
DL Frameworks and More

Computer Vision (UW EE/CSE 576)

Richard Szeliski
Facebook & UW

Lecture 11 – May 5, 2020

Class calendar
Date Topic Slides Reading Homework
April 9 Filters and convolutions Google Slides Szeliski, Chapter 3 HW1

due, HW2 assigned
April 14 Interpolation and Optimization pdf, pptx Szeliski, Chapter 4

April 16 Machine Learning pdf, pptx Szeliski, Chapter 5.1-5.2

April 21 Deep Neural Networks pdf, pptx Szeliski, Chapter 5.3

April 23 Convolutional Neural Networks pdf, pptx Szeliski, Chapter 5.4 HW2 due, HW3
assigned

April 28 Network Architectures pdf, pptx Szeliski, Chapter 5.4

April 30 Segmentation and Detection pdf, pptx Szeliski, Chapter 6.3

May 5 DL Languages, Instance Segmentation Szeliski, Chapter 6.4

May 7 Edges, features, matching, RANSAC Szeliski, Chapter 7.1-7.2,
8.1-8.2

HW3 due, HW4
assigned

Richard Szeliski UW CSE 576 - DL frameworks and more 2

https://docs.google.com/presentation/d/1Yp0UiqlAUxsnGCyeEwfmYXMunxSNdqqMWtMSfyI8UUU/
http://szeliski.org/Book/2ndEdition.htm
https://github.com/holynski/cse576_sp20_hw2
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture5-interpolationandoptimization.pdf
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture5-interpolationandoptimization.pptx
http://szeliski.org/Book/2ndEdition.htm
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture6_machinelearning_v5.pdf
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture6_machinelearning_v5.pptx
http://szeliski.org/Book/2ndEdition.htm
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture8_convolutionalneuralnetworks_v4.pdf
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture8_convolutionalneuralnetworks_v4.pptx
http://szeliski.org/Book/2ndEdition.htm
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture8_convolutionalneuralnetworks_v4.pdf
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture8_convolutionalneuralnetworks_v4.pptx
http://szeliski.org/Book/2ndEdition.htm
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture9_networkarchitectures_v3.pdf
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture9_networkarchitectures_v3.pptx
http://szeliski.org/Book/2ndEdition.htm
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture10_segmentationdetection_v4.pdf
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture10_segmentationdetection_v4.pptx
http://szeliski.org/Book/2ndEdition.htm
http://szeliski.org/Book/2ndEdition.htm
http://szeliski.org/Book/2ndEdition.htm

References

Richard Szeliski UW CSE 576 - DL frameworks and more 3

https://d2l.ai/

https://d2l.ai/

Readings

Richard Szeliski UW CSE 576 - DL frameworks and more 4

Unfortunately,
not yet ready L

DL software and more

• Deep learning frameworks
• Instance segmentation
• 3D neural networks
• Video

UW CSE 576 - DL frameworks and more 5Richard Szeliski

As before, I’m borrowing slides from

Richard Szeliski UW CSE 576 - DL frameworks and more 6

Justin Johnson Fall 2019

Lecture 9:
Deep Learning Frameworks

Lecture 9 - 7

Justin Johnson Fall 2019

A zoo of frameworks!

Lecture 8 - 8

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)

PyTorch
(Facebook)

CNTK
(Microsoft)

PaddlePaddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT, Hong
Kong U, etc but main framework of choice at
AWS

Chainer

JAX
(Google)

Keras

Justin Johnson Fall 2019

A zoo of frameworks!

Lecture 8 - 9

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)

PyTorch
(Facebook)

CNTK
(Microsoft)

PaddlePaddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT, Hong
Kong U, etc but main framework of choice at
AWS

Chainer

We’ll focus on this one

JAX
(Google)

Keras

Justin Johnson Fall 2019

Recall: Computational Graphs

Lecture 8 - 10

x

W

hinge
loss

R

+ Ls (scores)*

Justin Johnson Fall 2019

The point of deep learning frameworks

Lecture 8 - 11

1. Allow rapid prototyping of new ideas

2. Automatically compute gradients for you

3. Run it all efficiently on GPU (or TPU)

Justin Johnson Fall 2019

PyTorch

Justin Johnson Fall 2019

PyTorch: Versions

Lecture 8 - 13

For this class we are using PyTorch version 1.5
(Released April 2020), running on Google Colab

Be careful if you are looking at older PyTorch code –
the API changed a lot before 1.0
(0.3 to 0.4 had big changes!)

Justin Johnson Fall 2019

PyTorch: Fundamental Concepts

Lecture 8 - 14

Tensor: Like a numpy array, but can run on GPU

Module: A neural network layer; may store state or
learnable weights

Autograd: Package for building computational graphs
out of Tensors, and automatically computing gradients

Justin Johnson Fall 2019

PyTorch: Tensors

Lecture 8 - 15

Running example: Train a
two-layer ReLU network on
random data with L2 loss

Justin Johnson Fall 2019

PyTorch: Tensors

Lecture 8 - 16

Create random tensors
for data and weights

Justin Johnson Fall 2019

PyTorch: Tensors

Lecture 8 - 17

Forward pass: compute
predictions and loss

Justin Johnson Fall 2019

PyTorch: Tensors

Lecture 8 - 18

Backward pass: manually
compute gradients

Justin Johnson Fall 2019

PyTorch: Tensors

Lecture 8 - 19

Gradient descent
step on weights

Justin Johnson Fall 2019

PyTorch: Tensors

Lecture 8 - 20

To run on GPU, just use a
different device!

