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(Dynamic) Images Afford Two Types of Inferences

Inferences on scene content without object identity

VideoMach unregistered o M - ~

o Frame-to-frame motions
o Foreground/background and independent object motions
o 3D structure / 2-2.5D layers

O

Inferences on scene content involving object identity

Object/event recognition
Object/scene classification

@
@

o Object/scene fingerprinting
o Extended space-time tracking
@




A Bit of Historical Perspective : My Work

Dynamic Images Afford Two Types of Inferences

* Analysis / Manipulation of scene content without object / scene identity

Pixels In =» Pixels Out
— Stabilization, Mosaicking, 3D Structure,...

* Inferences on scene content involving scene /object / event identity
Pixels In =» Decisions / Labels Out

— Model-based object/event recognition
— Object/scene classification

— Object/scene fingerprinting

— Extended space-time tracking

— Multi-modal Video Analysis



(Dynamic) Images Afford Two Types of Inferences

-
@es on scene content without object identity

Frame-to-frame motions

Foreground/background and independent object motions

3D structure / 2-2.5D layers FO V4 K
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o Inferences on scene content involving object identity
o Model-based object/event recognition

o Obj scene classification
o Object/scene fingerprinting )

o Extended space-time tracking

o ..



Plan of Two Lectures : May 7t (and 12th)

o Why and How of Edges in Images

o Why Image / Video Alignment and Matching

o A Swift Primer on Sum of Squares Optimization and Fitting
o Short Range Matching with Patches

o Image Transformations and Robust Fitting with RANSAC



Plan of Two Lectures : May 12t

o Long Range Matching

o Quasi-Invariant Feature Detectors and Descriptors: SIFT, HOG

o Location and Image based Object Instance Retrieval
o Learned Features through Metric Learning with CNNs
o Long Range Matching and Localization : Contrast between Hand-crafted and Learned Features

o Take Home Lessons



What do edges tell us about the Physical World?



Figure-Ground 3D Perception







Edges have Physical / Geometric causes Orientation Discontinuity




Edges have Physical / Geometric causes surface Albedo Changes




Edges have Physical / Geometric causes

Texture Change



Edges have Physical / Geometric causes

Shadow Edge



Edges have Physical / Geometric causes

Color Change



Edges have Physical / Geometric causes

Noisy Edge






Origin of Edges

surface normal discontinuity
depth discontinuity

surface color discontinuity

Edges are caused by a variety of factors

Source: Steve Seitz



Subjective Contours: 3D Perception / Perceptual Organization




Complex Subjective “Contours”

High-LeveI meets Low-Level ?




Early Work In Computer Vision: Interpretation of Line Drawings as 3D

MACHINE PERCEPTION OF THREE-DIMENSIONAL SOLIDS
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Machine Perception of 3D Solids

Reduced Line Drawing Object Lines Inserted 3-D Construction

Compound Object Construction: Original Line
drawing in Al is processed to obtain 3-D figure in D3
by sequential recognition and deletion of four models
in steps A, B, C, and D.




International Journal of Computer Vision, 1. 73-103 (1987)
© 1987 Kluwer Academic Publishers, Boston. Manufactured in The Nethertands

Interpreting Line Drawings of Curved Objects

JITENDRA MALIK
Compuier Science Division, Department of EECS, University of California, Berkeley, CA 94720

Fig. 1. Different kinds of line labels.

“+” label represents a convex edge

(132

-" label represents a concave edge
—p Or a «— represents an occluding convex edge

<—e— Ora —p—p representsalimb | | ,
Fig. 31. Possible labellings of a curved object.




Perceptual Organization

PERCEPTUAL COMPLETION OF OCCLUDED SURFACES

A Dissertation Presented

by

LANCE R. (LA We evolved to infer the World as 3D because you do not want to
mistake a tiger in the bushes as a painting on the Wall!
Perceptual Organization makes sense the World as Figure-
Ground / 3D Percepts

Perceptual Organization (Lance’s view)

- Submitted to the Graduate School of the
_University of Massachusetts Amherst in partial fulfillment
of the requirements for the degree of

Perceptual organization is the process of deriving the topological
component of a representation of visible and partially occluded surfaces.
The topological component is represented using labeled knot diagrams.
Labeled knot diagrams can be derived from images through a process
of figural completion.

