deviation

(Seems that k ~ 7 works best
for this data)

Fall 2019



K-Nearest Neighbor on raw pixels is seldom used

- Very slow at test time
- Distance metrics on pixels are not informative

Original Boxed Shifted

(all 3 images have same L2 distance to the one on the left)
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https://www.pexels.com/photo/blonde-haired-woman-in-blue-shirt-y-27411/
https://creativecommons.org/publicdomain/zero/1.0/

Nearest Neighbor with ConvNet features works well!

Devlin et al, “Exploring Nearest Neighbor Approaches for Image Captioning”, 2015
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Nearest Neighbor with ConvNet features works well!

Example: Image Captioning with Nearest Neighbor

A cat sitting in a
bathroom sink.

A bedroom with a
i bed and a couch.

A wooden bench in
front of a building.

A train is stopped at
- a train station.

Devlin et al, “Exploring Nearest Neighbor Approaches for Image Captioning”, 2015
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Machine learning

* Bayesian classification

Richard Szeliski

UW CSE 576 - Machine Learning

84



Bayesian classification

Bayes’ Rule

P(X|Ck)p(Ci)

x 7 current decision Y = P(Ck\x) =
¥ l«/ threshold 2. PXICi)p(C))

p(Crfz) p(Cafz)

p(.’l‘|C2) |
0.8

0.6}

class densities

04r¢
p(z|Cy)

0.2}

What do the colors mean? 0 - : : 0
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Bayesian classification

5.1.2 Bayesian classification

For some simple machine learning problems, e.g., if we have an analytic model of feature con-
struction and noising, or if we can gather enough samples, we can determine the probablity
distributions of the feature vectors for each class p(x|Cy) as well as the prior class likelihoods
p(Cr).* According to Bayes’ Rule (4.33), the likelihood of class Cj, given a feature vector x
is given by

P(X[Ck)p(Cr)
o 52
yr = pP(Cr[x) > p(xIC)p(C)) -
L
- Zj expl;’ -

where the second form (using the exp functions) is known as the normalized exponential or
softmax function. The quantity

I, = log p(x|Cr) + log p(Ck) (5.4)

is the log-likelihood of sample x being from class Cy,.” It is sometimes convenient to denote
the softmax function itself as a vector-to-vector valued function,

y = softmax(1). (5.5)

Richard Szeliski UW CSE 576 - Machine Learning



Logistic sigmoid function

Richard Szeliski

For the binary (two class) classification task, we can re-write (5.3) as

1
1+ exp(—I)

p(Colx) = =o(l), (5.7

where | = [y — [; is the difference between the two class log likelihood and is known as the
log odds or logit.

The o(!) function is called the logistic sigmoid function (or simply the logistic function
or logistic curve), where sigmoid means an S-shaped curve (Figure 5.6). The sigmoid was a
popular activation function in earlier neural networks, although it has now been replaced with
other functions, as discussed in Section 5.3.2.

UW CSE 576 - Machine Learning
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Multivariate Gaussian distributions

* How do we determine the class posterior?

2.5 . . T . T 2.5
7t 1 2

1.5F 1 15
05¢F 1 0.5

Oor 1 0
-0.5¢F 1 -0.5
—1.5F 1 -1.5

2t : 2

25— - : : : 25
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Multivariate Gaussian distribution

For Gaussians with identical covariance matrices X, we have

1 1 1 _
p(x|Cr) = Gm) D2 D12 exp {—E(x — )T (x — [.Lk)} (5.8)

In the case of two classes (binary classification), we obtain (Bishop 2006, Section 4.2.1)
p(Colx) = o(wlx + b). (5.9)
with

w =Xy —p1). and (5.10)

p(Co)
p(C1)

1 _ 1 _
b= 5#52 fpo + §Hrirz Yy + log (5.11)

Richard Szeliski UW CSE 576 - Machine Learning



Logistic regression

0.4

0.3 4.