Justin Johnson Fall 2019

PyTorch: Autograd

Lecture 8 - 21

Creating Tensors with
requires_grad=True enables autograd

Operations on Tensors with
requires_grad=True cause PyTorch to
build a computational graph

Justin Johnson Fall 2019

PyTorch: Autograd

Lecture 8 - 22

We will not want gradients
(of loss) with respect to data

Do want gradients with
respect to weights

Justin Johnson Fall 2019

PyTorch: Autograd

Lecture 8 - 23

Forward pass looks exactly the
same as before, but we don’t
need to track intermediate
values - PyTorch keeps track of
them for us in the graph

Justin Johnson Fall 2019

PyTorch: Autograd

Lecture 8 - 24

Computes gradients with
respect to all inputs that
have requires_grad=True!

Justin Johnson Fall 2019

PyTorch: Autograd

Lecture 8 - 25

x w1
mm

Every operation on a tensor with
requires_grad=True will add to
the computational graph, and the
resulting tensors will also have
requires_grad=True

Justin Johnson Fall 2019

PyTorch: Autograd

Lecture 8 - 26

x w1
mm

clamp

Every operation on a tensor with
requires_grad=True will add to
the computational graph, and the
resulting tensors will also have
requires_grad=True

Justin Johnson Fall 2019

PyTorch: Autograd

Lecture 8 - 27

x w1
mm

clamp

mm

y_pred

w2

Justin Johnson Fall 2019

PyTorch: Autograd

Lecture 8 - 28

x w1
mm

clamp

mm

y_pred

-

w2

Justin Johnson Fall 2019

PyTorch: Autograd

Lecture 8 - 29

x w1
mm

clamp

mm

y_pred

-

pow

yw2

Justin Johnson Fall 2019

PyTorch: Autograd

Lecture 8 - 30

x w1
mm

clamp

mm

y_pred

-

pow

yw2

sum loss

Justin Johnson Fall 2019

PyTorch: Autograd

Lecture 8 - 31

x w1 w2 y
mm

clamp

mm

y_pred

-

pow sum loss

Backprop to
all inputs that
require grad

Justin Johnson Fall 2019

PyTorch: Autograd

Lecture 8 - 32

x w1 w2 y

After backward finishes, gradients
are accumulated into w1.grad and
w2.grad and the graph is destroyed

Justin Johnson Fall 2019

PyTorch: Autograd

Lecture 8 - 33

x w1 w2 y

After backward finishes, gradients
are accumulated into w1.grad and
w2.grad and the graph is destroyed

Make gradient step on weights

Justin Johnson Fall 2019

PyTorch: Autograd

Lecture 8 - 34

x w1 w2 y

After backward finishes, gradients
are accumulated into w1.grad and
w2.grad and the graph is destroyed

Set gradients to zero – forgetting
this is a common bug!

Justin Johnson Fall 2019

PyTorch: Autograd

Lecture 8 - 35

x w1 w2 y

After backward finishes, gradients
are accumulated into w1.grad and
w2.grad and the graph is destroyed

Tell PyTorch not to build a
graph for these operations

Justin Johnson Fall 2019

PyTorch: New functions

Lecture 8 - 36

Can define new operations
using Python functions

Justin Johnson Fall 2019

PyTorch: New functions

Lecture 8 - 37

Can define new operations
using Python functions

x

* -1

exp

+1 1.0 /

When our function runs,
it will add to the graph

Gradients computed
with autograd

Justin Johnson Fall 2019

PyTorch: New functions

Lecture 8 - 38

Define new autograd operators
by subclassing Function, define
forward and backwardCan define new operations

using Python functions

x

* -1

exp

+1 1.0 /

When our function runs,
it will add to the graph

Gradients computed
with autograd

Recall:

Justin Johnson Fall 2019

PyTorch: New functions

Lecture 8 - 39

Define new autograd operators
by subclassing Function, define
forward and backward

x Sigmoid

Can define new operations
using Python functions

x

* -1

exp

+1 1.0 /

When our function runs,
it will add to the graph

Gradients computed
with autograd

Now when our function runs,
it adds one node to the graph!

Justin Johnson Fall 2019

PyTorch: New functions

Lecture 8 - 40

Define new autograd operators
by subclassing Function, define
forward and backwardCan define new operations

using Python functions

x

* -1

exp

+1 1.0 /

When our function runs,
it will add to the graph

Gradients computed
with autograd

In practice this is pretty rare – in most
cases Python functions are good enough

Justin Johnson Fall 2019

PyTorch: nn

Lecture 8 - 41

Higher-level wrapper for
working with neural nets

Use this! It will make your
life easier

Justin Johnson Fall 2019

PyTorch: nn

Lecture 8 - 42

Object-oriented API: Define
model object as sequence
of layers objects, each of
which holds weight tensors

Justin Johnson Fall 2019

PyTorch: nn

Lecture 8 - 43

Forward pass: Feed data to
model and compute loss

Justin Johnson Fall 2019

PyTorch: nn

Lecture 8 - 44

Forward pass: Feed data to
model and compute loss

torch.nn.functional has useful
helpers like loss functions

Justin Johnson Fall 2019

PyTorch: nn

Lecture 8 - 45

Backward pass: compute
gradient with respect to all
model weights (they have
requires_grad=True)

Justin Johnson Fall 2019

PyTorch: nn

Lecture 8 - 46

Make gradient step on
each model parameter
(with gradients disabled)

