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Class calendar
Date Topic Slides Reading Homework
April 9 Filters and convolutions Google Slides Szeliski, Chapter 3 HW1 

due, HW2 assigned
April 14 Interpolation and Optimization pdf, pptx Szeliski, Chapter 4

April 16 Machine Learning pdf, pptx Szeliski, Chapter 5.1-5.2

April 21 Deep Neural Networks pdf, pptx Szeliski, Chapter 5.3

April 23 Convolutional Neural Networks pdf, pptx Szeliski, Chapter 5.4 HW2 due, HW3 
assigned

April 28 Network Architectures pdf, pptx Szeliski, Chapter 5.4

April 30 Segmentation and Detection pdf, pptx Szeliski, Chapter 6.3

May 5 DL Languages, Instance Segmentation Szeliski, Chapter 6.4

May 7 Edges, features, matching, RANSAC Szeliski, Chapter 7.1-7.2, 
8.1-8.2

HW3 due, HW4 
assigned
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https://docs.google.com/presentation/d/1Yp0UiqlAUxsnGCyeEwfmYXMunxSNdqqMWtMSfyI8UUU/
http://szeliski.org/Book/2ndEdition.htm
https://github.com/holynski/cse576_sp20_hw2
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture5-interpolationandoptimization.pdf
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture5-interpolationandoptimization.pptx
http://szeliski.org/Book/2ndEdition.htm
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture6_machinelearning_v5.pdf
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture6_machinelearning_v5.pptx
http://szeliski.org/Book/2ndEdition.htm
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture8_convolutionalneuralnetworks_v4.pdf
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture8_convolutionalneuralnetworks_v4.pptx
http://szeliski.org/Book/2ndEdition.htm
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture8_convolutionalneuralnetworks_v4.pdf
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture8_convolutionalneuralnetworks_v4.pptx
http://szeliski.org/Book/2ndEdition.htm
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture9_networkarchitectures_v3.pdf
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture9_networkarchitectures_v3.pptx
http://szeliski.org/Book/2ndEdition.htm
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture10_segmentationdetection_v4.pdf
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture10_segmentationdetection_v4.pptx
http://szeliski.org/Book/2ndEdition.htm
http://szeliski.org/Book/2ndEdition.htm
http://szeliski.org/Book/2ndEdition.htm
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Readings
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Unfortunately,
not yet ready L



DL software and more

• Deep learning frameworks
• Instance segmentation
• 3D neural networks
• Video
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As before, I’m borrowing slides from
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Justin Johnson Fall 2019

Lecture 9:
Deep Learning Frameworks

Lecture 9 - 7



Justin Johnson Fall 2019

A zoo of frameworks!

Lecture 8 - 8

Caffe 
(UC Berkeley)

Torch 
(NYU / Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)

Caffe2 
(Facebook)

PyTorch 
(Facebook)

CNTK 
(Microsoft)

PaddlePaddle
(Baidu)

MXNet 
(Amazon)
Developed by U Washington, CMU, MIT, Hong 
Kong U, etc but main framework of choice at 
AWS

Chainer 

JAX
(Google)

Keras



Justin Johnson Fall 2019

A zoo of frameworks!

Lecture 8 - 9

Caffe 
(UC Berkeley)

Torch 
(NYU / Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)

Caffe2 
(Facebook)

PyTorch 
(Facebook)

CNTK 
(Microsoft)

PaddlePaddle
(Baidu)

MXNet 
(Amazon)
Developed by U Washington, CMU, MIT, Hong 
Kong U, etc but main framework of choice at 
AWS

Chainer 

We’ll focus on this one

JAX
(Google)

Keras
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Recall: Computational Graphs

Lecture 8 - 10

x

W

hinge 
loss

R

+ Ls (scores)*
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The point of deep learning frameworks

Lecture 8 - 11

1. Allow rapid prototyping of new ideas

2. Automatically compute gradients for you

3. Run it all efficiently on GPU (or TPU)
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PyTorch
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PyTorch: Versions

Lecture 8 - 13

For this class we are using PyTorch version 1.5
(Released April 2020), running on Google Colab

Be careful if you are looking at older PyTorch code –
the API changed a lot before 1.0 
(0.3 to 0.4 had big changes!)
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PyTorch: Fundamental Concepts