DOCTOR OF PHILOSOPHY

February 1994

Department of Computer Science




Edges correspond to changes in image intensities

On a discrete pixel grid as above:




Computing Edges via Derivatives on a Pixel Grid: 1D case for Simplicity
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Computing Edges via Derivatives on a Pixel Grid: 1D case for Simplicity

-2 -] 0 1 2
f+(0) S
fx (O) -1 0 ]

> X

Two Approximations:

To compute derivatives of f(x) at x=0, let us use Taylor series expansion

o f(1) = £(0) + 1. £(0) = £ (0) + 2 1 (0) + O(4)
o0 f(-1) = £(0) = 1. £(0) + = fi(0) = 2 £ (0) + O(4)

o First Approximation: £,(0) = —=1.f(0) + 1. f (1) = £,(0) + %fxx(O) + 0(3)

o Second Approximation: £, (0) = %(—1.f(—1) +1.f(1)) = £, (0)+0(3)

Good exercise to derive the second derivative approximation: f,.,.(0)



Closeup of edges

via DerekHoiem



Closeup of edges
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Closeup of edges

via DerekHoiem



Closeup of edges

via DerekHoiem



Characterizing edges

e An edge is a place of rapid change in the image intensity function

intensity function
image (along horizontal scanline) first derivative

\

edges correspond to
extrema of derivative

via DerekHoiem



Intensity profile
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With a little Gaussian noise
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via DerekHoiem



Effects of noise

Consider a single row or column of the image

Plotting intensity as a function of position gives a signal

600 800 1000 1200 1400 1600 1800 2000

600 800 1000 1200 1400 1600 1800 2000

Where is the edge?

Source: S. Seitz



Differentiating noisy signals : Frequencey Domain Intuition
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Solution: Smooth First

Sigma = 50
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Source: S. Seitz



Derivative theorem of convolution

e Differentiation is convolution, and convolution is associative:

d —_—
—(fr)=f

e This saves us one operation:

800 1000 1200 1400 1600 1800

800 1000 1200 1400 1600 1800

Convolution

800 1000 1200 1400 1600 1800

Source: S. Seitz



Laplacian of Gaussian

A2
Consider (%T(h * f)

Sigma = 50
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Convolution

200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge? Zero-crossings of bottom graph

via DerekHoiem



2D edge detection filters

o Derivative of Gaussian is a
Matched Filter for a Step /

Smooth Edge (Max response) : i\ pay Laplacian of Gaussian

Laplacian is also a Matched Filter

at appropriate scales for a bar
detector (1D) and Blob detector Gaussian derivative of Gaussian

2D 1 o
(2D) ho(u,v) = a—h,o- (u,v) Vzh,g(u, 1
)

210

This property is effectively 2. . .
Is the Laplacian operator:
exploited by SIFT Detector \ P P

More on that later. v2f — 0%f 4 9°f
; ox2 1 0y

via DerekHoiem




Sobel filter! Smooth & derivative

/( %

via JoeRedmon



2D Gaussian is Separable...
Separable kernel

e Factors into product of two 1D Gaussians

e Discrete example:

Gaussian

1 _ '11.2—{—‘1;2
2a2
5 (&

ho(u,v) = 5,

o Given an arbitrary sigma, 95% of the AUC for Gaussian is between -2*sigma and 2*sigma
o 99.7% of the AUC is between -3*sigma to 3*sigma
o Choose one of these for your implementation

o Separable kernels (M x M ) reduce the complexity of smoothing for an N x N image to O(N2M) instead of O(N2M?)

hitp://onlinestatbook.com/2/calculators/normal dist.html



http://onlinestatbook.com/2/calculators/normal_dist.html

Edges in 2D Domains : Images I(x, y)

The gradient of an image:
f
V=59
V= [3/1 0] of of

. M Vf - [«)z oy

Y dy

T

The gradient points in the direction of most rapid increase in intensity

The gradient direction is given by:

0= tan—l (()J/()T)

« how does this relate to the direction of the edge?
The edge strength is given by the gradient magnitude

IVl = /((”) + (22

Jy

o Edges have an Orientation and a Magnitude
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via SteveSeitz















Seeing with Receptive Fields: From John Frisby

Same input 90" to each cell

Seeing with Receptive Fields

Tuning of 120°

Cells

Each line in this
graph shows

the response

to a vertical

(90°) stimulus of
just one of the
differently tuned
cells shown above

High

Activity level
in each cell

Low

120 100

\\\\\(

Profile of channel activities to
vertical bar (90°)

Row of cells
Receptive fields

via JohnFrisby “Seeing”



Seeing with Receptive Fields: From John Frisby

Same Input 92" to each cell

t

J AN l

Tuning of 120°
Cells

High
8 5 Profile of channel activities to
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shows the response of  level
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bar slightly rotated 110 90
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via JohnFrisby “Seeing”




Edges Occur at Different Scales

Fig.4a. The Laplacian pyramid. Each level of this band-
pass pyramid represents the difference between suc-
cessive levels of the Gaussian pyramid.

E. H. Adelson | C. H. Anderson | J. R. Bergen | P. J. Burt | J. M. Ogden

Pyramid methods in image processing

The image pyramid offers a flexible, convenient multiresolution
format that mirrors the multiple scales of processing in the
human visual system.

RCA Engineer+ 29-6 » Nov/Dec 1984

Fig. 4b. Levels of the Laplacian pyramid expanded to the size of the original image.
Note that edge and bar features are enhanced and segregated by size.