Justin Johnson Fall 2019

PyTorch: optim

Lecture 8 - 47

Use an optimizer for
different update rules

Justin Johnson Fall 2019

PyTorch: optim

Lecture 8 - 48

After computing
gradients, use optimizer to
update and zero gradients

Justin Johnson Fall 2019

PyTorch: nn
Defining Modules

Lecture 8 - 49

A PyTorch Module is a neural net
layer; it inputs and outputs Tensors

Modules can contain weights or
other modules

Very common to define your own
models or layers as custom Modules

Justin Johnson Fall 2019

PyTorch: nn
Defining Modules

Lecture 8 - 50

Define our whole model as
a single Module

Justin Johnson Fall 2019

PyTorch: nn
Defining Modules

Lecture 8 - 51

Initializer sets up two
children (Modules can
contain modules)

Justin Johnson Fall 2019

PyTorch: nn
Defining Modules

Lecture 8 - 52

Define forward pass using child
modules and tensor operations

No need to define backward -
autograd will handle it

Justin Johnson Fall 2019

PyTorch: nn
Defining Modules

Lecture 8 - 53

Very common to mix and match
custom Module subclasses and
Sequential containers

Justin Johnson Fall 2019

PyTorch: nn
Defining Modules

Lecture 8 - 54

Define network component
as a Module subclass

x

Linear Linear

*

relu

Linear

Justin Johnson Fall 2019

PyTorch: nn
Defining Modules

Lecture 8 - 55

Stack multiple instances of the
component in a sequential

x

Linear Linear

*

relu

x

Linear Linear

*

relu

Linear

Very easy to quickly
build complex network
architectures!

Justin Johnson Fall 2019

PyTorch: DataLoaders

Lecture 8 - 56

A DataLoader wraps a
Dataset and provides
minibatching, shuffling,
multithreading, for you

When you need to load
custom data, just write your
own Dataset class

Justin Johnson Fall 2019

PyTorch: DataLoaders

Lecture 8 - 57

Iterate over loader to
form minibatches

Justin Johnson Fall 2019

PyTorch: Pretrained Models

Lecture 8 - 58

Super easy to use pretrained models with torchvision
https://github.com/pytorch/vision

https://github.com/pytorch/vision

Justin Johnson Fall 2019

Static vs Dynamic Graphs
• See Justin’s Lecture 8 for more slides…

Lecture 8 - 59

Justin Johnson Fall 2019

TensorFlow and Keras
• See Justin’s Lecture 8 for more slides…

Lecture 8 - 60

Justin Johnson Fall 2019

TensorBoard

Lecture 8 - 61

Add logging to code to record loss, stats, etc
Run server and get pretty graphs!

Justin Johnson Fall 2019

TensorBoard

Lecture 8 - 62

Also works with PyTorch: torch.utils.tensorboard

https://pytorch.org/docs/stable/tensorboard.html

Justin Johnson Fall 2019

PyTorch vs TensorFlow

Lecture 8 - 63

PyTorch
- My personal favorite
- Clean, imperative API
- Easy dynamic graphs for debugging
- JIT allows static graphs for production
- Cannot use TPUs
- Not easy to deploy on mobile

TensorFlow 1.0
- Static graphs by default
- Can be confusing to debug
- API a bit messy

TensorFlow 2.0
- Dynamic by default
- Standardized on Keras API
- Just came out (9/19), no consensus yet

Justin Johnson Fall 2019

Lecture 10:
Training Neural Networks

… just the data augmentation slides, for today …

Lecture 1 - 64

Justin Johnson Fall 2019

Data Augmentation

Lecture 10 - 65

Load image
and label “cat”

CNN

Compute
loss

This image by Nikita is
licensed under CC-BY 2.0

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Justin Johnson Fall 2019

Data Augmentation

Lecture 10 - 66

Transform image

Load image
and label “cat”

CNN

Compute
loss

Justin Johnson Fall 2019

Data Augmentation: Horizontal Flips

Lecture 10 - 67

Justin Johnson Fall 2019

Data Augmentation: Random Crops and Scales

Lecture 10 - 68

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Justin Johnson Fall 2019

Data Augmentation: Random Crops and Scales

Lecture 10 - 69

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing: average a fixed set of crops
ResNet:

1. Resize image at 5 scales: {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

Justin Johnson Fall 2019

Data Augmentation: Color Jitter

Lecture 10 - 70

Simple: Randomize
contrast and brightness

More Complex:
1. Apply PCA to all [R, G, B]

pixels in training set
2. Sample a “color offset”

along principal
component directions

3. Add offset to all pixels
of a training image

(Used in AlexNet, ResNet, etc)

Justin Johnson Fall 2019

Data Augmentation: Get creative for your problem!

Lecture 10 - 71

Random mix/combinations of :
- translation
- rotation
- stretching
- shearing,
- lens distortions, … (go crazy)

HW4 and PyTorch tutorial

Richard Szeliski UW CSE 576 - DL frameworks and more 72

Introduction by Keunhong on Thursday

PyTorch tutorial

Richard Szeliski UW CSE 576 - DL frameworks and more 73

Richard Szeliski UW CSE 576 - DL frameworks and more 74

Define the network

Richard Szeliski UW CSE 576 - DL frameworks and more 75

Data augmentation in PyTorch

Richard Szeliski UW CSE 576 - DL frameworks and more 76

DL software and more

• Deep learning frameworks
• Instance segmentation
• 3D neural networks
• Video

Richard Szeliski UW CSE 576 - DL frameworks and more 77

Justin Johnson Fall 2019

Lecture 16:
Detection + Segmentation

Lecture 16 - 78

Justin Johnson Fall 2019

Things and Stuff

Lecture 16 - 79

Cow

Grass

SkyTre
es

Things: Object categories
that can be separated into
object instances
(e.g. cats, cars, person)

Stuff: Object categories
that cannot be separated
into instances
(e.g. sky, grass, water, trees)

This image is CC0 public domain

Grass

Cat

Sky Trees

https://pixabay.com/p-1246693/%3Fno_redirect
https://pixabay.com/en/cows-two-cows-dairy-agriculture-1264546/

Justin Johnson Fall 2019Lecture 16 - 80

Cow

Grass

Sky
Tre
es

Computer Vision Tasks
Object Detection: Detects individual
object instances, but only gives box
(Only things!)

