
Manipulating and Understanding Images via
Edges, Features and Alignment

Harpreet S Sawhney

Microsoft / Vision & Mixed Reality

May 7th and 12th , 2020

(Dynamic) Images Afford Two Types of Inferences
Inferences on scene content without object identity

o Frame-to-frame motions
o Foreground/background and independent object motions
o 3D structure / 2-2.5D layers
o …

Inferences on scene content involving object identity

o Object/event recognition
o Object/scene classification
o Object/scene fingerprinting
o Extended space-time tracking
o …

A Bit of Historical Perspective : My Work

• Analysis / Manipulation of scene content without object / scene identity

Pixels In è Pixels Out

– Stabilization, Mosaicking, 3D Structure,…

• Inferences on scene content involving scene /object / event identity
Pixels In è Decisions / Labels Out

– Model-based object/event recognition

– Object/scene classification
– Object/scene fingerprinting
– Extended space-time tracking

– Multi-modal Video Analysis

Dynamic Images Afford Two Types of Inferences

(Dynamic) Images Afford Two Types of Inferences

o Inferences on scene content without object identity

o Frame-to-frame motions
o Foreground/background and independent object motions
o 3D structure / 2-2.5D layers
o …

o Inferences on scene content involving object identity

o Model-based object/event recognition
o Object/scene classification
o Object/scene fingerprinting
o Extended space-time tracking
o …

Plan of Two Lectures : May 7th (and 12th)

o Why and How of Edges in Images

o Why Image / Video Alignment and Matching

o A Swift Primer on Sum of Squares Optimization and Fitting

o Short Range Matching with Patches

o Image Transformations and Robust Fitting with RANSAC

Plan of Two Lectures : May 12th

o Long Range Matching

o Quasi-Invariant Feature Detectors and Descriptors: SIFT, HOG

o Location and Image based Object Instance Retrieval

o Learned Features through Metric Learning with CNNs

o Long Range Matching and Localization : Contrast between Hand-crafted and Learned Features

o Take Home Lessons

What do edges tell us about the Physical World?

Figure-Ground 3D Perception

Edges have Physical / Geometric causes Orientation Discontinuity

Edges have Physical / Geometric causes Surface Albedo Changes

Edges have Physical / Geometric causes

Texture Change

Edges have Physical / Geometric causes

Shadow Edge

Edges have Physical / Geometric causes

Color Change

Edges have Physical / Geometric causes

Noisy Edge

Origin of Edges

Edges are caused by a variety of factors

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Source: Steve Seitz

Subjective Contours: 3D Perception / Perceptual Organization

Complex Subjective “Contours”

High-Level meets Low-Level ?

Early Work In Computer Vision: Interpretation of Line Drawings as 3D

Machine Perception of 3D Solids

“+” label represents a convex edge

“-” label represents a concave edge

or a represents an occluding convex edge

or a represents a limb

• We evolved to infer the World as 3D because you do not want to
mistake a tiger in the bushes as a painting on the Wall!

• Perceptual Organization makes sense the World as Figure-
Ground / 3D Percepts

Perceptual Organization

Perceptual Organization (Lance’s view)

• Perceptual organization is the process of deriving the topological
component of a representation of visible and partially occluded surfaces.

• The topological component is represented using labeled knot diagrams.
• Labeled knot diagrams can be derived from images through a process

of figural completion.

Edges correspond to changes in image intensities

On a discrete pixel grid as above:

Computing Edges via Derivatives on a Pixel Grid: 1D Case for Simplicity

x
0 21-2 -1

-1 1

-1 10

𝑓! 0

𝑓! 0
Two Approximations:

Computing Edges via Derivatives on a Pixel Grid: 1D Case for Simplicity

To compute derivatives of f(x) at x=0, let us use Taylor series expansion

o 𝑓 1 = 𝑓 0 + 1. 𝑓! 0 + "!

#!
𝑓!! 0 + ""

%!
𝑓!!! 0 + 𝑂(4)

o 𝑓 −1 = 𝑓 0 − 1. 𝑓! 0 + "!

#!
𝑓!! 0 − ""

%!
𝑓!!! 0 + 𝑂(4)

o First Approximation: 𝑓! 0 = −1. 𝑓 0 + 1. 𝑓 1 = 𝑓! 0 + 𝟏
𝟐
𝒇𝒙𝒙 𝟎 + 𝑂(3)

o Second Approximation: 𝑓! 0 = "
#
(−1. 𝑓 −1 + 1. 𝑓 1) = 𝑓! 0 + 𝑂(3)

Good exercise to derive the second derivative approximation: 𝑓!! 0

x
0 21-2 -1

-1 1

-1 10

𝑓! 0

𝑓! 0
Two Approximations:

Closeup of edges

via DerekHoiem

Closeup of edges

via DerekHoiem

Closeup of edges

via DerekHoiem

Closeup of edges

via DerekHoiem

Characterizing edges

• An edge is a place of rapid change in the image intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative

via DerekHoiem

Intensity profile Intensity

Gradient

via DerekHoiem

With a little Gaussian noise

Gradient

via DerekHoiem

Effects of noise

Consider a single row or column of the image

Plotting intensity as a function of position gives a signal

Where is the edge?
Source: S. Seitz

Differentiating noisy signals : Frequencey Domain Intuition

Solution: Smooth First

• To find edges, look for peaks in 𝑑
𝑑𝑥 (𝑓 ∗ 𝑔)

f

g

f * g

𝑑
𝑑𝑥 (𝑓 ∗ 𝑔)

Source: S. Seitz

• Differentiation is convolution, and convolution is associative:

• This saves us one operation:

𝑑
𝑑𝑥 (𝑓 ∗ 𝑔) = 𝑓 ∗

𝑑
𝑑𝑥 𝑔

Derivative theorem of convolution

Source: S. Seitz

𝑑
𝑑𝑥 (𝑓 ∗ 𝑔) = 𝑓 ∗

𝑑
𝑑𝑥 𝑔

𝑓 ∗
𝑑
𝑑𝑥 𝑔

f

𝑑
𝑑𝑥 𝑔

via DerekHoiem

o Derivative of Gaussian is a
Matched Filter for a Step /
Smooth Edge (Max response)

o Laplacian is also a Matched Filter
at appropriate scales for a bar
detector (1D) and Blob detector
(2D)

o This property is effectively
exploited by SIFT Detector

More on that later.

SMOOTHING EXTREMA

ZERO-CROSSING

via DerekHoiem

Sobel filter! Smooth & derivative

via JoeRedmon

2D Gaussian is Separable…

o Given an arbitrary sigma, 95% of the AUC for Gaussian is between -2*sigma and 2*sigma

o 99.7% of the AUC is between -3*sigma to 3*sigma

o Choose one of these for your implementation

o Separable kernels (M x M) reduce the complexity of smoothing for an N x N image to O(N2M) instead of O(N2 M2)

Separable kernel

• Factors into product of two 1D Gaussians

• Discrete example:

http://onlinestatbook.com/2/calculators/normal_dist.html

http://onlinestatbook.com/2/calculators/normal_dist.html

Edges in 2D Domains : Images I(x, y)

o Edges have an Orientation and a Magnitude
via SteveSeitz

Seeing with Receptive Fields: From John Frisby

48
via JohnFrisby “Seeing”

Seeing with Receptive Fields: From John Frisby

via JohnFrisby “Seeing”

Edges Occur at Different Scales

Edges Occur at Different Scales

This will be discussed in more details in
Wide Baseline Features and Matching (SIFT).

Role of Edges ?
o From the time when Edge Detection was considered essential to understanding and manipulating images:

o To Modern Learning to Segment, Detect Boundaries, Objects and much more…

Object-Contextual Representations for Semantic Segmentation
Yuhui Yuan, Xilin Chen, Jingdong Wang

https://arxiv.org/abs/1909.11065v2

https://arxiv.org/search/cs%3Fsearchtype=author&query=Yuan%252C+Y
https://arxiv.org/search/cs%3Fsearchtype=author&query=Chen%252C+X
https://arxiv.org/search/cs%3Fsearchtype=author&query=Wang%252C+J
https://arxiv.org/abs/1909.11065v2

Image Matching & Alignment

Why Align Images?

Ø Match to create Panoramas for Single Center of Projection Images

Mercator projection of spherical mosaic

Why Align Images?

Ø Match to create Planar Mosaics

Why Align Images?

Ø “Build Rome in a Day”

Why Align Images?

Ø Image / Location / Object Retrieval from a Large Database

via DavidNister

Matching & Alignment

o Matching:

Find locations / spatial coordinates in images
that correspond to the same location /
direction in the World

via Feature Detectors and Feature Descriptors

o Alignment:

Use the matching locations to find Transformations
for Camera Estimation and Warping

via Linear and Non-linear Optimization

A Swift Primer on Optimization Methods for
Linear and Non-Linear (Sum of Squares) Cost Functions

If f(p) is quadratic: 𝑓 𝑝 = "
#
𝑝)𝐻𝑝 − 𝑝)b + 𝑓* Gradient: 𝑔 𝑝 = 𝐻𝑝 − 𝑏

Steepest Descent: 𝑝+," = 𝑝+ − 𝛼+𝑔+ 𝑔+ = 𝐻𝑝+ − 𝑏 But how much do we move along g?

𝑓 𝑝+ − 𝛼+𝑔+ =
1
2 𝑝+ − 𝛼+𝑔+)𝐻 𝑝+ − 𝛼+𝑔+ − 𝑝+ − 𝛼+𝑔+)𝑏

-
-.#

=0 ⇒ 𝛼+ =
/#$/#
/#0/#

Rate of convergence governed by: 1 2"
1,"

#
𝑟 = 3%&'

3%()

p0

Observations

o Gradient Descent “looks” at the cost function VERY LOCALLY.

o r = 1 => Single step convergence

o r >> 1 => Very slow convergence

o Line search does not let the descent overshoot.

o Too expensive in Backprop for CNNs because of millions of parameters

o So learning rate used as a hyperparameter that is “globally” set and varied a bit

CAN WE DO BETTER?