Edges Occur at Different Scales

Fig.4a. The Laplacian pyramid. Each level of this band-
pass pyramid represents the difference between suc-
cessive levels of the Gaussian pyramid.

This will be discussed in more details in
Wide Baseline Features and Matching (SIFT).

. L,
“0.0 “1.0
Fig. 4b. Levels of the Laplacian pyramid expanded to the size of the original image.
Note that edge and bar features are enhanced and segregated by size.




Role of Edges ?

o From the time when Edge Detection was considered essential to understanding and manipulating images:

J. Canny, A Computational Approach To Edge Detection, IEEE Trans.

Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

o To Modern Learning to Segment, Detect Boundaries, Objects and much more...

Cityscapes

Ground Truth Baseline Qurs

Object-Contextual Representations for Semantic Segmentation hitps://arxiv.org/abs/19092.11065v2
Yuhui Yuan, Xilin Chen, Jingdong Wang



https://arxiv.org/search/cs%3Fsearchtype=author&query=Yuan%252C+Y
https://arxiv.org/search/cs%3Fsearchtype=author&query=Chen%252C+X
https://arxiv.org/search/cs%3Fsearchtype=author&query=Wang%252C+J
https://arxiv.org/abs/1909.11065v2

Image Matching & Alignment



Why Align Images?

» Match to create Panoramas for Single Center of Projection Images

i




Mercator projection of spherical mosaic




Why Align Images?

» Match to create Planar Mosaics
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Why Align Images?

» “Build Rome in a Day”
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Why Align Images?

» Image / Location / Object Retrieval from a Large Database

Figure 10. A snapshot of the CD-cover recognition running. With
40000 images in the database, the retrieval is still real-time and
robust to occlusion, specularities, viewpoint, rotation and scale
changes. The camera is directly connected to the laptop via
firewire. The captured frames are shown on the top left, and the
top of the query is displayed on the bottom right. Some of the CD-
covers are also connected to music that is played upon successful
recognition.

Figure 9. Typical examples of the 278 query images (left) and the
corresponding top matches returned from the database (right) us-
ing a 1000° vocabulary tree with N = 4.

Figure 5: Examples of 3D object recognition with occlusion.

via DavidNister



Matching & Alignment

o Matching:

Find locations / spatial coordinates in images
that correspond to the same location /
direction in the World

via Feature Detectors and Feature Descriptors

o Alignment:

Use the matching locations to find Transformations
for Camera Estimation and Warping

via Linear and Non-linear Optimization




A Swift Primer on Optimization Methods for
Linear and Non-Linear (Sum of Squares) Cost Functions



If f(p) is quadratic: f(p) = %pTHp —pTb + f Gradient: g(p) =Hp — b

Steepest Descent. pri1 = Pr — Ak gx = Hp, — b But how much do we move along g¢
1 d _ _ 9K gk
f(ox —argy) = E(pk —argr) Hpr — argx) — (P — argi)'b aTck_O = A = grHgk
] r—1)2 _ Amax
Rate of convergence governed by: (r+1) r=



Observations

o Gradient Descent “looks” at the cost function VERY LOCALLY.

o r=1=>Single step convergence

o r>>1=>Veryslow convergence CAN WE DO BETTER?

o Line search does not let the descent overshoot.
o Too expensive in Backprop for CNNs because of millions of parameters

o So learning rate used as a hyperparameter that is “globally” set and varied a bit



Quadratic Cost Functions

o Model the 2" order variation (CURVATURE) in addition to the Gradient

o Convex second order cost functions have a unique global minimum

o f(p) is convex quadratic: f(p) = %pTHp —pTb+ f, His Positive Definite (Concave Upwards)
Vi(p) =Hp —b  SettingVf(p) =0 = pope= H'b

O Popt is a Global minimum : f(p) >= f(pyy¢)

o By modeling the globally convex function we obtain minimum solution in a single step!



Optimization of General Cost Functions

#D

o We can model local quadratic behavior and apply descent type methods to general cost functions
o Only local minima can be found

o For local descent to happen the function needs to be PD (positive definite)

N

5.
a.
3.
2.
1.8
0.

o Let us see why

Wo &

%




Optimization of General Cost Functions
wotr PP
¥D

o At any point p, use quadratic approximation to define a descent direction: §p = —H(py) ! Vf (py)
o For generality define a descent direction as: px+1 = Pr — Ak My gx

o [f(Pr+1) = f(pr) — argx Mg, => For thisto do descent g, ' M, g, >0 (Positive Definite)

o M, =1 guarantees PD but is gradient descent that converges linearly.

o My = H(p,)™! has quadratic convergence but not guaranteed to be PD.



Optimization of General Cost Functions

o M, =1 guarantees PD but is gradient descent that converges linearly.