Semantic Segmentation: Gives per-
pixel labels, but merges instances
(Both things and stuff)

Justin Johnson Fall 2019Lecture 16 - 81

Computer Vision Tasks: Instance Segmentation

Classification Semantic
Segmentation

Object
Detection

Instance
Segmentation

CAT GRASS, CAT, TREE,
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectsNo objects, just pixels

Justin Johnson Fall 2019Lecture 16 - 82

This image is CC0 public domain

Computer Vision Tasks: Instance Segmentation
Instance Segmentation:
Detect all objects in the
image, and identify the
pixels that belong to each
object (Only things)

Cow

Cow

https://pixabay.com/p-1246693/%3Fno_redirect
https://pixabay.com/en/cows-two-cows-dairy-agriculture-1264546/

Justin Johnson Fall 2019Lecture 16 - 83

This image is CC0 public domain

Computer Vision Tasks: Instance Segmentation
Instance Segmentation:
Detect all objects in the
image, and identify the
pixels that belong to each
object (Only things)

Approach: Perform
object detection, then
predict a segmentation
mask for each object

Cow

Cow

https://pixabay.com/p-1246693/%3Fno_redirect
https://pixabay.com/en/cows-two-cows-dairy-agriculture-1264546/

Justin Johnson Fall 2019Lecture 16 - 84

Object Detection:
Faster R-CNN

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NeurIPS 2015

Justin Johnson Fall 2019Lecture 16 - 85

Instance Segmentation:
Mask R-CNN

He et al, “Mask R-CNN”, ICCV 2017

Mask
Prediction

Justin Johnson Fall 2019

Mask R-CNN

Lecture 16 - 86

He et al, “Mask R-CNN”, ICCV 2017

RoI Align Conv

Classification Scores: C
Box coordinates (per class):
4 * C

CNN
+RPN

Conv

Predict a mask for
each of C classes:

C x 28 x 28

256 x 14 x 14 256 x 14 x 14

Justin Johnson Fall 2019

Mask R-CNN: Example Training Targets

Lecture 16 - 87

Justin Johnson Fall 2019

Mask R-CNN: Example Training Targets

Lecture 16 - 88

Justin Johnson Fall 2019

Mask R-CNN: Example Training Targets

Lecture 16 - 89

Justin Johnson Fall 2019

Mask R-CNN: Example Training Targets

Lecture 16 - 90

Justin Johnson Fall 2019

Mask R-CNN: Very Good Results!

Lecture 16 - 91

Justin Johnson Fall 2019

Justin Johnson Fall 2019Lecture 16 - 93

Cow

Cow Cow

Grass

SkyTre
es

Instance Segmentation: Separate
object instances, but only things

Semantic Segmentation: Identify both things
and stuff, but doesn’t separate instances

Beyond Instance Segmentation

Justin Johnson Fall 2019

Beyond Instance Segmentation: Panoptic Segmentation

Lecture 16 - 94

Cow #1
Cow #2

Cow #1
Cow #2

Grass

Trees

SkyLabel all pixels in
the image (both
things and stuff)

For “thing”
categories also
separate into
instances

Kirillov et al, “Panoptic Segmentation”, CVPR 2019
Kirillov et al, “Panoptic Feature Pyramid Networks”, CVPR 2019

Justin Johnson Fall 2019Lecture 16 - 95
Kirillov et al, “Panoptic Feature Pyramid Networks”, CVPR 2019

Beyond Instance Segmentation: Panoptic Segmentation

Justin Johnson Fall 2019

Beyond Instance Segmentation: Human Keypoints

Lecture 16 - 96

Person image is CC0 public domain

Represent the pose of a human
by locating a set of keypoints

e.g. 17 keypoints:
- Nose
- Left / Right eye
- Left / Right ear
- Left / Right shoulder
- Left / Right elbow
- Left / Right wrist
- Left / Right hip
- Left / Right knee
- Left / Right ankle

https://www.publicdomainpictures.net/en/view-image.php%3Fimage=238189&picture=man-standing
http://creativecommons.org/publicdomain/zero/1.0/

Justin Johnson Fall 2019Lecture 16 - 97

Mask R-CNN:
Instance Segmentation

He et al, “Mask R-CNN”, ICCV 2017

Mask
Prediction

Keypoint
estimation

Justin Johnson Fall 2019Lecture 16 - 98

Mask R-CNN:
Keypoint Estimation

He et al, “Mask R-CNN”, ICCV 2017

Mask
Prediction

Keypoint
prediction

Keypoint
estimation

Justin Johnson Fall 2019

Mask R-CNN: Keypoints

Lecture 16 - 99

He et al, “Mask R-CNN”, ICCV 2017

RoI Align Conv…

Classification Scores: C
Box coordinates (per class): 4 * C
Segmentation mask: C x 28 x 28

CNN
+RPN

256 x 14 x 14
Keypoint masks:

K x 56 x 56

Left ankle Right ankle

…

One mask for each of
the K different keypoints

Ground-truth has one “pixel” turned on
per keypoint. Train with softmax loss

Justin Johnson Fall 2019

Joint Instance Segmentation and Pose Estimation

Lecture 16 - 100

He et al, “Mask R-CNN”, ICCV 2017

Justin Johnson Fall 2019Lecture 16 - 101

General Idea: Add Per-
Region “Heads” to
Faster / Mask R-CNN!