0.2 4

0.1

Richard Szeliski

p(Colx) = o(wlx + b). (5.9)

Equation (5.9), which we will revist shortly in the context of non-generative (discrimina-
tive) classification (5.18), is called logistic regression, since we pass the output of a linear

regression formula
y(x) =wix+b 6-12)

through the logistic function to obtain a class probability. Figure 5.7 illustrates this in two
dimensions, there the posterior likelihood of the red class p(Cy|x) is shown on the right side.

In linear regression (5.12), w plays the role a the weight vector along which we project
the feature vector x, and b plays the role of the bias, which determines where to set the

UW CSE 576 - Machine Learning
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Multiple classes & linear discriminant analysis

For iK' > 2 classes, the softmax function (5.3) can be applied to the linear regression log

likelihoods,
[k(X) = Wi X + by, e = p(Clx) = p(vxlcwp(ck)
with >_; P(x|C;)p(C;)
W = E_Ip,k, and (5.14)
b = —%MZE_IM + log p(Ck,). (5.15)

Because the decision boundaries along which the classification switches from one class
to another are linear,

WX + b > wix + by, (5.16)

the technique of classifying examples using such crieteria is known as linear discriminant
analysis (Bishop 2006, Section 4.1; Murphy 2012, Section 4.2.2).°

Richard Szeliski UW CSE 576 - Machine Learning 91



Quadratic discriminant analysis

* What are the white lines on the right called?

2.5 . . T . T 2.5
7t 1 2

1.5F 1 15
05¢F 1 0.5

Oor 1 0
-0.5¢F 1 -0.5
—1.5F 1 -1.5

2t : 2

25— - : : : 25
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Machine learning

* Logistic regression (linear classifiers)

Richard Szeliski UW CSE 576 - Machine Learning
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Neural Network

Linear
classifiers

This image is CC0 1.0 public domain
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http://maxpixel.freegreatpicture.com/Play-Wooden-Blocks-Tower-Kindergarten-Child-Toys-1864718
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Recall CIFAR10

airplane 5 5 v 0 Gl = 5 I i

automobile \

ird  SYREN ] ST

cat .ﬁﬂk}‘gﬁﬁﬂ 50,000 training images
deer .?“ﬁ!.ﬁ each image is 32x32x3
dog  EEEIRREN SR AN

frog u-’.ﬁﬁ. 10,000 test images.
horse |y e I 80 O P I G IR

ship [ % e R P

wuck Rl W s R
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Parametric Approach

Array of 32x32x3 numbers

(3072 numbers total) W

parameters
or weights

Justin Johnson Lecture 3 -97

10 numbers giving

class scores

Fall 2019



Parametric Approach: Linear Classifier

f(x,W) = Wx

- f(x,W)

Array of 32x32x3 numbers ‘

(3072 numbers total) W

parameters
or weights

Justin Johnson Lecture 3 - 98

10 numbers giving

class scores
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Parametric Approach: Linear Classifier
(3072,)

mage f(x,W)|=[WK]

-, (10,) (10, 3072)
S o ” f(X,W)

10 numbers giving
class scores

%A N
- 4 -

."’C : i’z .‘x B
& T———

Array of 32x32x3 numbers

(3072 numbers total) W

parameters
or weights
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Parametric Approach: Linear Classifier
(3072,)

mage f(xW)|=[WKI +[b | 10)
e P (10,) (10, 3072)

S o ” f(X,W)

10 numbers giving
class scores

 ZF /// W -
® /3

."’C F i’z .‘x r
3 T———
: e

Array of 32x32x3 numbers

(3072 numbers total) W

parameters
or weights
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Example for 2x2 image, 3 classes (cat/dog/ship)

Stretch pixels into column f(x,W) = Wx + b

56

\'if 7

a0 X 1
i’é"" , 23’@. 231
/2 i 2, 24

i" . » ...fr

Input image

2
(2, 2)

(4,)
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Example for 2x2 image, 3 classes (cat/dog/ship)

Stretch pixels into column f(x,W) = Wx + b
V4
56
N ;, 02 | -05 | 0.1 | 2.0 1.1 -96.8
'ic . gf\’iﬁm 231
B 1.5 1.3 2.1 0.0 + 3.2 | — 437.9
74 SN2 o
b Wit sl 24
U 0 | 025 ]| 02 | -0.3 -1.2 61.95
Input image
(2,2) ?
\W 3,4 b (3,)
(4,)
(3,)
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Linear Classifier: Algebraic Viewpoint