¥D
o M, = H(p,)~! has quadratic convergence but not guaranteed to be PD.

o By melding both aspects: M}, = [ex] + H(p)] ™t

O € >> 1is Steepest Descent. €, = 0 is Second Order method such as Newton’s method.

o Special case for Sum of Squares problems (like in Vision) called Levenberg-Marquardt method.

o If descent possible use current M, otherwise scale up €.

o Close to the solution decrease €, towards zero to approximate second order descent.



Special Common Case : Sum of Squares Cost Functions

o Yi=A;X+n n~N(0,A;) Y; isavector of measurements corrupted by noise. X is the unknown.
o Assuming independence of measurements Y;, the negative log likelihoods of the measurements given X is:
o L (Vi —AXTATIY - A X) = I (Y AT =2 AKX + XTATATIA X)

o To find the optimal X we take the derivative w.r.t. X and set it to zero:

o —= 2[5ATAT'AX —2[5ATY] =0

o X = [LATA AT [ZATY]

o Solvable in Closed form. For large systems iterative methods are used.



Special Case : Least squares line fitting

o Data: (xl, yl)a cees (xm yn)

o Line equation:y,=mx; +b I '
o Find (m, b) tO minimize I/
-

¢ (X))

H Vi =‘ ]H [ = llAp —ylI°

- 2(Ap)'y + (Ap)T(Ap)

Modified from S. Lazebnik



Special Case : Least squares line fitting

o Data: (xl, yl)a cees (xm yn)

o Line equation:y,=mx; +b I '
o Find (m, b) tO minimize I/
-

¢ (X))

X 1 V1 2
S I :

E = E o=l : :][b]—[= = ||Ap — yI|?
X 1 yn

= y y — 2(Ap)Ty + (Ap)" (Ap)

Caveat:
Errors are in y's and not in x’s.

Say x is fime for example.

Modified from S. Lazebnik



Line Fitting with Realistic Error Model

o Typically errors are in all the measured quantities: x and y here

o A proper error measure to optimize is normal distance of measured points to a best fit line

o Lline: nfp=d
3

o minX¥|n"p;—dl> = n'[E;pip{In—2dp] n+ d

o = 0 = d = p{n wherep, isthe centroid of all the points
0 = . . =
o —-= 0 = Sn=In n'n=1 Non-trivial solution is the Null space vector of §

Eigenvector with the smaller (~ 0) eigenvalue



Why is Fitting and Features Important for Image Matching?

o Find 2D / 3D Transformations

o Create Panoramas

Fit fo what : Coordinates defined by Features
Features have two Components:
Feature Detector

Feature Descriptor



Two Types of Matching Problems

SHORT BASELINE WIDE BASELINE

o Limited change in viewpoint & illumination o Larger changes in viewpoint & illumination

o Typically Videos / Image Sequences o Jumble of frames

o Very similar looking images o "Distant” in time:

o Retrieve Locations, Objects, “THINGS”, Images, ...

2

Video Example




Two Types of Matching Problems
/ 9
Jospy £
SHORT BASELINE Tp) ©
o Limited change in viewpoint & illumination

o Typically Videos / Image Sequences

o Very similar looking images

-
3/
N

- 4

r

Video Example
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WIDE BASELINE

©)

Larger changes in viewpoint & illumination

o Jumble of frames

©)

“Distant” in time:

o Retrieve Locations, Objects, “THINGS”, Images, ...




Features

o Detector / Keypoints: Discrete “distinctive” locations in the image.

o Descriptors: Raw / Filtered Representations of Patches around the Keypoints

Point

Image Pair SuperPoint Network . Correspondence

— v = o
| \-O“E ) €& @ Learned
e Detectors
o ] &
Intensity Filtered Descriptors
POTCh PGTCh Image gradients Keypoint descriptor

Quasi-invariant Feature
Figure 1. SuperPoint for Geometric Correspondences. We
present a fully-convolutional neural network that computes SIFT-
like 2D interest point locations and descriptors in a single forward
pass and runs at 70 FPS on 480 x 640 images with a Titan X GPU.




via JoeRedmon

Where would you define good features?




via JoeRedmon

How can we find unique paiches?

Sky: bad
Very little variation
Could match any other sky




via JoeRedmon

How can we find unique paiches?

Sky: bad
Very little variation
Could match any other sky

Edge: ok
Variation in one direction
Could match other patches
along same edge




via JoeRedmon

How can we find unique paiches?

Sky: bad
Very little variation
Could match any other sky

Edge: ok
Variation in one direction
Could match other patches
along same edge

Corners. good!
Only one alignment matches




via JoeRedmon

Making Panoramas

Say we are stitching a panorama
Want patches in image to match to other image
Hopefully only match one spot




via JoeRedmon

How close are two patches?

Sum squared difference

Images |, J

iy (1Y) - J(Xy))?



via JoeRedmon

How can we find unique paiches?