He et al, “Mask R-CNN”, ICCV 2017

Mask
Prediction

Keypoint
prediction

Keypoint
estimation

Per-Region Heads:
Each receives the features after
RoI Pool / RoI Align, makes
some prediction per-region

Justin Johnson Fall 2019Lecture 16 - 102

Dense Captioning:
Predict a caption
per region!

Johnson, Karpathy, and Fei-Fei, “DenseCap: Fully Convolutional
Localization Networks for Dense Captioning”, CVPR 2016

Caption
prediction
(LSTM)

Per-Region Heads:
Each receives the features after
RoI Pool / RoI Align, makes
some prediction per-region

Justin Johnson Fall 2019

Dense Captioning

Lecture 16 - 103

Johnson, Karpathy, and Fei-Fei, “DenseCap: Fully Convolutional Localization Networks for Dense Captioning”, CVPR 2016

Justin Johnson Fall 2019

Dense Captioning

Lecture 16 - 104

Johnson, Karpathy, and Fei-Fei, “DenseCap: Fully Convolutional Localization Networks for Dense Captioning”, CVPR 2016

Justin Johnson Fall 2019Lecture 16 - 105

3D Shape Prediction:
Predict a 3D triangle
mesh per region!

Gkioxari, Malik, and Johnson, “Mesh R-CNN”, ICCV 2019

Mesh
predictor

Per-Region Heads:
Each receives the features after
RoI Pool / RoI Align, makes
some prediction per-region

Justin Johnson Fall 2019Lecture 16 - 107

Summary: Many Computer Vision Tasks!

Classification Semantic
Segmentation

Object
Detection

Instance
Segmentation

CAT GRASS, CAT, TREE,
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectsNo objects, just pixels
This image is CC0 public domain

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Justin Johnson Fall 2019

DL software and more
• Deep learning frameworks
• Instance segmentation
• 3D neural networks
• Video

Richard Szeliski UW CSE 576 - DL frameworks and more 108

Justin Johnson Fall 2019

Lecture 17:
3D Vision

Lecture 17 - 109

X
Covered in later part

of the
UW CSE 576 course

Justin Johnson Fall 2019

Today: Predicting 3D Shapes of Objects

Lecture 17 - 110

He, Gkioxari, Dollár, and
Girshick, “Mask R-CNN”,
ICCV 2017

Mask R-CNN:
2D Image -> 2D shapes

Mesh R-CNN:
2D Image -> 3D shapes

Gkioxari, Malik, and Johnson,
“Mesh R-CNN”, ICCV 2019

Justin Johnson Fall 2019

Many more topics in 3D Vision!

Lecture 17 - 111

Computing correspondences
Multi-view stereo
Structure from Motion
Simultaneous Localization and Mapping (SLAM)
Self-supervised learning
View Synthesis
Differentiable graphics
3D Sensors

Many non-Deep Learning methods alive and well in 3D!

Justin Johnson Fall 2019

Lecture 18:
Videos

Lecture 18 - 112

Justin Johnson Fall 2019

Today: Video = 2D + Time

Lecture 18 - 113

This image is CC0 public domain

A video is a sequence of images
4D tensor: T x 3 x H x W

(or 3 x T x H x W)

https://pixabay.com/p-1246693/%3Fno_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Justin Johnson Fall 2019

Example task: Video Classification

Lecture 18 - 114

Input video:
T x 3 x H x W

Running video is in the public domain

Swimming
Running
Jumping
Eating
Standing

https://commons.wikimedia.org/wiki/File:Running.gif
https://en.wikipedia.org/wiki/en:public_domain

Justin Johnson Fall 2019

Example task: Video Classification

Lecture 18 - 115

Swimming
Running
Jumping
Eating
Standing

Dog
Cat
Fish
Truck

Images: Recognize objects

Videos: Recognize actions

Running video is in the public domain

https://commons.wikimedia.org/wiki/File:Running.gif
https://en.wikipedia.org/wiki/en:public_domain

Justin Johnson Fall 2019

Problem: Videos are big!

Lecture 18 - 116

Input video:
T x 3 x H x W

Videos are ~30 frames per second (fps)

Size of uncompressed video
(3 bytes per pixel):

SD (640 x 480): ~1.5 GB per minute
HD (1920 x 1080): ~10 GB per minute

Justin Johnson Fall 2019

Problem: Videos are big!

Lecture 18 - 117

Input video:
T x 3 x H x W

Videos are ~30 frames per second (fps)

Size of uncompressed video
(3 bytes per pixel):

SD (640 x 480): ~1.5 GB per minute
HD (1920 x 1080): ~10 GB per minute

Solution: Train on short clips: low
fps and low spatial resolution
e.g. T = 16, H=W=112
(3.2 seconds at 5 fps, 588 KB)

Justin Johnson Fall 2019

Training on Clips

Lecture 18 - 118

Raw video: Long, high FPS

Justin Johnson Fall 2019

Training on Clips

Lecture 18 - 119

Raw video: Long, high FPS

Training: Train model to classify short clips with low FPS

Justin Johnson Fall 2019

Training on Clips

Lecture 18 - 120

Raw video: Long, high FPS

Training: Train model to classify short clips with low FPS

Testing: Run model on different clips, average predictions

Justin Johnson Fall 2019

Video Classification: Single-Frame CNN

Lecture 18 - 121

CNN

“Running”

Simple idea: train normal 2D CNN to classify video frames independently
(Average predicted probs at test-time)
Often a very strong baseline for video classification

CNN

“Running”

CNN

“Running”

CNN

“Running”

CNN

“Running”

CNN

“Running”

CNN

“Running”