Quadratic Cost Functions

o Model the 2nd order variation (CURVATURE) in addition to the Gradient

o Convex second order cost functions have a unique global minimum

o f(p) is convex quadratic: 𝑓 𝑝 = !
"
𝑝#𝐻𝑝 − 𝑝#b + 𝑓$ H is Positive Definite (Concave Upwards)

∇𝑓 𝑝 = 𝐻𝑝 − 𝑏 𝑆𝑒𝑡𝑡𝑖𝑛𝑔 ∇𝑓 𝑝 = 0 ⇒ 𝑝%&' = 𝐻(!𝑏

o 𝑝%&' is a Global minimum : f(p) >= f(𝑝%&')

o By modeling the globally convex function we obtain minimum solution in a single step!

Optimization of General Cost Functions

o We can model local quadratic behavior and apply descent type methods to general cost functions

o Only local minima can be found

o For local descent to happen the function needs to be PD (positive definite)

o Let us see why

Optimization of General Cost Functions

o At any point 𝑝+ use quadratic approximation to define a descent direction: 𝛿𝑝 = −𝐻 𝑝+ 2" ∇𝑓 𝑝+

o For generality define a descent direction as: 𝑝+," = 𝑝+ − 𝛼+𝑀+𝑔+

o 𝑓(𝑝+,") = 𝑓(𝑝+) − 𝛼+𝑔+)𝑀+𝑔+ => For this to do descent 𝑔+)𝑀+𝑔+ > 0 (Positive Definite)

o 𝑀+ = I guarantees PD but is gradient descent that converges linearly.

o 𝑀+ = 𝐻 𝑝+ 2" has quadratic convergence but not guaranteed to be PD.

Optimization of General Cost Functions

o 𝑀+ = I guarantees PD but is gradient descent that converges linearly.

o 𝑀+ = 𝐻 𝑝+ 2" has quadratic convergence but not guaranteed to be PD.

o By melding both aspects: 𝑀+ = 𝜖+𝐼 + 𝐻 𝑝+ 2"

o 𝜖+ >> 1 is Steepest Descent. 𝜖+ = 0 is Second Order method such as Newton’s method.

o Special case for Sum of Squares problems (like in Vision) called Levenberg-Marquardt method.

o If descent possible use current 𝑀+ otherwise scale up 𝜖+.

o Close to the solution decrease 𝜖+ towards zero to approximate second order descent.

Special Common Case : Sum of Squares Cost Functions

o 𝑌4 = 𝐀4 𝑋 + 𝜂 𝜂 ~ 𝑁 0, Λ4 𝑌4 is a vector of measurements corrupted by noise. X is the unknown.

o Assuming independence of measurements 𝑌4, the negative log likelihoods of the measurements given X is:

o Σ4 (𝑌4 − 𝐀4𝑋))Λ42"(𝑌4 − 𝐀4 𝑋) = Σ4 (𝑌4
)Λ42"𝑌4 − 2𝑌4)𝐀4𝑋 + 𝑋)𝐀4)Λ4

2"𝐀4 𝑋)

o To find the optimal X we take the derivative w.r.t. X and set it to zero:

o
-
-5
= 2 Σ4𝐀4)Λ4

2"𝐀4 𝑋 − 2 Σ4𝐀4)𝑌4 = 0

o 𝑋 = Σ4𝐀4)Λ4
2"𝐀4

2"
Σ4𝐀4)𝑌4

o Solvable in Closed form. For large systems iterative methods are used.

Special Case : Least squares line fitting

o Data: (x1, y1), …, (xn, yn)
o Line equation: yi = m xi + b
o Find (m, b) to minimize

𝑑𝐸
𝑑𝑝 = 2𝐀)𝐀𝐩 − 2𝐀)𝐲 = 0

𝐸 =M
46"

7

𝑥4 1 𝑚
𝑏 − 𝑦4

#
=

𝑥" 1
⋮ ⋮
𝑥7 1

𝑚
𝑏 −

𝑦"
⋮
𝑦7

#

= 𝐀𝐩 − 𝐲 #

= 𝐲)𝐲 − 2(𝐀𝐩))𝐲 + (𝐀𝐩))(𝐀𝐩)

𝐸 =#
!"#

$

(𝑦! −𝑚𝑥! − 𝑏)%
(xi, yi)

y=mx+b

𝐀)𝐀𝐩 = 𝐀)𝐲 ⇒ 𝐩 = 𝐀)𝐀 2"𝐀)𝐲
Modified from S. Lazebnik

Special Case : Least squares line fitting

o Data: (x1, y1), …, (xn, yn)
o Line equation: yi = m xi + b
o Find (m, b) to minimize

𝑑𝐸
𝑑𝑝 = 2𝐀)𝐀𝐩 − 2𝐀)𝐲 = 0

𝐸 =M
46"

7

𝑥4 1 𝑚
𝑏 − 𝑦4

#
=

𝑥" 1
⋮ ⋮
𝑥7 1

𝑚
𝑏 −

𝑦"
⋮
𝑦7

#

= 𝐀𝐩 − 𝐲 #

= 𝐲)𝐲 − 2(𝐀𝐩))𝐲 + (𝐀𝐩))(𝐀𝐩)

𝐸 =#
!"#

$

(𝑦! −𝑚𝑥! − 𝑏)%
(xi, yi)

y=mx+b

𝐀)𝐀𝐩 = 𝐀)𝐲 ⇒ 𝐩 = 𝐀)𝐀 2"𝐀)𝐲
Modified from S. Lazebnik

Caveat:

Errors are in y’s and not in x’s.