Want a patch that is unigue in the image

Can calculate distance between patch and every other patch, lot of
computation

Instead, we could think about auto-correlation:

How well does image match shifted version of itselfe

zdzx,y (l(X'Y) B |(X+dx'y+dy))2

Measure of self-difference (how am I not myself?)



via JoeRedmon

Self-difference

.




via JoeRedmon

Self-difference

ARE
w_\;\ IR




via JoeRedmon

Self-difference




via JoeRedmon

Self-difference

Sky: low everywhere

Edge: low along edge

Corner: mostly high




Characterize Self-Difference to Compute Keypoints

o Compute an Auto-SSD or Auto-Correlation Surface locally at each point

Essp(Au) = Z w(xi)[To(x; + Au) = To(xi)]" Measures the sum-of-square differences as a function of (Au)

o With first order approximation of image patch locally, we get: Eqsp(Au) = EXIE-VARI

o Best Practice: Compute Smoothed Gradients with derivatives of Gaussian
Structure Matrix

o Eigen-structure of A captures the notion of flat or peaky self-similarity:

A;and A, are eigenvalues
A;and A, both small: no gradient (flat
A1 >> \,: gradient in one direction (edge)
A1 and A, similar: multiple gradient directions, corner



via DerekHoeim

Harris Detector [Harrissg]

o “Second moment matrix” / Structure Matrix

19% (op) LI, (op)

Honop) =90 6y 12(ap)

Weighted Summation can be implemented as

Gaussian Smoothing of Squared Gradient Images

Intuition: Search for local neighborhoods where the image
content has two main directions (eigenvectors).



via DerekHoeim

Harris Detector [harrisss]

e Second moment matrix

IZ(op) Il (op)
u(oy,0p) = g(ay) * [, o) o) 1. Image
xyA¥D y\“D derivatives
(optionally, blur first)
] 2
2. Square of lv( ‘“\) " Iy
detM = 1,2, derivatives 1
traceM =1, + 1,
3. Gaussian L \g(lf)
filter g(oy) ‘| "

4. Cornerness function — both eigenvalues are strong

har = det[ u(o;, 0p)] — a[trace( u(a;, 0p))?*] =
g g1y) — (g L,)]? — algUz) + g(I3)]?

92

5. Non-maxima suppression



Harris Detector: Mathematics

19% (op) Iny(UD)
M = Oy7) *
9t Lxly(aD) (o)
. : Ay
1.  Want large eigenvalues, and small ratio <t mqyq Myqo
& M= myq mzzl
2. We know detM = Al;lz detM = mqq1 Moy - My Moyq
trace M = A, + 4, trace M = mqq + my,
3. Lleadsto detM — k - trace?(M) > t

(k :empirical constant, £ = 0.04-0.06)


http://en.wikipedia.org/wiki/Corner_detection

via DerekHoeim

Explanation of Harris Criterion

£ »”
Direction of the Corner
fastest change ), and A, are large, A,~ A.;
(Cincreases in all directions

A;and A, are small;

(Cis almost constant “Flat”

in all directions region



http://www.cs.utexas.edu/~grauman/courses/fall2009/papers/local_features_synthesis_draft.pdf

Non-Maximal Suppression (NMS)

o Harris corner responses beyond a certain threshold typically
create bunched up corner pixels

o Too much data to handle

o Suppress responses other than MAX within an NxN
neighborhood everywhere. And choose top K responses.

o Alternatively use Adaptive NMS.

o For each response compute the min distance to a local MAX
response

o Choose the Top K points with the largest radii

via MIT



via DerekHoeim

Harris Detector — Responses [Harrisss]

Effect: A very precise
corner detector.




via DerekHoeim

Harris Detector - Responses [Harrisss]




JoeRedmon

via







via JoeRedmon

Ok, we found corners, now what?

Need to match image patches to each other

Need to figure out tfransform between images




Ok, we found corners, now what?

Need to match image patches to each other
What is a patch? How do we look for matchese Pixelse

Need to figure out transform between images

How can we transform imagese
How do we solve for this fransformation given matches?

via JoeRedmon




via JoeRedmon

Matching patches: descriptors!

We want a way to represent an image patch
Can be very simple, just pixels!

Finding matching patch is easy, distance metric:

Yoy (I(xy) - J(xy))?
What problems are there with just using pixelse




Matching patches: descriptors!

We want a way to represent an image patch

Can be very simple, just pixels!

Finding matching patch is easy, distance metric:

Iy (I(xy) - J(x.y))?
What problems are there with just using pixels?

via JoeRedmon




Short Baseline: Matching patches (descriptors!)

We want a way to represent an image patch

Can be very simple, just pixels!