Lecture 8 - 14

Tensor: Like a numpy array, but can run on GPU

Module: A neural network layer; may store state or 
learnable weights

Autograd: Package for building computational graphs 
out of Tensors, and automatically computing gradients
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PyTorch: Tensors

Lecture 8 - 15

Running example: Train a 
two-layer ReLU network on 
random data with L2 loss
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PyTorch: Tensors

Lecture 8 - 16

Create random tensors 
for data and weights
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PyTorch: Tensors

Lecture 8 - 17

Forward pass: compute 
predictions and loss
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PyTorch: Tensors

Lecture 8 - 18

Backward pass: manually 
compute gradients
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PyTorch: Tensors

Lecture 8 - 19

Gradient descent 
step on weights
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PyTorch: Tensors

Lecture 8 - 20

To run on GPU, just use a 
different device!
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PyTorch: Autograd

Lecture 8 - 21

Creating Tensors with 
requires_grad=True enables autograd

Operations on Tensors with 
requires_grad=True cause PyTorch to 
build a computational graph
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PyTorch: Autograd

Lecture 8 - 22

We will not want gradients 
(of loss) with respect to data

Do want gradients with 
respect to weights 
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PyTorch: Autograd

Lecture 8 - 23

Forward pass looks exactly the 
same as before, but we don’t 
need to track intermediate 
values - PyTorch keeps track of 
them for us in the graph
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PyTorch: Autograd

Lecture 8 - 24

Computes gradients with 
respect to all inputs that 
have requires_grad=True!
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PyTorch: Autograd

Lecture 8 - 25

x w1
mm

Every operation on a tensor with 
requires_grad=True will add to 
the computational graph, and the 
resulting tensors will also have 
requires_grad=True
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PyTorch: Autograd

Lecture 8 - 26

x w1
mm

clamp

Every operation on a tensor with 
requires_grad=True will add to 
the computational graph, and the 
resulting tensors will also have 
requires_grad=True
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PyTorch: Autograd

Lecture 8 - 27

x w1
mm

clamp

mm

y_pred

w2
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PyTorch: Autograd

Lecture 8 - 28

x w1
mm

clamp

mm

y_pred

-

w2
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PyTorch: Autograd

Lecture 8 - 29

x w1
mm

clamp

mm

y_pred

-

pow

yw2
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PyTorch: Autograd

Lecture 8 - 30

x w1
mm

clamp

mm

y_pred

-

pow

yw2

sum loss
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PyTorch: Autograd

Lecture 8 - 31

x w1 w2 y
mm

clamp

mm

y_pred

-

pow sum loss

Backprop to 
all inputs that 
require grad
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PyTorch: Autograd

Lecture 8 - 32

x w1 w2 y

After backward finishes, gradients 
are accumulated into w1.grad and 
w2.grad and the graph is destroyed
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PyTorch: Autograd

Lecture 8 - 33

x w1 w2 y

After backward finishes, gradients 
are accumulated into w1.grad and 
w2.grad and the graph is destroyed

Make gradient step on weights
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PyTorch: Autograd

Lecture 8 - 34

x w1 w2 y

After backward finishes, gradients 
are accumulated into w1.grad and 
w2.grad and the graph is destroyed

Set gradients to zero – forgetting 
this is a common bug!
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PyTorch: Autograd

Lecture 8 - 35

x w1 w2 y

After backward finishes, gradients 
are accumulated into w1.grad and 
w2.grad and the graph is destroyed

Tell PyTorch not to build a 
graph for these operations
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PyTorch: New functions

Lecture 8 - 36

Can define new operations 
using Python functions
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PyTorch: New functions

Lecture 8 - 37

Can define new operations 
using Python functions

x

* -1

exp

+1 1.0 / 

When our function runs, 
it will add to the graph

Gradients computed 
with autograd
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PyTorch: New functions

Lecture 8 - 38

Define new autograd operators 
by subclassing Function, define 
forward and backwardCan define new operations 

using Python functions

x

* -1

exp

+1 1.0 / 

When our function runs, 
it will add to the graph

Gradients computed 
with autograd

Recall:



Justin Johnson Fall 2019

PyTorch: New functions

Lecture 8 - 39

Define new autograd operators 
by subclassing Function, define 
forward and backward

x Sigmoid

Can define new operations 
using Python functions

x

* -1

exp

+1 1.0 / 

When our function runs, 
it will add to the graph

Gradients computed 
with autograd

Now when our function runs, 
it adds one node to the graph!
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PyTorch: New functions

Lecture 8 - 40

Define new autograd operators 
by subclassing Function, define 
forward and backwardCan define new operations 

using Python functions

x

* -1

exp

+1 1.0 / 

When our function runs, 
it will add to the graph

Gradients computed 
with autograd

In practice this is pretty rare – in most 
cases Python functions are good enough



Justin Johnson Fall 2019

PyTorch: nn

Lecture 8 - 41

Higher-level wrapper for 
working with neural nets

Use this! It will make your 
life easier
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PyTorch: nn

Lecture 8 - 42

Object-oriented API: Define 
model object as sequence 
of layers objects, each of 
which holds weight tensors



Justin Johnson Fall 2019

PyTorch: nn

Lecture 8 - 43

Forward pass: Feed data to 
model and compute loss
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PyTorch: nn

Lecture 8 - 44

Forward pass: Feed data to 
model and compute loss

torch.nn.functional has useful 
helpers like loss functions
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PyTorch: nn

Lecture 8 - 45

Backward pass: compute 
gradient with respect to all 
model weights (they have 
requires_grad=True)
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PyTorch: nn

Lecture 8 - 46

Make gradient step on 
each model parameter 
(with gradients disabled)
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PyTorch: optim

Lecture 8 - 47

Use an optimizer for 
different update rules
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PyTorch: optim

Lecture 8 - 48

After computing 
gradients, use optimizer to 
update and zero gradients
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PyTorch: nn
Defining Modules

Lecture 8 - 49

A PyTorch Module is a neural net 
layer; it inputs and outputs Tensors

Modules can contain weights or 
other modules

Very common to define your own 
models or layers as custom Modules
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PyTorch: nn
Defining Modules

Lecture 8 - 50

Define our whole model as 
a single Module
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PyTorch: nn
Defining Modules

Lecture 8 - 51

Initializer sets up two 
children (Modules can 
contain modules)
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PyTorch: nn
Defining Modules

Lecture 8 - 52

Define forward pass using child 
modules and tensor operations

No need to define backward -
autograd will handle it
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PyTorch: nn
Defining Modules

Lecture 8 - 53

Very common to mix and match 
custom Module subclasses and 
Sequential containers
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PyTorch: nn
Defining Modules

Lecture 8 - 54

Define network component 
as a Module subclass

x

Linear Linear

*

relu

Linear
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PyTorch: nn
Defining Modules

Lecture 8 - 55

Stack multiple instances of the 
component in a sequential

x

Linear Linear

*

relu

x

Linear Linear

*

relu

Linear

Very easy to quickly 
build complex network 
architectures!
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PyTorch: DataLoaders

Lecture 8 - 56

A DataLoader wraps a 
Dataset and provides 
minibatching, shuffling, 
multithreading, for you

When you need to load 
custom data, just write your 
own Dataset class
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PyTorch: DataLoaders

Lecture 8 - 57

Iterate over loader to 
form minibatches
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PyTorch: Pretrained Models

Lecture 8 - 58

Super easy to use pretrained models with torchvision 
https://github.com/pytorch/vision

https://github.com/pytorch/vision
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Static vs Dynamic Graphs
• See Justin’s Lecture 8 for more slides…

Lecture 8 - 59
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TensorFlow and Keras
• See Justin’s Lecture 8 for more slides…

Lecture 8 - 60
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TensorBoard

Lecture 8 - 61

Add logging to code to record loss, stats, etc
Run server and get pretty graphs!
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TensorBoard

Lecture 8 - 62

Also works with PyTorch: torch.utils.tensorboard

https://pytorch.org/docs/stable/tensorboard.html
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PyTorch vs TensorFlow

Lecture 8 - 63

PyTorch
- My personal favorite
- Clean, imperative API
- Easy dynamic graphs for debugging
- JIT allows static graphs for production
- Cannot use TPUs
- Not easy to deploy on mobile

TensorFlow 1.0
- Static graphs by default
- Can be confusing to debug
- API a bit messy