Justin Johnson Fall 2019

Video Classification: Late Fusion (with FC layers)

Lecture 18 - 122

CNNCNNCNN CNN CNN CNN

Input:
T x 3 x H x W

2D CNN on
each frame

Frame features
T x D x H’ x W’

Flatten

MLP

Class scores: C

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Run 2D CNN on each
frame, concatenate
features and feed to MLP

Clip features: TDH’W’

Intuition: Get high-level appearance
of each frame, and combine them

Justin Johnson Fall 2019

Video Classification: Late Fusion (with pooling)

Lecture 18 - 123

CNNCNNCNN CNN CNN CNN

Input:
T x 3 x H x W

2D CNN on
each frame

Frame features
T x D x H’ x W’

Average Pool over space and time

Clip features: D
Linear

Class scores: C Run 2D CNN on each
frame, pool features
and feed to Linear

Intuition: Get high-level appearance
of each frame, and combine them

Justin Johnson Fall 2019

Video Classification: Late Fusion (with pooling)

Lecture 18 - 124

CNNCNNCNN CNN CNN CNN

Input:
T x 3 x H x W

2D CNN on
each frame

Frame features
T x D x H’ x W’

Average Pool over space and time

Clip features: D
Linear

Class scores: C Run 2D CNN on each
frame, pool features
and feed to Linear

Intuition: Get high-level appearance
of each frame, and combine them
Problem: Hard to compare low-level
motion between frames

Justin Johnson Fall 2019

Video Classification: Early Fusion

Lecture 18 - 125

2D CNN

Input:
T x 3 x H x W

Reshape:
3T x H x W

Class scores: C

Rest of the network
is standard 2D CNN

Intuition: Compare frames with
very first conv layer, after that
normal 2D CNN

First 2D convolution collapses
all temporal information:
Input: 3T x H x W
Output: D x H x W

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Justin Johnson Fall 2019

Video Classification: Early Fusion

Lecture 18 - 126

2D CNN

Input:
T x 3 x H x W

Reshape:
3T x H x W

Class scores: C

Rest of the network
is standard 2D CNN

Intuition: Compare frames with
very first conv layer, after that
normal 2D CNN
Problem: One layer of temporal
processing may not be enough

First 2D convolution collapses
all temporal information:
Input: 3T x H x W
Output: D x H x W

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Justin Johnson Fall 2019

Video Classification: 3D CNN

Lecture 18 - 127

3D CNN

Input:
3 x T x H x W

Class scores: C

Intuition: Use 3D versions of
convolution and pooling to
slowly fuse temporal information
over the course of the network

Each layer in the network is a
4D tensor: D x T x H x W
Use 3D conv and 3D pooling
operations

Ji et al, “3D Convolutional Neural Networks for Human Action Recognition”, TPAMI 2010 ; Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Justin Johnson Fall 2019

2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Lecture 18 - 128

Input: Cin x T x H x W
(3D grid with Cin-dim
feat at each point)

W = 224

H = 224

T = 16

Weight:
Cout x Cin x T x 3 x 3
Slide over x and y

T = 16

Cout different filters

Output:
Cout x H x W
2D grid with Cout –dim
feat at each point

W = 224

H = 224

Justin Johnson Fall 2019

2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Lecture 18 - 129

Input: Cin x T x H x W
(3D grid with Cin-dim
feat at each point)

W = 224

H = 224

T = 16

Weight:
Cout x Cin x T x 3 x 3
Slide over x and y

Cout different filters

Output:
Cout x H x W
2D grid with Cout –dim
feat at each point

W = 224

No temporal shift-invariance! Needs
to learn separate filters for the same
motion at different times in the clip

Justin Johnson Fall 2019

2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Lecture 18 - 130

Input: Cin x T x H x W
(3D grid with Cin-dim
feat at each point)

W = 224

H = 224

T = 16

Weight:
Cout x Cin x 3 x 3 x 3
Slide over x and y

T = 3

Cout different filters

Output:
Cout x T x H x W
3D grid with Cout–dim
feat at each point

W = 224

H = 224

Justin Johnson Fall 2019

2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Lecture 18 - 131

Input: Cin x T x H x W
(3D grid with Cin-dim
feat at each point)

W = 224

H = 224

T = 16

Weight:
Cout x Cin x 3 x 3 x 3
Slide over x and y

T = 3

Cout different filters

Output:
Cout x T x H x W
3D grid with Cout–dim
feat at each point

W = 224

H = 224

Temporal shift-invariant since
each filter slides over time!

Justin Johnson Fall 2019

2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Lecture 18 - 132

Input: Cin x T x H x W
(3D grid with Cin-dim
feat at each point)

W = 224

H = 224

T = 16

Weight:
Cout x Cin x 3 x 3 x 3
Slide over x and y

T = 3

Cout different filters

Temporal shift-invariant since
each filter slides over time!

First-layer filters have shape
3 (RGB) x 4 (frames) x 5 x 5 (space)
Can visualize as video clips!

Karpathy et al, “Large-scale Video Classification
with Convolutional Neural Networks”, CVPR 2014

Justin Johnson Fall 2019

Example Video Dataset: Sports-1M

Lecture 18 - 133

1 million YouTube videos
annotated with labels for
487 different types of sports

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Ground Truth
Correct prediction
Incorrect prediction

Justin Johnson Fall 2019Lecture 18 - 134

77.7 76.8
78.7

80.2

84.4

72
74
76
78
80
82
84
86

Single
Frame

Early
Fusion

Late
Fusion

3D CNN C3D

Sports-1M Top-5 Accuracy

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Single Frame model
works well – always
try this first!

3D CNNs have
improved a lot
since 2014!