Stretch pixels into column f(x,W) = Wx + b
56
N - 02 | -05 | 0.1 | 2.0 1.1 -96.8
pmif (723 231
= 15 | 1.3 | 2.1 | 0.0 4| 32 | = | 4379
74 5D —
§ N 24
o 0 | 025| 02 | -03 -1.2 61.95
Input image ,
(2, 2) 3
W 3.4 b 3)
(4,)
(3,)
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Add extra one to data vector;
bias is absorbed into last
column of weight matrix

Linear Classifier: Bias Trick

Stretch pixels into column

56
-y 02 | 05| 01 | 20 | 11 -96.8

L s 231
- Y= 1.5 | 1.3 | 21 | 00 | 3.2 — | 4379

3_4 & 24
Ir:put mage 0 |025| 02 | -03] -1.2 ] 61.95
(2, 2) W (3, 5) (3,)

1 | (5)
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Linear Classifier: Predictions are Linear!

f(x, W) = Wx (ignore bias)

f(ex, W) = W(cx) = ¢ * f(x, W)
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Linear Classifier: Predictions are Linear!

Justin Johnson

f(x, W) = Wx

f(ex, W) = W(cx) = ¢ * f(x, W)

Scores

-96.8

437.8

62.0

(ignore bias)

0.5 * Image

N _.
" L gl - -
\'l;’ /,7 . =
\ f(‘ - 4
"’4“ ’

S
~
¥y
-~

Lecture 3 - 106

- | 218.9

0.5 * Scores

-48.4

31.0
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Interpreting a Linear Classifier

Algebraic Viewpoint

f(x W)=Wx+Db

Stretch pixels into column

56
\w.,, 02 | 05| 0.1 | 2.0 1.1 -96.8
,‘,',/23@._ 231
A
Y= 1.5 1.3 2.1 0.0 + 32 | — 437.9
24 N 25 24 -
és - »
S 0 (025 | 0.2 | 03 -1.2 61.95
Input image 2
2,2
(2,2) W 3,9 b (3)
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Interpreting a Linear Classifier

Algebraic Viewpoint N
'ﬂé'*Ni_w
f(x W)=Wx+Db 242)
Stretch pixels into column v Y h
l 0.2 0.5 1.5 1.3 0 25
56
giﬂf;’zs ) 0.2 -0.5 0.1 2.0 1.1 -96.8 W
o 231 0.1 | 2.0 21 | 0.0 02 | -03
MY 15 | 1.3 | 21 | 0.0 4| 32 | = | #4379
£ e 24 | | |
o 0 0.25 0.2 -0.3 -1.2 61.95
Input image 2
(2,2) W G4 b (3, b 1.1 3.2 1.2
4,
( ) (3I) \ 4 \ 4 \ 4
-96.8 437.9 61.95
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Interpreting an Linear Classifier
airplane [0 ] oot I I = 5 9 i I

automoblle.ga.ﬂﬁmﬁﬁ

bird S REK T EETH k- ‘L

cat !.uﬁgmgﬂ 02 | -0.5 1.5 | 1.3 0 | 25
der MW EESREE 2w L |
dog EMR.!H“EE* 01 | 2.0 21 | 0.0 0.2 | -0.3
g DIENS® IS E 1 1 1
horse mu.&&!ﬂ b 1.1 3.2 1.2
ship 0 o 8 e R

truck s bad N sl 96.8 437.9 61.95
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Interpreting an Linear Classifier: Visual Vlewpomt

—

airplane ' )§= _-_-:
automobﬂe'!’!uﬁ
bird  SAWEK] EET
cat I I ) e
deer [ v e
dog iR &E
frg EIENS&”E
horse  uy e [ I O PE
nip [
truck ﬂ:iﬁﬂs?