Say x is time for example.

Line Fitting with Realistic Error Model
o Typically errors are in all the measured quantities: x and y here

o A proper error measure to optimize is normal distance of measured points to a best fit line

o Line: 𝑛)𝑝 = 𝑑

o min
7,9

∑4 𝑛)𝑝4 − 𝑑 2 = 𝑛) ∑ 4 𝑝4 𝑝4) 𝑛 − 2 𝑑 𝑝4) 𝑛 + 𝑑#

o
-
-9
= 0 ⇒ 𝑑 = 𝑝*) 𝑛 where 𝑝* is the centroid of all the points

o
-
-7
= 0 ⇒ V𝑺𝑛 = 𝜆𝑛 𝑛)𝑛 = 1 Non-trivial solution is the Null space vector of V𝑺

Eigenvector with the smaller (~ 0) eigenvalue

!𝑁

d

S

Why is Fitting and Features Important for Image Matching?

o Find 2D / 3D Transformations

o Create Panoramas

Fit to what : Coordinates defined by Features

Features have two Components:

Feature Detector

Feature Descriptor

Two Types of Matching Problems

SHORT BASELINE

o Limited change in viewpoint & illumination

o Typically Videos / Image Sequences

o Very similar looking images

WIDE BASELINE

o Larger changes in viewpoint & illumination

o Jumble of frames

o “Distant” in time:

o Retrieve Locations, Objects, “THINGS”, Images, …

Video Example

Two Types of Matching Problems

SHORT BASELINE

o Limited change in viewpoint & illumination

o Typically Videos / Image Sequences

o Very similar looking images

WIDE BASELINE

o Larger changes in viewpoint & illumination

o Jumble of frames

o “Distant” in time:

o Retrieve Locations, Objects, “THINGS”, Images, …

Video Example

Features
o Detector / Keypoints: Discrete “distinctive” locations in the image.

o Descriptors: Raw / Filtered Representations of Patches around the Keypoints

Intensity
Patch

Filtered
Patch

Quasi-invariant Feature
SIFT

Learned
Detectors

&
Descriptors

Where would you define good features?
via JoeRedmon

How can we find unique patches?

- Sky: bad
- Very little variation
- Could match any other sky

via JoeRedmon

How can we find unique patches?
- Sky: bad

- Very little variation
- Could match any other sky

- Edge: ok
- Variation in one direction
- Could match other patches

along same edge

How can we find unique patches?
- Sky: bad

- Very little variation
- Could match any other sky

- Edge: ok
- Variation in one direction
- Could match other patches

along same edge

- Corners: good!
- Only one alignment matches

via JoeRedmon

Making Panoramas
- Say we are stitching a panorama
- Want patches in image to match to other image
- Hopefully only match one spot

via JoeRedmon

How close are two patches?

- Sum squared difference

- Images I, J

- Σx,y (I(x,y) - J(x,y))2

via JoeRedmon

How can we find unique patches?
- Want a patch that is unique in the image

- Can calculate distance between patch and every other patch, lot of
computation

- Instead, we could think about auto-correlation:

- How well does image match shifted version of itself?
- ΣdΣx,y (I(x,y) - I(x+dx,y+dy))2

- Measure of self-difference (how am I not myself?)

via JoeRedmon

Self-difference

Sky: low everywhere

via JoeRedmon

Self-difference

Edge: low along edge

via JoeRedmon

Self-difference

Corner: mostly high

via JoeRedmon

Self-difference
Sky: low everywhere

Edge: low along edge

Corner: mostly high

via JoeRedmon

Characterize Self-Difference to Compute Keypoints

o Compute an Auto-SSD or Auto-Correlation Surface locally at each point

𝐸::; Δ𝑢 = Measures the sum-of-square differences as a function of Δ𝑢

o With first order approximation of image patch locally, we get: 𝐸::; Δ𝑢 =

𝐀 = 𝚺𝒊 𝒘𝒊 ∗
𝑰𝒙𝒊
𝟐 𝑰𝒙𝒊 𝑰𝒚𝒊

𝑰𝒙𝒊 𝑰𝒚𝒊 𝑰𝒚𝒊
𝟐

o Best Practice: Compute Smoothed Gradients with derivatives of Gaussian

o Eigen-structure of A captures the notion of flat or peaky self-similarity:

-λ1 and λ2 are eigenvalues
-λ1 and λ2 both small: no gradient (flat
-λ1 >> λ2: gradient in one direction (edge)
-λ1 and λ2 similar: multiple gradient directions, corner

Structure Matrix

Harris Detector [Harris88]

o “Second moment matrix” / Structure Matrix

𝜇(𝜎> , 𝜎;) = 𝑔(𝜎>) ∗
𝐼!#(𝜎;) 𝐼!𝐼?(𝜎;)
𝐼!𝐼?(𝜎;) 𝐼?#(𝜎;)

Intuition: Search for local neighborhoods where the image
content has two main directions (eigenvectors).