Finding matching patch is easy, L2 distance metric:

iy (1Y) - J(xy))?
What problems are there with just using pixelse

Descriptors can be more complex

Gradient information
How much contexte

Edges, etc. we'll talk more about descriptors later!

via JoeRedmon



Match Measures for matching Descriptors / Patches

M= 3Y,UP —J]{P)?
L2 Norm
Sensitive to outliers

Sensitive to brightness / contrast
changes

M= YplI(p) —] ()l

L1 Norm

Less Sensitive to outliers

Sensitive to brightness / contrast
changes

M=1— Zp ) -DUm-1)

O'Ip O']p
Inverse Normalized Correlation
Sensitive to outliers

Invariant to Local offset and scale
changes in intensity/color



Match Measures for matching Descriptors / Patches

o M= Y,0(®) — @) M= 3,lI(p) - @) M=1—y, (®=DUG-]

O'Ip O']p

o L2 Norm o L1 Norm - .
o Inverse Normalized Correlation

o Sensitive to outliers o Less Sensitive to outliers .. .
o Sensitive to outliers

o Sensitive to brightness / contrast o Sensitive to brightness / contrast o Invariant to Local offset and scale

changes changes changes in intensity/color



via JoeRedmon

Matching patches: descriptors!

Already have our patches that are likely “unique”-ish
Loop over good patches in one image
Find best match in other image
Find mutually best matches:
A = BestMatch(B) & B = BestMatch(A)




MOSAICS IN ART

...combine Iindividual chips to create a big picture...

Part of the Byzantine mosaic floor that has been preserved in the
Church of Multiplication in Tabkha (near the Sea of Galilee).
www.rtlsoft.com/mmmosaic



Image Transformations : Induced by Camera Motion

3D Rotations : Pan / Tilt
Image Displacment is Independent of Depth

Pin-hole Camera Model




Image Transformations : Induced by Camera Motion

3D Rotations : Pan / Tilt

Camera Rotation (Pan)




Image Transformations : Induced by Camera Motion

3D Rotations : Pan / Tilt

Camera Rotation (Pan)




Basic Concept : Planar Mosaic Construction

2 3

o Align Pairwise: 1:2, 2:3, 34, ...
o Select a Reference Frame
o Align all Images to the Reference Frame

o Combine into a Single Mosaic

Virtual Camera (Pan)
Image Surface - Plane
Projection - Perspective




Image Transformation : Rotations

What is the mapping from image rays to the mosaic coordinates ?

Rotations/Homographies
Plane Projective Transformations

P’ = RP

Pc ~ Rp.

K'p' = RKp

p’' ~ K~1RKp

p’' = Hy,p



Image Transformations : Induced by Camera Motion

3D Translations : Image Displacement is a function of Depth (3D Parallax)

Pin-hole Camera Model

y|




Image Transformations : Induced by Camera Motion

3D Translations : Image Displacement is a function of Depth (3D Parallax)

Camera Translation (Ty)




Image Transformation : Translations

Translational Displacement

’ -— IE
y -y Yz

Image Motion due to Translation
is a function of
the depth of the scene




Image Transformation : Special Cases

Planar Scene (e.g. A Whiteboard) Scene at a Distance (e.g. Rainier)
o Plane Equation: PfTN =1 o @ < 1 =>» Image Displacement due to T is 0
o 3D Camera Motion: P'=RP+T o Same as the case of Rotational Motion
o Imaging a Plane Under Motion leads to: o Image Displacements well approximated by:

o p' z(R+TTI;]T)P
p’ = Hop



Closer Look at Homography

x' X
o p =Hp p = ly" p = [y] are called Homogeneous coordinates.
|

1 + hoo ho1 ho2 ) _ o
o H= hio 1+ hyy his a 3x3 matrix relates view rays in images.

hao ha1 1 J|

Transformation is upto an arbitrary scale

o View rays are represented as homogeneous coordinates. p = Ap upto an arbitrary constant A.

o Observed 2D image coordinates are related via:

o x' = px _ (1+ hoo) X+ ho1 Y+ hoy y' = p_& _ (h1o)x+ (1+ hy1) Y+ hyo
Pz haox+ hz1 y+1 2 haox+ hz1 y+1




via JoeRedmon

Approximations of Homography

translation @

\ — ey A
o YT AR y -
Fnlie ke I
(Rl ¢ <
A 1.’:'-,-;‘ /
5 H L » .
\J

Euclidean =




Approximations of Homography

o Translation:

o Euclidean:

o Similarity:

o Affine:

o Homography: :

1 0 ¢
[o”y]

0 0 1

sin(f) cos(@) t,

Icos(@) —sin(6) tx]
0 0 |

sin(f) cos(0) ¢,

[COS(H) —sin(6) tx]
S *
0 0 |

A9 aA11 Uy

Qoo Qo1 tx]
L0 0 1

(14 hgp) hoq ho
hio (1+hy1) hyy
hzo hz, 1

Preserves Orientations, Angles, Lengths, Areas

Preserves Angles, Lengths, Areas

Preserves Angles

Preserves Parallelism

Preserves Cross-Ratios



via JoeRedmon

Fitting Transformations 1o Noisy Matches

Already have our patches that are likely “unique”-ish
Loop over good patches in one image
Find best match in other image
Find mutually best matches:
A = BestMatch(B) & B = BestMatch(A)




RANSAC

(RANdom SAmple Consensus) :

Fischler & Bolles in ‘81.