Justin Johnson

ﬁ ENOEEPEY

. B0 RS e G

0.2

-0.5

0.1

2.0

© I T T
=

11

-96.8

0.2 | -0.3

437.9

horse

-1.2

61.95

Lecture 3-110
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Interpreting an Linear Classifier: Visual Viewpoint

Linear classifier has one

“template” per category | }
0.2 -0.5 1.5 1.3 0 .25
w
0.1 2.0 2.1 0.0 0.2 -0.3
} } }
b 1.1 3.2 1.2
-96.8 437.9 61.95

horse ship

truck

plane car bird cat deer dog frog
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Interpreting an Linear Classifier: Visual Viewpoint

Linear classifier has one

“template” per category | |
0.2 -0.5 15 1.3 0 .25
: w
A single template cannot capture 01 | 20 21 | 0.0 02 | -03
multiple modes of the data | } |
b 1.1 3.2 1.2
e.g. horse template has 2 heads! "y e o

ship truck
R
.

plane car bird cat deer dog frog
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Interpreting a Linear Classifier: Geometric Viewpoint

Airplane
Score

Classifier
score

Car Score

Deer Score

Value of pixel (15, 8, 0)

Justin Johnson

Lecture 3-113

f(xW)—Wx+b

Array of 32x32x3 numbers
(3072 numbers total)
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Interpreting a Linear Classifier: Geometric Viewpoint

Pixel
(11, 11, 0)

f(x, W) =Wx+Db

Car score
Increases

this way
Pixel

(15, 8, 0)

Car Score Array of 32x32x3 numbers
-0 (3072 numbers total)
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Interpreting a Linear Classifier: Geometric Viewpoint

Car template
on this line

Pixel
(11, 11, 0)

‘0
*
.0
*

*
*
*
*
*
*
*
‘Q
*

,,,, i increases
this way

*
*
*
*
*
*
‘0
*

Pixel
(15, 8, 0)

Car Score Array of 32x32x3 numbers
-0 (3072 numbers total)
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Interpreting a Linear Classifier: Geometric Viewpoint

Airplane

Score (11, 11, 0)

Pixel

Car template '

on this line .

‘‘‘‘‘‘‘ fxW) = Wx + b
“““ Car score - e
increases

this way

*
*
*
*
*
.0
*

*
*
*
*
*
*
.0
*

Pixel (15, 8, 0)

Justin Johnson

Deer
Score

Car Score Array of 32x32x3 numbers

- = 0 (3072 numbers total)
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Interpreting a Linear Classifier: Geometric Viewpoint

Car template
on this line

Airplane  piye
Score (11, 11, 0)

Hyperplanes carving up a
high-dimensional space

‘0
*
.0
*

*
*
*
*
*
*
*
‘Q
*

Car score
..... Increases
..... this way

Pixel (15, 8, 0)

Car Score
=0

Deer
Score

Plot created using Wolfram Cloud
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https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8

Hard Cases for a Linear Classifier

Class 1: Class 1: Class 1:

First and third quadrants 1<=L2norm<=2 Three modes
Class 2 Class 2:. Class 2:_
Second and fourth quadrants Everything else Everything else

Justin Johnson Lecture 3-118 Fall 2019



Linear Classifier: Three Viewpoints

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint
f(x,W) = Wx One template Hyperplanes
per class cutting up space

Stretch pixels into column

Y
56 k '

02 | -05| 01 | 2.0 1.1 -96.8 | Catscore “
231 *

r2sf
';q 15 [ 13 | 21 | 0.0 +| 32 | = | 437.9 | Dog score
& & _/ 24
e 0 |025| 0.2 | -0.3 -1.2 61.95 | Ship score
Input image 2
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So Far: Defined a linear score function

airplane -3.45 -0.51
automobile -8.87 6.04
bird 0.09 5.31
cat 2.9 -4.22
deer 4.48 -4.19
dog 8.02 3.58
frog 3.78 4.49
horse 1.06 -4 .37
ship -0.36 -2.09
truck ~0.72 ~2.93

Justin Johnson

f(x W) = Wx + b

3.42
4 .04
2.65

2 .04
5.55
-4 .34
-1.5
-4.79
6.14

Lecture 3-120

Given a W, we can
compute class scores
for an image x.