Weighted Summation can be implemented as
Gaussian Smoothing of Squared Gradient Images

via DerekHoeim

Harris Detector [Harris88]

• Second moment matrix

𝜇(𝜎" , 𝜎#) = 𝑔(𝜎") ∗
𝐼$%(𝜎#) 𝐼$𝐼&(𝜎#)
𝐼$𝐼&(𝜎#) 𝐼&%(𝜎#)

92

1. Image
derivatives

2. Square of
derivatives

3. Gaussian
filter g(sI)

Ix Iy

Ix2 Iy2 IxIy

g(Ix2) g(Iy2) g(IxIy)

𝑔(𝐼!#)𝑔(𝐼?#) − [𝑔(𝐼!𝐼?)]# − 𝛼[𝑔(𝐼!#) + 𝑔(𝐼?#)]#

ℎ𝑎𝑟 = det[𝜇(𝜎> , 𝜎;)] − 𝛼[trace(𝜇(𝜎> , 𝜎;))#] =
4. Cornerness function – both eigenvalues are strong

har5. Non-maxima suppression

det𝑀 = 𝜆!𝜆"
trace𝑀 = 𝜆! + 𝜆"

(optionally, blur first)

via DerekHoeim

Harris Detector: Mathematics

det𝑀 = 𝜆#𝜆%

trace𝑀 = 𝜆# + 𝜆%

(k :empirical constant, k = 0.04-0.06)

𝑀 = 𝑔(𝜎") ∗
𝐼$%(𝜎#) 𝐼$𝐼&(𝜎#)
𝐼$𝐼&(𝜎#) 𝐼&%(𝜎#)

𝜆"
𝜆#
< 𝑡

det𝑀 − 𝑘 ⋅ trace#(𝑀) > 𝑡

Nice brief derivation on wikipedia

1. Want large eigenvalues, and small ratio

2. We know

3. Leads to

𝑀 =
𝑚"" 𝑚"#
𝑚#" 𝑚##

det𝑀 = 𝑚"" 𝑚## - 𝑚"# 𝑚#"

𝑡𝑟𝑎𝑐𝑒𝑀 = 𝑚"" +𝑚##

http://en.wikipedia.org/wiki/Corner_detection

Explanation of Harris Criterion

From Grauman and Leibe

via DerekHoeim

http://www.cs.utexas.edu/~grauman/courses/fall2009/papers/local_features_synthesis_draft.pdf

Non-Maximal Suppression (NMS)

o Harris corner responses beyond a certain threshold typically
create bunched up corner pixels

o Too much data to handle

o Suppress responses other than MAX within an NxN
neighborhood everywhere. And choose top K responses.

o Alternatively use Adaptive NMS.

o For each response compute the min distance to a local MAX
response

o Choose the Top K points with the largest radii

via MIT

Harris Detector – Responses [Harris88]

Effect: A very precise
corner detector.

via DerekHoeim

Harris Detector - Responses [Harris88]
via DerekHoeim

via JoeRedmon

via JoeRedmon

Ok, we found corners, now what?
- Need to match image patches to each other

- Need to figure out transform between images

via JoeRedmon

Ok, we found corners, now what?
- Need to match image patches to each other

- What is a patch? How do we look for matches? Pixels?

- Need to figure out transform between images
- How can we transform images?
- How do we solve for this transformation given matches?

via JoeRedmon

Matching patches: descriptors!
- We want a way to represent an image patch
- Can be very simple, just pixels!

- Finding matching patch is easy, distance metric:
- Σx,y (I(x,y) - J(x,y))2

- What problems are there with just using pixels?

via JoeRedmon

Matching patches: descriptors!
- We want a way to represent an image patch

- Can be very simple, just pixels!

- Finding matching patch is easy, distance metric:
- Σx,y (I(x,y) - J(x,y))2
- What problems are there with just using pixels?

via JoeRedmon

Short Baseline: Matching patches (descriptors!)
- We want a way to represent an image patch

- Can be very simple, just pixels!

- Finding matching patch is easy, L2 distance metric:
- Σx,y (I(x,y) - J(x,y))2

- What problems are there with just using pixels?