TensorFlow 2.0
- Dynamic by default
- Standardized on Keras API
- Just came out (9/19), no consensus yet
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Lecture 10:
Training Neural Networks

… just the data augmentation slides, for today …

Lecture 1 - 64
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Data Augmentation

Lecture 10 - 65

Load image 
and label “cat”

CNN

Compute
loss

This image by Nikita is 
licensed under CC-BY 2.0

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/


Justin Johnson Fall 2019

Data Augmentation

Lecture 10 - 66

Transform image

Load image 
and label “cat”

CNN

Compute
loss
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Data Augmentation: Horizontal Flips

Lecture 10 - 67
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Data Augmentation: Random Crops and Scales

Lecture 10 - 68

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch
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Data Augmentation: Random Crops and Scales

Lecture 10 - 69

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing: average a fixed set of crops
ResNet:

1. Resize image at 5 scales:  {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips
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Data Augmentation: Color Jitter

Lecture 10 - 70

Simple: Randomize 
contrast and brightness

More Complex:
1. Apply PCA to all [R, G, B] 

pixels in training set
2. Sample a “color offset” 

along principal 
component directions

3. Add offset to all pixels 
of a training image

(Used in AlexNet, ResNet, etc)
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Data Augmentation: Get creative for your problem!

Lecture 10 - 71

Random mix/combinations of :
- translation
- rotation
- stretching
- shearing, 
- lens distortions, …  (go crazy)



HW4 and PyTorch tutorial
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Introduction by Keunhong on Thursday



PyTorch tutorial
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Define the network

Richard Szeliski UW CSE 576 - DL frameworks and more 75



Data augmentation in PyTorch
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DL software and more

• Deep learning frameworks
• Instance segmentation
• 3D neural networks
• Video

Richard Szeliski UW CSE 576 - DL frameworks and more 77



Justin Johnson Fall 2019

Lecture 16:
Detection + Segmentation

Lecture 16 - 78
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Things and Stuff

Lecture 16 - 79

Cow

Grass

SkyTre
es

Things: Object categories 
that can be separated into 
object instances 
(e.g. cats, cars, person)

Stuff: Object categories 
that cannot be separated 
into instances 
(e.g. sky, grass, water, trees)

This image is CC0 public domain

Grass

Cat

Sky Trees

https://pixabay.com/p-1246693/%3Fno_redirect
https://pixabay.com/en/cows-two-cows-dairy-agriculture-1264546/
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Cow

Grass

Sky
Tre
es

Computer Vision Tasks
Object Detection: Detects individual 
object instances, but only gives box
(Only things!)

Semantic Segmentation: Gives per-
pixel labels, but merges instances
(Both things and stuff)
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Computer Vision Tasks: Instance Segmentation

Classification Semantic
Segmentation

Object 
Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectsNo objects, just pixels
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This image is CC0 public domain

Computer Vision Tasks: Instance Segmentation
Instance Segmentation: 
Detect all objects in the 
image, and identify the 
pixels that belong to each 
object (Only things)

Cow

Cow

https://pixabay.com/p-1246693/%3Fno_redirect
https://pixabay.com/en/cows-two-cows-dairy-agriculture-1264546/
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This image is CC0 public domain

Computer Vision Tasks: Instance Segmentation
Instance Segmentation: 
Detect all objects in the 
image, and identify the 
pixels that belong to each 
object (Only things)

Approach: Perform 
object detection, then 
predict a segmentation 
mask for each object

Cow

Cow

https://pixabay.com/p-1246693/%3Fno_redirect
https://pixabay.com/en/cows-two-cows-dairy-agriculture-1264546/


Justin Johnson Fall 2019Lecture 16 - 84

Object Detection:
Faster R-CNN

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NeurIPS 2015
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Instance Segmentation:
Mask R-CNN

He et al, “Mask R-CNN”, ICCV 2017

Mask 
Prediction
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Mask R-CNN

Lecture 16 - 86

He et al, “Mask R-CNN”, ICCV 2017

RoI Align Conv

Classification Scores: C 
Box coordinates (per class): 
4 * C

CNN
+RPN

Conv

Predict a mask for 
each of C classes:

C x 28 x 28

256 x 14 x 14 256 x 14 x 14
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Mask R-CNN: Example Training Targets

Lecture 16 - 87
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Mask R-CNN: Example Training Targets

Lecture 16 - 88
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Mask R-CNN: Example Training Targets

Lecture 16 - 89
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Mask R-CNN: Example Training Targets

Lecture 16 - 90
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Mask R-CNN: Very Good Results!