But how can we
actually choose a
good W?

i e by Nikita CC-BY 2.0; Carimage is CCO 1.0 Frog image

Fall 2019



https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://www.pexels.com/photo/audi-cabriolet-car-red-2568/
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg

Choosing a good W

ta

‘
...........
it

airplane -3.45 -0.51
automobile -8.87 6.04
bird 0.09 5.31
cat 2.9 -4.22
deer 4.48 -4.19
dog 8.02 3.58
frog 3.78 4.49
horse 1.06 -4 .37
ship -0.36 -2.09
truck ~0.72 ~2.93

Justin Johnson

3.42
4 .04
2.65

2 .04
5.55
-4 .34
-1.5
-4.79
6.14

Lecture 3-121

f(x W) = Wx + b

TODO:

1. Use a loss function to
guantify how good a
value of W is

2. Find a W that minimizes

the loss function
(optimization)

Fall 2019




Loss Function

A loss function tells how good our
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function;
cost function)

Justin Johnson Lecture 3-122 Fall 2019



Loss Function

A loss function tells how good our
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function;
cost function)

Negative loss function sometimes
called reward function, profit
function, utility function, fitness
function, etc

Justin Johnson Lecture 3-123 Fall 2019



Loss Function Given a dataset of examples

N
A loss function tells how good our { (xz ? yz) i1=1

current classifier is
Where ;. is image and

Low loss = good classifier Y is (integer) label

High loss = bad classifier

(Also called: objective function;
cost function)

Negative loss function sometimes
called reward function, profit
function, utility function, fitness
function, etc

Justin Johnson Lecture 3-124 Fall 2019



Loss Function Given a dataset of examples

N
A loss function tells how good our { (.CC@ ? yz) i1=1

current classifier is
Where ;. is image and

Low loss = good classifier Y is (integer) label

High loss = bad classifier
Loss for a single example is

(Also called: objective function; LZ. (f(mza [/V)7 yz)
cost function)

Negative loss function sometimes
called reward function, profit
function, utility function, fitness
function, etc
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Loss Function Given a dataset of examples

N
A loss function tells how good our { (.CU@ 9 yz) —1

current classifier is
Where ;. is image and

Low loss = good classifier Y is (integer) label

High loss = bad classifier
Loss for a single example is

(Also called: objective function; LZ. (f(mza [/V)7 yz)

cost function)
Loss for the dataset is average of

Negative loss function sometimes per-example losses:

called reward function, profit
function, utility function, fitness E L :IZZ, ) yz)
function, etc

Justin Johnson Lecture 3-126 Fall 2019



Multiclass SVM Loss

"The score of the correct class should
be higher than all the other scores”

Loss

Score for
correct class

Justin Johnson Lecture 3-127 Fall 2019



Multiclass SVM Loss

"The score of the correct class should
be higher than all the other scores”

Loss

Score for

| correct class

/ l
Highest score
among other classes

Justin Johnson Lecture 3-128
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Multiclass SVM Loss

"The score of the correct class should
be higher than all the other scores”

Loss o ;
Hinge Loss

Score for
correct class

|
/ l

Highest score “Margin”
among other classes

Justin Johnson Lecture 3-129
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Multiclass SVM Loss
Given an example (zi,Yi)

”"The score of the correct class should (x; isimage, y; is label)
be higher than all the other scores” |

Let s = f(xi, W) be scores

Loss
“Hinge Loss”
Then the SVM loss has the form:

Score for Li = Z#yi max(0, s; — sy, + 1)
correct class

|
/ l

Highest score “Margin”
among other classes

Justin Johnson Lecture 3 -130 Fall 2019



Regularization: Beyond Training Error

N ZL a;za yZ)
N J

~

Data loss: Model predictions
should match training data

Justin Johnson Lecture 3 - 146 Fall 2019



Regularization: Beyond Training Error

N Z L QJZ, yz) + )\R(W)

N Y R/_/
Y
Data loss: Model predictions Regularization: Prevent the model
should match training data from doing too well on training data

Justin Johnson Lecture 3 - 147 Fall 2019



Regularization: Beyond Training Error

N Z L g;z, yz) + )\R(W) )\ = regularization strength

(I |ypEI pal ametet )
\ /
Y w—/

Data loss: Model predictions Regularization: Prevent the model
should match training data from doing too well on training data