- Descriptors can be more complex
- Gradient information
- How much context?
- Edges, etc. we’ll talk more about descriptors later!

via JoeRedmon

Match Measures for matching Descriptors / Patches

o 𝑀 = ∑& 𝐼 𝑝 − 𝐽(𝑝) %

o L2 Norm

o Sensitive to outliers

o Sensitive to brightness / contrast
changes

o 𝑀 = ∑& 𝐼 𝑝 − 𝐽(𝑝)

o L1 Norm

o Less Sensitive to outliers

o Sensitive to brightness / contrast
changes

o 𝑀 = 1 − ∑&
' & ()' (+ & (̅+)

.#$.%$

o Inverse Normalized Correlation

o Sensitive to outliers

o Invariant to Local offset and scale
changes in intensity/color

Match Measures for matching Descriptors / Patches

o 𝑀 = ∑& 𝐼 𝑝 − 𝐽(𝑝) %

o L2 Norm

o Sensitive to outliers

o Sensitive to brightness / contrast
changes

o 𝑀 = ∑& 𝐼 𝑝 − 𝐽(𝑝)

o L1 Norm

o Less Sensitive to outliers

o Sensitive to brightness / contrast
changes

o 𝑀 = 1 − ∑&
' & ()' (+ & (̅+)

.#$.%$

o Inverse Normalized Correlation

o Sensitive to outliers

o Invariant to Local offset and scale
changes in intensity/color

Matching patches: descriptors!
- Already have our patches that are likely “unique”-ish
- Loop over good patches in one image

- Find best match in other image
- Find mutually best matches:

A = BestMatch(B) & B = BestMatch(A)

via JoeRedmon

MOSAICS IN ART

…combine individual chips to create a big picture...

Part of the Byzantine mosaic floor that has been preserved in the
Church of Multiplication in Tabkha (near the Sea of Galilee).

www.rtlsoft.com/mmmosaic

Image Transformations : Induced by Camera Motion
3D Rotations : Pan / Tilt

Image Displacment is Independent of Depth

Image Transformations : Induced by Camera Motion
3D Rotations : Pan / Tilt

Image Transformations : Induced by Camera Motion
3D Rotations : Pan / Tilt

Basic Concept : Planar Mosaic Construction

o Align Pairwise: 1:2, 2:3, 3:4, ...
o Select a Reference Frame
o Align all Images to the Reference Frame
o Combine into a Single Mosaic

1 2 3 4

Virtual Camera (Pan)
Image Surface - Plane
Projection - Perspective

Image Transformation : Rotations

What is the mapping from image rays to the mosaic coordinates ?

Images
COP

𝐏@, 𝐏

Rotations/Homographies
Plane Projective Transformations

𝐏@ = 𝐑𝐏

𝐩𝐜@ ≈ 𝐑𝐩𝐜

𝐊@𝐩@ ≈ 𝐑𝐊𝐩

𝐩@ ≈ 𝐊@2𝟏𝐑𝐊𝐩

𝐩@ ≈ 𝐇B𝐩

Image Transformations : Induced by Camera Motion
3D Translations : Image Displacement is a function of Depth (3D Parallax)

x
x
x
x

Image Transformations : Induced by Camera Motion
3D Translations : Image Displacement is a function of Depth (3D Parallax)

x

xx
x

Image Transformation : Translations

Image Transformation : Special Cases

Planar Scene (e.g. A Whiteboard)

o Plane Equation: C
'D
9
= 1

o 3D Camera Motion: 𝑃@ = 𝑅𝑃 + 𝑇

o Imaging a Plane Under Motion leads to:

o 𝑝@ ≈ 𝑅 +) D'

9
𝑃

o 𝑝@ ≈ 𝐻 𝑝

Scene at a Distance (e.g. Rainier)

o
)
E
≪ 1 è Image Displacement due to T is 0

o Same as the case of Rotational Motion

o Image Displacements well approximated by:

𝐩@ ≈ 𝐇B𝐩

Closer Look at Homography

o 𝑝@ ≈ 𝐻 𝑝 𝑝@ =
𝑥@
𝑦@
1

𝑝 =
𝑥
𝑦
1

are called Homogeneous coordinates.

o 𝐻 = a 3x3 matrix relates view rays in images.

o View rays are represented as homogeneous coordinates. 𝑝 ≈ 𝜆 𝑝 upto an arbitrary constant 𝜆.

o Observed 2D image coordinates are related via:

o 𝑥@ = F()

F*)
= ", G++ !, G+, ?, G+-

G-+!, G-, ?,"
𝑦@ = F.)