Lecture 16 - 91



Justin Johnson Fall 2019
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Cow

Cow Cow

Grass

SkyTre
es

Instance Segmentation: Separate 
object instances, but only things

Semantic Segmentation: Identify both things 
and stuff, but doesn’t separate instances

Beyond Instance Segmentation
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Beyond Instance Segmentation: Panoptic Segmentation

Lecture 16 - 94

Cow #1
Cow #2

Cow #1
Cow #2

Grass

Trees

SkyLabel all pixels in 
the image (both 
things and stuff)

For “thing” 
categories also 
separate into 
instances

Kirillov et al, “Panoptic Segmentation”, CVPR 2019
Kirillov et al, “Panoptic Feature Pyramid Networks”, CVPR 2019
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Kirillov et al,  “Panoptic Feature Pyramid Networks”, CVPR 2019

Beyond Instance Segmentation: Panoptic Segmentation
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Beyond Instance Segmentation: Human Keypoints

Lecture 16 - 96

Person image is CC0 public domain

Represent the pose of a human 
by locating a set of keypoints

e.g. 17 keypoints:
- Nose
- Left / Right eye
- Left / Right ear
- Left / Right shoulder
- Left / Right elbow
- Left / Right wrist
- Left / Right hip
- Left / Right knee
- Left / Right ankle

https://www.publicdomainpictures.net/en/view-image.php%3Fimage=238189&picture=man-standing
http://creativecommons.org/publicdomain/zero/1.0/
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Mask R-CNN:
Instance Segmentation

He et al, “Mask R-CNN”, ICCV 2017

Mask 
Prediction

Keypoint
estimation
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Mask R-CNN:
Keypoint Estimation

He et al, “Mask R-CNN”, ICCV 2017

Mask 
Prediction

Keypoint
prediction

Keypoint
estimation
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Mask R-CNN: Keypoints

Lecture 16 - 99

He et al, “Mask R-CNN”, ICCV 2017

RoI Align Conv…

Classification Scores: C 
Box coordinates (per class): 4 * C
Segmentation mask: C x 28 x 28

CNN
+RPN

256 x 14 x 14
Keypoint masks:

K x 56 x 56

Left ankle Right ankle

…

One mask for each of 
the K different keypoints

Ground-truth has one “pixel” turned on 
per keypoint. Train with softmax loss
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Joint Instance Segmentation and Pose Estimation

Lecture 16 - 100

He et al, “Mask R-CNN”, ICCV 2017
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General Idea: Add Per-
Region “Heads” to 
Faster / Mask R-CNN!

He et al, “Mask R-CNN”, ICCV 2017

Mask 
Prediction

Keypoint
prediction

Keypoint
estimation

Per-Region Heads:
Each receives the features after 
RoI Pool / RoI Align, makes 
some prediction per-region



Justin Johnson Fall 2019Lecture 16 - 102

Dense Captioning:
Predict a caption 
per region!

Johnson, Karpathy, and Fei-Fei, “DenseCap: Fully Convolutional 
Localization Networks for Dense Captioning”, CVPR 2016

Caption 
prediction 
(LSTM)

Per-Region Heads:
Each receives the features after 
RoI Pool / RoI Align, makes 
some prediction per-region
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Dense Captioning

Lecture 16 - 103

Johnson, Karpathy, and Fei-Fei, “DenseCap: Fully Convolutional Localization Networks for Dense Captioning”, CVPR 2016
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Dense Captioning

Lecture 16 - 104

Johnson, Karpathy, and Fei-Fei, “DenseCap: Fully Convolutional Localization Networks for Dense Captioning”, CVPR 2016
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3D Shape Prediction: 
Predict a 3D triangle 
mesh per region!

Gkioxari, Malik, and Johnson, “Mesh R-CNN”, ICCV 2019

Mesh 
predictor

Per-Region Heads:
Each receives the features after 
RoI Pool / RoI Align, makes 
some prediction per-region
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Summary: Many Computer Vision Tasks!