Justin Johnson Lecture 3 - 148 Fall 2019



Regularization: Beyond Training Error

- N Z Li(f(z:, W), y;) + AR(W) )\ = regularization strength

\ /
Y w_/

Data loss: Model predictions
should match training data

Regularization: Prevent the model
from doing too well on training data

Simple examples More complex:
L2 regularization: R(W) = Zk Zz sz,l Dropout
L1 regularization: R(W) =>_, >, |Wx| Batch normalization

Elasticnet (L1 +L12): R(W)=>_, ZlﬁWkQ’, + |Wki| Cutout, Mixup, Stochastic depth, etc...
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Regularization: Beyond Training Error

L 2 :L 33 ) - AR(W \_ = regularization strength
N v ) yz) ( ) (hyperparameter)
\_ J R/_/
Y
Data loss: Model predictions Regularization: Prevent the model
should match training data from doing too well on training data

Purpose of Regularization:
- Express preferences in among models beyond "minimize training error”

- Avoid overfitting: Prefer simple models that generalize better
- Improve optimization by adding curvature

Justin Johnson Lecture 3 - 150 Fall 2019



Regularization: Prefer Simpler Models

O
O
© @
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Regularization: Prefer Simpler Models
fy

The model f, fits the training data perfectly
The model f, has training error, but is simpler

Justin Johnson Lecture 3 - 154 Fall 2019



Regularization: Prefer Simpler Models
fy

F1 is not a linear model; could
be polynomial regression, etc

Regularization pushes against fitting the data
too well so we don’t fit noise in the data

Justin Johnson Lecture 3 - 155 Fall 2019



Regularization: Prefer Simpler Models
o fy
Regularization is
important! You should
(usually) use it.

F1 is not a linear model; could
be polynomial regression, etc

Regularization pushes against fitting the data
too well so we don’t fit noise in the data

Justin Johnson Lecture 3 - 156 Fall 2019



Cross-Entropy Loss (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

Justin Johnson Lecture 3 - 157 Fall 2019



Cross-Entropy Loss (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

_ . _ _ ».) — _€* | Softmax
s=flzg W) |PIY =KX =2) 2 ®’| function
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Cross-Entropy Loss (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
s = f(zi; W) |PY = k|X = 2;) = 2| Softmax

2 ¢’ | function
cat 3.2
car 5.1
frog | -1.7

Unnormalized log-
probabilities / logits
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Cross-Entropy Loss (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
s = f(zi; W) |PY = k|X = 2;) = 2| Softmax

2 ¢’ function
Probabilities
must be >=0
cat 24.5
exp
car 5.1 [—|164.0
frog | -1.7 0.18
Unnormalized log- unnormalized

probabilities / logits ~ probabilities

Justin Johnson Lecture 3 - 160 Fall 2019



Cross-Entropy Loss (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
s = f(zi; W) |PY = k|X = 2;) = 2| Softmax

2 ¢ | function

Probabilities Probabilities

must be >=0 must sum to 1
cat 24.5 0.13

exp normalize
car 5.1 |=—164.0|—> | 0.87
frog | -1.7 0.18 0.00
Unnormalized log- unnormalized

probabilities / logits probabilities probabilities

Justin Johnson Lecture 3 - 161 Fall 2019



Cross-Entropy Loss (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

_ . . — .} — _€*% | Softmax
s=flzg W) |PIY =KX =2) 2 ®’| function

Probabilities Probabilities
must be >= 0 must sum to 1 L;i = —log P(Y = yi| X = =i
cat 24.5 0.13 | L =-log(0.13)
exp normalize =2.04
car 5.1 [—164.0|— | 0.87
frog | -1.7 0.18 0.00
Unnormalized log- unnormalized

probabilities / logits probabilities probabilities
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Cross-Entropy Loss (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

S = f(fL'Z, W) P(Y = k|X — ZI}Z) — isisj Softmax

function
Probabilities Probabilities
must be >=0 must sumto 1 Li = —logP(Y — yi|X: :13,,,)
cat 24.5 0.13 | L =-log(0.13)
exp normalize =2.04
car 5.1 [—|(164.0|—> | 0.87