F*)
= G,+ !, ", G,, ?, G,-

G-+!, G-, ?,"

Transformation is upto an arbitrary scale

Approximations of Homography
via JoeRedmon

Approximations of Homography

o Translation:
1 0 𝑡!
0 1 𝑡?
0 0 1

Preserves Orientations, Angles, Lengths, Areas

o Euclidean:
cos(𝜃) −sin(𝜃) 𝑡!
sin(𝜃) cos(𝜃) 𝑡?
0 0 1

Preserves Angles, Lengths, Areas

o Similarity: s *
cos(𝜃) −sin(𝜃) 𝑡!
sin(𝜃) cos(𝜃) 𝑡?
0 0 1

Preserves Angles

o Affine:
𝑎** 𝑎*" 𝑡!
𝑎"* 𝑎"" 𝑡?
0 0 1

Preserves Parallelism

o Homography: :
(1 + ℎ**) ℎ*" ℎ*#
ℎ"* (1 + ℎ"") ℎ"#
ℎ#* ℎ#" 1

Preserves Cross-Ratios

Fitting Transformations to Noisy Matches

- Already have our patches that are likely “unique”-ish
- Loop over good patches in one image

- Find best match in other image
- Find mutually best matches:

A = BestMatch(B) & B = BestMatch(A)

via JoeRedmon

RANSAC

Algorithm:
1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

RANSAC

Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Illustration by Savarese

Line fitting example

RANSAC

Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example

𝛿

RANSAC

𝑁> = 6

Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example

𝛿

RANSAC

𝑁> = 14

Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

How to choose parameters?
• Number of samples N

– Choose N so that, with probability p, at least one random sample is free from outliers (e.g.
p=0.99) (outlier ratio: e)

• Number of sampled points s
– Minimum number needed to fit the model

• Distance threshold d
– Choose d so that a good point with noise is likely (e.g., prob=0.95) within threshold
– Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

𝑁 = log 1 − 𝑝 / log 1 − 1 − 𝑒 /
proportion of outliers e

s 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177

modified from M. Pollefeys

RANSAC
Good
• Robust to outliers
• Applicable for larger number of objective function parameters than Hough transform
• Optimization parameters are easier to choose than Hough transform

Bad
• Computational time grows quickly with fraction of outliers and number of parameters
• Not as good for getting multiple fits (though one solution is to remove inliers after each

fit and repeat)

Common applications
• Computing a homography (e.g., image stitching)
• Estimating fundamental matrix (relating two views)

Solving for Homography with Correspondences: Linear Least Squares

o 𝑥@ = F()

F*)
= ", G++ !, G+, ?, G+-

G-+!, G-, ?,"
𝑦@ = F.)

F*)
= G,+ !, ", G,, ?, G,-

G-+!, G-, ?,"

o Given corresponding matches in two images 𝑝, 𝑝@ , find the best fit H

o Convert the rational equations above into linear algebraic form:

o For each correspondence:

o
𝑥 𝑦 1 0 0 0 −~𝑥@𝑥 − ~𝑥@𝑦
0 0 0 𝑥 𝑦 1 −~𝑦@𝑥 − ~𝑦@𝑦

ℎ**.
.
.
ℎ#"

= ~𝑥@ − 𝑥
~𝑦@ − 𝑦

o 𝐴4) ℎ = 𝑑4

Image Displacement

Solving for Homography with Correspondences: Linear Least Squares

o 𝑥@ = F()

F*)
= ", G++ !, G+, ?, G+-

G-+!, G-, ?,"
𝑦@ = F.)

F*)
= G,+ !, ", G,, ?, G,-

G-+!, G-, ?,"

o Given corresponding matches in two images 𝑝, 𝑝@ , find the best fit H

o Convert the rational equations above into linear algebraic form:

o For each correspondence:

o
𝑥 𝑦 1 0 0 0 −~𝑥@𝑥 − ~𝑥@𝑦
0 0 0 𝑥 𝑦 1 −~𝑦@𝑥 − ~𝑦@𝑦

ℎ**.
.
.
ℎ#"

= ~𝑥@ − 𝑥
~𝑦@ − 𝑦

o 𝐴4) ℎ = 𝑑4

Image Displacement

Solving for Homography with Correspondences: Linear Least Squares

o 𝐴4) ℎ = 𝑑4

o min
G
∑4 𝐴4) ℎ − 𝑑4

#
è min

G
(ℎ) ∑4 𝐴4 𝐴4) ℎ − 2∑4 𝐴4) 𝑑4ℎ)

o Setting dervivative w.r.t. h to zero gives us:

o ∑4 𝐴4 𝐴4) ℎ = ∑4 𝐴4) 𝑑4 çè Α ℎ = 𝑏 çè ℎ = Α2" 𝑏

o Sub-optimal since Algebraic error does not account for measurement errors in keypoints and matches

o Can normalize the error with Jacobian (see Book)

Optimal Solution for Homography : Non-Linear Least Squares with Levenberg-Marquardt

o 𝑥@ = F()

F*)
= ", G++ !, G+, ?, G+-

G-+!, G-, ?,"
𝑦@ = F.)