Early Fusion vs Late Fusion vs 3D CNN

Justin Johnson Fall 2019

C3D: The VGG of 3D CNNs

Lecture 18 - 135

Layer Size
Input 3 x 16 x 112 x 112

Conv1 (3x3x3) 64 x 16 x 112 x 112
Pool1 (1x2x2) 64 x 16 x 56 x 56
Conv2 (3x3x3) 128 x 16 x 56 x 56
Pool2 (2x2x2) 128 x 8 x 28 x 28

Conv3a (3x3x3) 256 x 8 x 28 x 28
Conv3b (3x3x3) 256 x 8 x 28 x 28
Pool3 (2x2x2) 256 x 4 x 14 x 14

Conv4a (3x3x3) 512 x 4 x 14 x 14
Conv4b (3x3x3) 512 x 4 x 14 x 14
Pool4 (2x2x2) 512 x 2 x 7 x 7

Conv5a (3x3x3) 512 x 2 x 7 x 7
Conv5b (3x3x3) 512 x 2 x 7 x 7

Pool5 512 x 1 x 3 x 3
FC6 4096
FC7 4096
FC8 C

3D CNN that uses all 3x3x3 conv and
2x2x2 pooling
(except Pool1 which is 1x2x2)

Released model pretrained on Sports-
1M: Many people used this as a video
feature extractor

Tran et al, “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015

Justin Johnson Fall 2019

C3D: The VGG of 3D CNNs

Lecture 18 - 136

Layer Size MFLOPs
Input 3 x 16 x 112 x 112

Conv1 (3x3x3) 64 x 16 x 112 x 112 1.04
Pool1 (1x2x2) 64 x 16 x 56 x 56
Conv2 (3x3x3) 128 x 16 x 56 x 56 11.10
Pool2 (2x2x2) 128 x 8 x 28 x 28

Conv3a (3x3x3) 256 x 8 x 28 x 28 5.55
Conv3b (3x3x3) 256 x 8 x 28 x 28 11.10
Pool3 (2x2x2) 256 x 4 x 14 x 14

Conv4a (3x3x3) 512 x 4 x 14 x 14 2.77
Conv4b (3x3x3) 512 x 4 x 14 x 14 5.55
Pool4 (2x2x2) 512 x 2 x 7 x 7

Conv5a (3x3x3) 512 x 2 x 7 x 7 0.69
Conv5b (3x3x3) 512 x 2 x 7 x 7 0.69

Pool5 512 x 1 x 3 x 3
FC6 4096 0.51
FC7 4096 0.45
FC8 C 0.05

3D CNN that uses all 3x3x3 conv and
2x2x2 pooling
(except Pool1 which is 1x2x2)

Released model pretrained on Sports-
1M: Many people used this as a video
feature extractor

Problem: 3x3x3 conv is very expensive!
AlexNet: 0.7 GFLOP
VGG-16: 13.6 GFLOP
C3D: 39.5 GFLOP (2.9x VGG!)

Tran et al, “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015

Justin Johnson Fall 2019Lecture 18 - 137

77.7 76.8
78.7

80.2

84.4

72
74
76
78
80
82
84
86

Single
Frame

Early
Fusion

Late
Fusion

3D CNN C3D

Sports-1M Top-5 Accuracy

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014
Tran et al, “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015

Early Fusion vs Late Fusion vs 3D CNN

Justin Johnson Fall 2019

Recognizing Actions from Motion

Lecture 18 - 138

Johansson, “Visual perception of biological motion and a model for its analysis.” Perception & Psychophysics. 14(2):201-211. 1973.

We can easily recognize actions using only motion information

Justin Johnson Fall 2019

Measuring Motion: Optical Flow

Lecture 18 - 139

Image at frame t

Image at frame t+1

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014

Justin Johnson Fall 2019

Measuring Motion: Optical Flow

Lecture 18 - 140

Image at frame t

Image at frame t+1

Optical flow gives a displacement
field F between images It and It+1

Tells where each pixel will
move in the next frame:
F(x, y) = (dx, dy)
It+1(x+dx, y+dy) = It(x, y)

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014

Justin Johnson Fall 2019

Measuring Motion: Optical Flow

Lecture 18 - 141

Image at frame t

Image at frame t+1

Optical flow gives a displacement
field F between images It and It+1

Tells where each pixel will
move in the next frame:
F(x, y) = (dx, dy)
It+1(x+dx, y+dy) = It(x, y)

Horizontal flow dx

Vertical Flow dy
Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014

Optical Flow highlights
local motion

Justin Johnson Fall 2019

Separating Motion and Appearance: Two-Stream Networks

Lecture 18 - 142

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014

Input: Stack of optical flow:
[2*(T-1)] x H x W

Early fusion: First 2D conv
processes all flow images

Input: Single Image
3 x H x W

Justin Johnson Fall 2019Lecture 18 - 143

65.4

73

83.7
86.9 88

50
55
60
65
70
75
80
85
90

3D CNN Spatial only Temporal only Two-stream
(fuse by average)

Two-stream
(fuse by SVM)

Accuracy on UCF-101

Separating Motion and Appearance: Two-Stream Networks

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014

Justin Johnson Fall 2019

Modeling long-term temporal structure

Lecture 18 - 144

First event Second event3D
CNN

~5 seconds

So far all our temporal CNNs only model local
motion between frames in very short clips of
~2-5 seconds. What about long-term structure?

Time

Justin Johnson Fall 2019

Modeling long-term temporal structure

Lecture 18 - 145

First event Second event3D
CNN

~5 seconds

So far all our temporal CNNs only model local
motion between frames in very short clips of
~2-5 seconds. What about long-term structure?