Maximum Likelihood Estimation

frog -1.7 0.18 0.00 | Choose weights to maximize the

likelihood of the observed data
probabilities (next lecture)

Unnormalized log- unnormalized
probabilities / logits ~ probabilities
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Cross-Entropy Loss (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

_ . . — .} — _€*% | Softmax
s=flzg W) |PIY =KX =2) 2 ®’| function

mustbe >0 mustsumto 1|25 = ~10EP(Y = 3ilX = @)

cat 24.5 0.13 (= Compare <« | 1.00
car | 5.1 |—>|164.0[~=| 0.87 0.00
frog | -1.7 0.18 0.00 0.00
Unnormalized log- unnormalized Correct

probabilities

probabilities / logits ~ probabilities probs
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Cross-Entropy Loss (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

_ . . — .} — _€*% | Softmax
s=flzg W) |PIY =KX =2) 2 ®’| function

mustbe >0 mustsumto 1|25 = ~10EP(Y = 3ilX = @)

cat 24.5 0.13 |— Compare <« | 1.00
car | 5.1 |—|164.0(<=| 0.87 | Mibeckleblr |4 g
frog | -1.7 0.18 0.00 Dkr(PQ)= | 0.00
Unormalzedlog unnormalized oy ies 30 P)log gl Corect
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Cross-Entropy Loss (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

_ . . — .} — _€*% | Softmax
s=flzg W) |PIY =KX =2) 2 ®’| function

e I 1 gy — X )

cat 24.5 0.13 [— Compare «|1.00
exp normalize

car 5.1 |=—|164.0|— | 0.8/ Cross Entropy 0.00

frog | -1.7 0.18 0.00 | H(P,Q) = 0.00

Unnormalized log-  unnormalized H(p)+ Dk (P||Q) Correct

probabilities

probabilities / logits ~ probabilities probs
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Cross-Entropy Loss (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
s= f(z;; W) P(Y = kX = z;) = <& Softmax

2i ¢’ | function
] Maximize probability of correct class Putting it all together:
cat Li=—lgP(Y =yilX =2)  L; = —log(55)
car 5.1
frog -1.7
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Cross-Entropy Loss (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
s = FlapW) P =EX=i5)=- L Softmax

2 ¢’ | function
g *;4 Maximize probability of correct class Putting it all together:
TP P L S - sY;
cat 3.2 Li=-leP¥W=ulX=z) [, = —log(+=)
car 5.1
Q: What is the min /
frog -1.7 max possible loss L.?
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Cross-Entropy Loss (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
s= f(z;; W) P(Y = kX = z;) = <& Softmax

S 2 ¢’ function
f/ ém., Maximize probability of correct class Putting it all together:
G f— — s i o 5Y;
cat 3.2 Li=leP=ulX=z) L = —log(5)
car 5.1 | |
Q: What is the min / A Min O e
frog -1.7 max possible loss L;? - Min O, max +infinity
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Cross-Entropy Loss (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
s = FlapW) P =EX=i5)=- L Softmax

2 ¢’ | function
Maximize probability of correct class Putting it all together:
e e {3 e . SY;
cat 3. 2 Li=—logPY =wilX =) L, = —log(+=5)

car 5.1

Q: If all scores are
frog -1.7 small random values,
what is the loss?
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Cross-Entropy Loss (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
s= f(z;; W) P(Y = kX = z;) = <& Softmax

2’| function
[ Roin™ Maximize probability of correct class Putting it all together:
L:—IOPY: | X = s e3Yi
cat 3.2 sPY =wld=2) L = —log(55)

car 5.1

Q: If all scores are
frog -1.7 small random values,
what is the loss?