F*)
= G,+ !, ", G,, ?, G,-

G-+!, G-, ?,"
(Non-linear in h)

o min
∆G

∑4 𝑓 𝑝4; ℎ + ∆ℎ − 𝑝4@ #+ 𝜆G ∆ℎ # ≈ min
∆G

∑4 𝐽 𝑝4; ℎ ∆ℎ − 𝑟4 #+ 𝜆G ∆ℎ #

= min
∆G

∆ℎ) ∑4 𝐽4) 𝐽4 + 𝜆G 𝐼 ∆ℎ − 2 ∆ℎ) ∑4 𝐽4)𝑟4 + ∑4 𝑟4 # : Computed at a current estimate h

o Setting derivative w.r.t. ∆ℎ to zero gives us:

o ∆ℎ = ∑4 𝐽4) 𝐽4 + 𝜆G 𝐼
2" ∑4 𝐽4)𝑟4 𝜆G ≫ 1 Gradient Descent 𝜆G = 0 Gauss-Newton

o Far from the local optimal solution, keep 𝜆G high so that descent is guaranteed.

o Closer to the minimum 𝜆G = 0 to get faster convergence

In practice:
via JoeRedmon

In practice:
via JoeRedmon

In practice:
via JoeRedmon

via JoeRedmon

In practice:
via JoeRedmon

In practice:
via JoeRedmon

What’s happening?
via JoeRedmon

Very bad for big panoramas!
via JoeRedmon

Fails :-(
via JoeRedmon

How do we fix it? Cylinders!
via JoeRedmon

Cylindrical Projection

o Mapping planar image to Cylindrical Coordinates

via CMU

Cylindrical Re-Projection

o Developing / Reprojecting a Cylinder onto a plane to create a Planar Viewable Panorama

o Try different focal lengths or use the focal length of the camera

via CMU

Cylindrical Reprojection: Dependence on f

o Fill the panorama image to the max or use f

via CMU

UNBLENDED MOSAIC

Image Merging withLaplacian Pyramids

Image 1 Image 2

1 2

Combined Seamless Image

VORONOI TESSELATIONS W/ L1 NORM

BLENDED MOSAIC

UNBLENDED MOSAIC

How does iPhone panoramic stitching work?

o Capture images at 30 fps

o Stitch the central 1/8 of a selection of images

o Select which images to stitch using the accelerometer and frame-to-frame matching

o Faster and avoids radial distortion that often occurs towards corners of images

o Alignment

o Initially, perform cross-correlation of small patches aided by accelerometer to find good
regions for matching

o Register by matching points (KLT tracking or RANSAC with FAST (similar to SIFT) points) or
correlational matching

o Blending

o Linear (or similar) blending, using a face detector to avoid blurring face regions and choose
good face shots (not blinking, etc)

http://www.patentlyapple.com/patently-apple/2012/11/apples-cool-iphone-5-panorama-app-revealed-in-5-patents.html

via DerekHoeim

http://www.patentlyapple.com/patently-apple/2012/11/apples-cool-iphone-5-panorama-app-revealed-in-5-patents.html

1D vs. 2D SCANNING

• 1D : The topology of frames is a ribbon or a string.
Frames overlap only with their temporal neighbors.

• 2D : The topology of frames is a 2D graph
Frames overlap with neighbors on many
sides

(A 300x332 mosaic captured by mosaicing a 1D sequence of 6 frames)

1D vs. 2D SCANNING

The 1D scan scaled by 2 to 600x692 A 2D scanned mosaic of size 600x692

FRAME-TO-MOSAIC VS. LOCAL-TO-GLOBAL
ALIGNMENT

• Uses limited 2D spatial context

• Causal commitment to parameters
cannot be corrected

• Demands large overlap between
frames

• Uses all the available frame-to-frame
constraints

• Global solution is optimal subject to
local frame-to-frame constraints

• Works even with small overlap between
frames

LOCAL TO GLOBAL MOSAIC ALGORITHM

Topology
Determination

Temporal
Coarse

Registration
Local

Coarse&Fine
Registration

Global
Consistency

Color
Matching/
Blending

Mosaic
Representation

Images
or

Video

Panoramic Visualization

Virtual Reality

Other Applications

SPECIFIC EXAMPLES : 2. SPHERICAL MOSAICS

• Frame to mosaic transformation model:

• Local Registration
– Coarse 2D translation & fine 2D projective alignment

• Parameter Initialization
– Compute F and R’s from the 2D projective matrices

• Topology :
– Initial graph topology computed with the 2D R & T estimates on a plane
– Subsequently the topology defined on a sphere
– Iterative refinement using arcs based on alignment with F and R’s

• Global Alignment
𝐸01 ==

2

|𝐑𝐢𝐅4𝟏𝐮𝐢𝐤 − 𝐑𝐣𝐅4𝟏𝐮𝐣𝐤|%

𝐮 ≈ 𝐅𝐑𝐢)𝐗

SPHERICAL MOSAICS

Video
Captures almost the complete sphere

with 380 frames

SPHERICAL TOPOLOGY EVOLUTION

SPHERICAL MOSAIC
Sarnoff Library

Mercator projection of spherical mosaic

MultiView Panoramas

0o

180o

360o

Regular Panorama

Left-Eye
Panorama

Right-Eye
Panorama

Stereo Panorama from Video

Stereo viewing with Red/Blue Glasses

Viewing Panoramic Stereo

Printed Cylindrical Surfaces
o Print panorama on a cylinder

o No computation needed!!!

DYNAMIC MOSAICS
Video Stream with

deleted moving objectOriginal Video

Dynamic Mosaic Video

SYNOPISIS MOSAICS