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

lllustration by Savarese



RANSAC

Line fitting example

Algorithm:

1. mple (randomly) the nhumber of points requir fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC

Line fitting example

NI:6

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC

NI:14‘

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence




How to choose parameters?

* Number of samples N

— Choose N so that, with probability p, at least one random sample is free from outliers (e.g.

p=0.99) (outlier ratio: e )

* Number of sampled points s
— Minimum number needed to fit the model

e Distance threshold 6

— Choose O so that a good point with noise is likely (e.g., prob=0.95) within threshold

— Zero-mean Gaussian noise with std. dev. o: t2=3.84¢2

N =log(1 —p)/log(1 — (1 —e)%)

proportion of outliers e

5%

10%

20% 25% 30% 40% 50%

O NONOW h WDNe

OMAMDMWWDN

NV OONONOh W

5 6 4 11 17
7 9 11 19 35
9 13 17 34 72
12 17 26 57 146
16 24 37 97 293
20 33 54 163 588
26 44 78 272 1177

modified from M. Pollefeys



RANSAC

Good

* Robust to outliers
* Applicable for larger number of objective function parameters than Hough transform
* Optimization parameters are easier to choose than Hough transform

Bad

 Computational time grows quickly with fraction of outliers and number of parameters

* Not as good for getting multiple fits (though one solution is to remove inliers after each
fit and repeat)

Common applications
 Computing a homography (e.g., image stitching)
e Estimating fundamental matrix (relating two views)



Solving for Homography with Correspondences: Linear Least Squares

/ Dy _ (14 hgg) X+ hg1 Y+ ho2 / Py (h10)x+ (1+ hq1) Y+ hqy

o X = =7 y = o=
Pz hyox+ hpy1 y+1 z hyox+ hz1 y+1

=

o Given corresponding matches in two images (p,p’), find the best fit H
o Convert the rational equations above into linear algebraic form:

o For each correspondence: .
Image Displacement

a7

[xyl 0 0 0 —X'x —xy] . _[ﬁ’—x]
0O 0 x y 1 V' -y

O A{h:dl



Solving for Homography with Correspondences: Linear Least Squares

/ Dy _ (14 hgg) x+ hg1 ¥+ ho2 , p§/ (hi0)x+ (1+ hy1) Y+ hqy

o X = =7 y = o=
Pz hzox+ hp1 y+1 12 hzox+ hy1 y+1

o Given corresponding matches in two images (p,p’), find the best fit H
o Convert the rational equations above into linear algebraic form:

o For each correspondence: .
Image Displacement

a7

[xyl 0 0 0 —X'x —xy] . _[ﬁ’—x]
0O 0 x y 1 V' -y




Solving for Homography with Correspondences: Linear Least Squares

o Al h=d;

o minT 4] h —dif|® > min(hT(%4; A])h — 2347 d;h)
o Setting dervivative w.r.t. h to zero gives us:

o (XA Al)h=3,ATd; €> Ah=b €> h=A1b

o Sub-optimal since Algebraic error does not account for measurement errors in keypoints and matches

o Can normalize the error with Jacobian (see Book)



Optimal Solution for Homography . Non-Linear Least Squares with Levenberg-Marquardt

! 14
1+ h X+ h + h p h x+ (1+ h + h . .
o x' = p),c _ ( 00) 01 Y+ ho2 yr _ 3’1: (h10)x+ ( 11) Y+ hyy (Non-linear in h)
Pz hzox+ hp1 y+1 Pz hyox+ h1 y+1

o minX If (s h+ Bh) = pil*+ A 18RI~ minZ; (s WAR = 1>+ Ay 18R]3

= rrAl}ln ART [Zi]iT Ji + Ay I]Ah — 2 ART [Zi]iTri] + Xilinill? : Computed at a current estimate h
o Setting derivative w.r.t. Ah to zero gives us:
o Ah= [Zi]l-T Ji +Ap I]_l[zi]iTri] Ay > 1 Gradient Descent Ay, =0  Gauss-Newton

o Far from the local optimal solution, keep A;, high so that descent is guaranteed.

o Closer to the minimum A; =0 to get faster convergence



via JoeRedmon

In practice:




via JoeRedmon

In practice:




via JoeRedmon

In practice




via JoeRedmon




via JoeRedmon




via JoeRedmon




via JoeRedmon

What's happening?