Classification Semantic
Segmentation

Object 
Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectsNo objects, just pixels
This image is CC0 public domain

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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DL software and more
• Deep learning frameworks
• Instance segmentation
• 3D neural networks
• Video

Richard Szeliski UW CSE 576 - DL frameworks and more 108
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Lecture 17:
3D Vision

Lecture 17 - 109

X
Covered in later part 

of the
UW CSE 576 course
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Today: Predicting 3D Shapes of Objects

Lecture 17 - 110

He, Gkioxari, Dollár, and 
Girshick, “Mask R-CNN”, 
ICCV 2017

Mask R-CNN: 
2D Image -> 2D shapes

Mesh R-CNN: 
2D Image -> 3D shapes

Gkioxari, Malik, and Johnson, 
“Mesh R-CNN”, ICCV 2019
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Many more topics in 3D Vision!

Lecture 17 - 111

Computing correspondences 
Multi-view stereo
Structure from Motion
Simultaneous Localization and Mapping (SLAM)
Self-supervised learning
View Synthesis
Differentiable graphics
3D Sensors

Many non-Deep Learning methods alive and well in 3D!
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Lecture 18:
Videos

Lecture 18 - 112
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Today: Video = 2D + Time

Lecture 18 - 113

This image is CC0 public domain

A video is a sequence of images
4D tensor: T x 3 x H x W

(or 3 x T x H x W)

https://pixabay.com/p-1246693/%3Fno_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Example task: Video Classification

Lecture 18 - 114

Input video:
T x 3 x H x W

Running video is in the public domain

Swimming
Running
Jumping
Eating
Standing

https://commons.wikimedia.org/wiki/File:Running.gif
https://en.wikipedia.org/wiki/en:public_domain
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Example task: Video Classification

Lecture 18 - 115

Swimming
Running
Jumping
Eating
Standing

Dog
Cat
Fish
Truck

Images: Recognize objects

Videos: Recognize actions

Running video is in the public domain

https://commons.wikimedia.org/wiki/File:Running.gif
https://en.wikipedia.org/wiki/en:public_domain
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Problem: Videos are big!

Lecture 18 - 116

Input video:
T x 3 x H x W

Videos are ~30 frames per second (fps)

Size of uncompressed video 
(3 bytes per pixel):

SD (640 x 480): ~1.5 GB per minute
HD (1920 x 1080): ~10 GB per minute
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Problem: Videos are big!

Lecture 18 - 117

Input video:
T x 3 x H x W

Videos are ~30 frames per second (fps)

Size of uncompressed video 
(3 bytes per pixel):

SD (640 x 480): ~1.5 GB per minute
HD (1920 x 1080): ~10 GB per minute

Solution: Train on short clips: low 
fps and low spatial resolution
e.g. T = 16, H=W=112
(3.2 seconds at 5 fps, 588 KB)
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Training on Clips

Lecture 18 - 118

Raw video: Long, high FPS
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Training on Clips

Lecture 18 - 119

Raw video: Long, high FPS

Training: Train model to classify short clips with low FPS
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Training on Clips

Lecture 18 - 120

Raw video: Long, high FPS

Training: Train model to classify short clips with low FPS

Testing: Run model on different clips, average predictions
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Video Classification: Single-Frame CNN

Lecture 18 - 121

CNN

“Running”

Simple idea: train normal 2D CNN to classify video frames independently 
(Average predicted probs at test-time)
Often a very strong baseline for video classification

CNN

“Running”

CNN

“Running”

CNN

“Running”

CNN

“Running”

CNN

“Running”

CNN

“Running”
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Video Classification: Late Fusion (with FC layers)

Lecture 18 - 122

CNNCNNCNN CNN CNN CNN

Input:
T x 3 x H x W

2D CNN on 
each frame

Frame features
T x D x H’ x W’

Flatten

MLP

Class scores: C

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Run 2D CNN on each 
frame, concatenate 
features and feed to MLP

Clip features: TDH’W’

Intuition: Get high-level appearance 
of each frame, and combine them
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Video Classification: Late Fusion (with pooling)

Lecture 18 - 123

CNNCNNCNN CNN CNN CNN

Input:
T x 3 x H x W

2D CNN on 
each frame

Frame features
T x D x H’ x W’