A: -log(1/C)
log(10) = 2.3
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Recap: Three ways to think about linear classifiers

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint
f(x,W) = Wx One template Hyperplanes
per class cutting up space

Stretch pixels into column

56
0.2 -0.5 0.1 2.0 1 .1 -96.8 Cat score . = !
231

7
i)
= 15 [ 1.3 | 21 | 0.0 4| 32 | = | 437.9 | Dog score
N 24
0 [025]| 0.2 | -0.3 1.2 61.95 | Ship score
Input imag 2
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Recap: Loss Functions quantify preferences

We
We
We

L’L — Z]?’éyz maX(O, 8] — Syz —I_ 1) W scorefunctlonu

nave some dataset of (x, y)
nave a score function: s = f(xg; W) =Wz

nave a loss function: : .
Linear classifier

( e )Softmax

J SVM regularization loss

>
>

f(mi.,W) data loss ’L

L= % Zf‘il L; + R(W) Fullloss i T
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Recap: Loss Functions quantify preferences

We have some dataset of (x, y)
We have a score function:
We have a loss function:

Q: How do we find the best W?

s = f(xg; W) =Wz

Linear classifier

A: Next lecture

e’Yi Softmax
( i ) SVM

Lz‘ — Zj#yz- maX(O, S5 — Sy, -+ 1)

L= % Z,fil L; + R(W) Fullloss

regularization loss

score function u
B

f(mi,,W) data loss ’L

-~

Fall 2019
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Machine learning

e Support vector machines & random forests (lightening speed)

Richard Szeliski UW CSE 576 - Machine Learning 181



Support vector machines (SVMs)

* Maximize the margin between n,.mjr‘(f,:,n. i‘“_i”;i’s :V7e> Eiii T;
the decision surfaces l e eomn

10te this more compactly, let
* The only points that matter are Bo=oti— 1, fe{-1.1)
the circled support vectors

an now re-write the inequality ¢

A

simply find the smallest norm
ization problem

arg min ||w/||?
w.b

assic quadratic programming |

Richard Szeliski UW CSE 576 - Machine Learning
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Kernelized support vector machines

* Replace linear function with a
sum of kernel functions
(e.g., Gaussian bumps)

L= F(x) =) wio([x — X)),

* Circled points are
support vectors,

lie on /=1 1 surfaces
(f=0is the dark curve)
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Hinge loss vs. logistic regression

Figure 7.5 Plot of the ‘hinge’ error function used “E( )
in support vector machines, shown
in blue, along with the error function
for logistic regression, rescaled by a
factor of 1/In(2) so that it passes
through the point (0, 1), shown in red.
Also shown are the misclassification
error in black and the squared error
in green.

remaining points we have &, = 1 — y,,t,,. Thus the objective function (7.21) can be
written (up to an overall multiplicative constant) in the form

v
[

N
3" Bsv(yntn) + Alw]? (7.44) —2 —1 0 1 2
n=1

where A = (2C) 7!, and Esy (-) is the hinge error function defined by
ESV(ynfn) = [1 - yntnh_ (7.45)

where [ -], denotes the positive part. The hinge error function, so-called because
of its shape, is plotted in Figure 7.5. It can be viewed as an approximation to the
misclassification error, i.e., the error function that ideally we would like to minimize,
which is also shown in Figure 7.5.
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Decision trees (lighting speed)

A Datain featurespace Classification tree S() >
T training & =
? S
? 1 -
A - & :
. .o e . 5 Vv S S c
o L ] ° L e . .
. ¢ ° ' ;‘i
o . .‘ .. * \ E
) P o e ® =
L0 e :: *ee . _ J -
y 4 9 . f
' o © ) e * ? Atk a & ! »
} J eo® ... ® ’*
2 * e | 1 | W A WAL Y !
a ‘L b

D = tree depth

Richard Szeliski

UW CSE 576 - Machine Learning

185



Random forest

T = # trees

Richard Szeliski UW CSE 576 - Machine Learning 186



Random forest

p=500 p=5
p = # samples at each node at construction time

Richard Szeliski UW CSE 576 - Machine Learning 187



Application: Kinect body pose estimation

input image

e, front A
& o view 7
» top clustered
hypothesis
T top
~ view

occluded
|. shoulder
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Lecture recap: machine learning

* Why learning?

* Nearest neighbors

* Bayesian classification

* Logistic regression

* Support vector machines

Richard Szeliski UW CSE 576 - Machine Learning 189