Time

We know how to
handle sequences!
How about recurrent
networks?

Not covered in this class…

Justin Johnson Fall 2019

Inflating 2D Networks to 3D (I3D)

Lecture 18 - 146

There has been a lot of work on architectures for images.
Can we reuse image architectures for video?

Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool
layer with a 3D Kt x Kh x Kw version

Justin Johnson Fall 2019

Inflating 2D Networks to 3D (I3D)

Lecture 18 - 147

There has been a lot of work on architectures for images.
Can we reuse image architectures for video?

Previous layer

3x3
Conv

1x1
Conv

3x3
MaxPool

Concatenate

1x1
Conv

1x1
Conv

5x5
Conv

1x1
Conv

Inception Block: Original

Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool
layer with a 3D Kt x Kh x Kw version

Justin Johnson Fall 2019

Inflating 2D Networks to 3D (I3D)

Lecture 18 - 148

There has been a lot of work on architectures for images.
Can we reuse image architectures for video?

Previous layer

3x3x3
Conv

1x1x1
Conv

3x3x3
MaxPool

Concatenate

1x1x1
Conv

1x1x1
Conv

5x5x5
Conv

1x1x1
Conv

Inception Block: Inflated

Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool
layer with a 3D Kt x Kh x Kw version

Justin Johnson Fall 2019

Inflating 2D Networks to 3D (I3D)

Lecture 18 - 149

There has been a lot of work on architectures for images.
Can we reuse image architectures for video?

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool
layer with a 3D Kt x Kh x Kw version

Can use weights of 2D conv to
initialize 3D conv: copy Kt times in
space and divide by Kt
This gives the same result as 2D
conv given “constant” video input

2D conv kernel:
Cin x Kh x Kw

3D conv kernel:
Cin x Kt x Kh x Kw

Input:
3 x H x W

Input:
3 x Kt x H x W

Copy kernel
Kt times,
divide by Kt

Output:
H x W

Output:
1 x H x W

Duplicate input
Kt times

Output is
the same!

Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017

Justin Johnson Fall 2019

Inflating 2D Networks to 3D (I3D)

Lecture 18 - 150

There has been a lot of work on architectures for images.
Can we reuse image architectures for video?

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool
layer with a 3D Kt x Kh x Kw version

Can use weights of 2D conv to
initialize 3D conv: copy Kt times in
space and divide by Kt
This gives the same result as 2D
conv given “constant” video input

57.9
53.9

62.8

68.4
71.6

62.2 63.3
65.6

71.1
74.2

40

45

50

55

60

65

70

75

80

Per-frame CNN CNN+LSTM Two-stream
CNN

Inflated CNN Two-stream
inflated CNN

Top-1 Accuracy on Kinetics-400

Train from scratch Pretrain on ImageNet
Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017 All using Inception CNN

Justin Johnson Fall 2019

Treating time and space differently: SlowFast Networks

Lecture 18 - 156

Fast pathway

Slow pathway
Time

Channels

Space

prediction

C
C

C

αT
αT

αT βC
βC

βC

T
T

T

Slow

Fast

Lightweight (< 20% of compute)

Low framerate

High framerate
Lateral connections

β = 1/8
e.g. α = 8

Feichtenhofer et al, “SlowFast Networks for Video Recognition”, ICCV 2019
Slide credit: Christoph Feichtenhofer

Justin Johnson Fall 2019Lecture 18 - 158

• Dimensions are
• Strides are {temporal, spatial2}
• The backbone is ResNet-50
• Residual blocks are shown by brackets
• Non-degenerate temporal filters are

underlined
• Here the speed ratio is α = 8 and the

channel ratio is β = 1/8
• Orange numbers mark fewer channels,

for the Fast pathway
• Green numbers mark higher temporal

resolution of the Fast pathway
• No temporal pooling is performed

throughout the hierarchy

Feichtenhofer et al, “SlowFast Networks for Video Recognition”, ICCV 2019
Slide credit: Christoph Feichtenhofer

Treating time and space differently: SlowFast Networks

Justin Johnson Fall 2019

So far: Classify short clips

Lecture 18 - 159

Swimming
Running
Jumping
Eating
Standing

Videos: Recognize actions

Justin Johnson Fall 2019

Temporal Action Localization

Lecture 18 - 160

Running Jumping

Given a long untrimmed video sequence, identify
frames corresponding to different actions

Chao et al, ” Rethinking the Faster R-CNN Architecture for Temporal Action Localization”, CVPR 2018

Can use architecture similar to Faster R-CNN:
first generate temporal proposals then classify

Justin Johnson Fall 2019

Spatio-Temporal Detection

Lecture 18 - 161

Given a long untrimmed video, detect all the people in space
and time and classify the activities they are performing
Some examples from AVA Dataset:

Gu et al, “AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions”, CVPR 2018

Justin Johnson Fall 2019

Recap: Video Models

Lecture 18 - 162

Many video models:
Single-frame CNN (Try this first!)
Late fusion
Early fusion
3D CNN / C3D
Two-stream networks
CNN + RNN
Convolutional RNN
Spatio-temporal self-attention
SlowFast networks (current SoTA)

Lots more material we won’t have time for…

Richard Szeliski UW CSE 576 - DL frameworks and more 163

Lots more material we won’t have time for…

Richard Szeliski UW CSE 576 - DL frameworks and more 164

Lecture summary

• Deep learning frameworks (PyTorch)
• Instance and panoptic segmentation
• 3D neural networks
• Video

• Next lecture:
• HW4 – CNNs in PyTorch
• Edges, features, and alignment (Harpreet Sawhney)

UW CSE 576 - DL frameworks and more 165Richard Szeliski