>\ _____AA /N

Y
A
/‘l\
- <\

/\




via JoeRedmon

Very bad for big panoramas!




via JoeRedmon




via JoeRedmon

How do we fix it? Cylinders!




via CMU

Cylindrical Projection

« Map 3D point (X,Y,Z) onto cylinder
(X.Y 2)

(,5,2) = -,\"21+22
« Convert to cylindrical coordinates
(s1nf,h,cos0) — (2,1,2)
« Convert to cylindrical image coordinates

(T g) i (f() fh) B (T< £7<)

cylindrical image

o Mapping planar image to Cylindrical Coordinates



via CMU

Cylindrical Re-Projection

* Apply camera projection matrix
— w =image width, h = image height

w! —f 0 w/2 0O
wy | = O —f h/2 O
w g 0 1 0

« Convert to image coordinates
— divide by third coordinate (w)

y’I

— T

top-down view imagé coords

o Developing / Reprojecting a Cylinder onto a plane to create a Planar Viewable Panorama

o Try different focal lengths or use the focal length of the camera



via CMU

Cylindrical Reprojection: Dependence on f

Image 384x300 f = 180 (pixels)

o Fill the panorama image to the max or use f



UNBLENDED MOSAIC




Image Merging withLaplacian Pyramids

/T /

Combined Seamless Image



VORONOI TESSELATIONS W/ LT NORM




BLENDED MOSAIC




UNBLENDED MOSAIC




How does iPhone panoramic stitching work?

o Capture images at 30 fps

o Stitch the central 1/8 of a selection of images
o Select which images to stitch using the accelerometer and frame-to-frame matching

o Faster and avoids radial distortion that often occurs towards corners of images

o Alignment

o Initially, perform cross-correlation of small patches aided by accelerometer to find good
regions for matching

o Register by matching points (KLT tracking or RANSAC with FAST (similar to SIFT) points) or
correlational matching

o Blending

o Linear (or similar) blending, using a face detector to avoid blurring face regions and choose
good face shots (not blinking, etc)

http://www.patentlyapple.com/patently-apple/2012/11/apples-cool-iphone-5-panorama-app-revealed-in-5-patents.ntml

via DerekHoeim


http://www.patentlyapple.com/patently-apple/2012/11/apples-cool-iphone-5-panorama-app-revealed-in-5-patents.html

1D vs. 2D SCANNING

« 1D : The topology of frames is a ribbon or a string.
Frames overlap only with their temporal neighbors.

—

AND s \ L0
(A 300x332 mosaic captured by mosaicing a 1D sequence of 6 frames) oo . VideoBrush ™

e 2D :The topology of frames is a 2D graph
Frames overlap with neighbbors on many
sides




1D vs. 2D SCANNING

4 I""‘.r '-'_j“‘h“h*

_wo' f’vmah“

The 1D scan scaled by 2 to 600x692 A 2D scanned mosaic of size 600x692



FRAME-TO-MOSAIC vs. LOCAL-TO-GLOBAL
ALIGNMENT

 Uses limited 2D spatial context e Uses all the available frame-to-frame
constraints

e Causal commitment to parameters ¢ Global solution is optimal subject to
cannot be corrected local frame-to-frame constraints

« Demands large overlap between  Works even with small overlap between
frames frames




LOCAL TO GLOBAL MOSAIC ALGORITHM

mages | "Coane | p Tonalooy. -
or — Reaistrafi Determinatio: Coarse&Fine " Cansistenicy
Video egisiration i Registration Lonsistency
Color Panoramic Visualization
.| Matchin R Mosaic . .
g Blending/ Representation Virtual Reality
Other Applications



SPECIFIC EXAMPLES : 2. SPHERICAL MOSAICS

Frame to mosaic transformation model: u ~ FR;"X

Local Registration

— Coarse 2D translation & fine 2D projective alignment
Parameter Initialization

— Compute F and R’s from the 2D projective matrices

Topology :
— Initial graph topology computed with the 2D R & T estimates on a plane
— Subsequently the topology defined on a sphere
— lterative refinement using arcs based on alignment with F and R’s

Global Alignment
E;; = z IR{F " uy — RF Ly |
k



SPHERICAL MOSAICS

Video
Captures almost the complete sphere
with 380 frames



SPHERICAL TOPOLOGY EVOLUTION

Updated topology




SPHERICAL MOSAIC
Sarnoff Library




Mercator projection of spherical mosaic




MultiView Panoramas

Right-Eye
Panorama

Regular Panorama

Left-Eye
Panorama

360



)

@

reo Panorarma from Video

Stereo viewing with

/Blue Glasses




Viewing Panoramic Stereo

o Print panorama on a cylinder

o No computation needed!!!

'-'?-l-

S— S 1 5 e 5 : - | = : at S mas: & U3
m' """*:muu!!n 2/ | - Wy »m——- ST L e R g T :



DYNAMIC MOSAICS

Video Stream with

Original Video deleted moving object

T

o' -
M -




SYNOPISIS MOSAICS