Average Pool over space and time

Clip features: D
Linear

Class scores: C Run 2D CNN on each 
frame, pool features 
and feed to Linear

Intuition: Get high-level appearance 
of each frame, and combine them
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Video Classification: Late Fusion (with pooling)

Lecture 18 - 124

CNNCNNCNN CNN CNN CNN

Input:
T x 3 x H x W

2D CNN on 
each frame

Frame features
T x D x H’ x W’

Average Pool over space and time

Clip features: D
Linear

Class scores: C Run 2D CNN on each 
frame, pool features 
and feed to Linear

Intuition: Get high-level appearance 
of each frame, and combine them
Problem: Hard to compare low-level 
motion between frames
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Video Classification: Early Fusion

Lecture 18 - 125

2D CNN

Input:
T x 3 x H x W

Reshape:
3T x H x W

Class scores: C

Rest of the network 
is standard 2D CNN

Intuition: Compare frames with 
very first conv layer, after that 
normal 2D CNN

First 2D convolution collapses 
all temporal information:
Input: 3T x H x W
Output: D x H x W

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014
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Video Classification: Early Fusion

Lecture 18 - 126

2D CNN

Input:
T x 3 x H x W

Reshape:
3T x H x W

Class scores: C

Rest of the network 
is standard 2D CNN

Intuition: Compare frames with 
very first conv layer, after that 
normal 2D CNN
Problem: One layer of temporal 
processing may not be enough

First 2D convolution collapses 
all temporal information:
Input: 3T x H x W
Output: D x H x W

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014
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Video Classification: 3D CNN

Lecture 18 - 127

3D CNN

Input:
3 x T x H x W

Class scores: C

Intuition: Use 3D versions of 
convolution and pooling to 
slowly fuse temporal information 
over the course of the network

Each layer in the network is a 
4D tensor: D x T x H x W
Use 3D conv and 3D pooling 
operations 

Ji et al, “3D Convolutional Neural Networks for Human Action Recognition”, TPAMI 2010 ; Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014
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2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Lecture 18 - 128

Input:  Cin x T x H x W
(3D grid with Cin-dim 
feat at each point)

W = 224

H = 224

T = 16

Weight: 
Cout x Cin x T x 3 x 3
Slide over x and y

T = 16

Cout different filters

Output: 
Cout x H x W
2D grid with Cout –dim 
feat at each point

W = 224

H = 224
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2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Lecture 18 - 129

Input:  Cin x T x H x W
(3D grid with Cin-dim 
feat at each point)

W = 224

H = 224

T = 16

Weight: 
Cout x Cin x T x 3 x 3
Slide over x and y

Cout different filters

Output: 
Cout x H x W
2D grid with Cout –dim 
feat at each point

W = 224

No temporal shift-invariance! Needs 
to learn separate filters for the same 
motion at different times in the clip
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2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Lecture 18 - 130

Input:  Cin x T x H x W
(3D grid with Cin-dim 
feat at each point)

W = 224

H = 224

T = 16

Weight: 
Cout x Cin x 3 x 3 x 3
Slide over x and y

T = 3

Cout different filters

Output: 
Cout x T x H x W
3D grid with Cout–dim 
feat at each point

W = 224

H = 224
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2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Lecture 18 - 131

Input:  Cin x T x H x W
(3D grid with Cin-dim 
feat at each point)

W = 224

H = 224

T = 16

Weight: 
Cout x Cin x 3 x 3 x 3
Slide over x and y

T = 3

Cout different filters

Output: 
Cout x T x H x W
3D grid with Cout–dim 
feat at each point

W = 224

H = 224

Temporal shift-invariant since 
each filter slides over time!
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2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Lecture 18 - 132

Input:  Cin x T x H x W
(3D grid with Cin-dim 
feat at each point)

W = 224

H = 224

T = 16

Weight: 
Cout x Cin x 3 x 3 x 3
Slide over x and y

T = 3

Cout different filters

Temporal shift-invariant since 
each filter slides over time!

First-layer filters have shape 
3 (RGB) x 4 (frames) x 5 x 5 (space)
Can visualize as video clips!

Karpathy et al, “Large-scale Video Classification 
with Convolutional Neural Networks”, CVPR 2014
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Example Video Dataset: Sports-1M

Lecture 18 - 133

1 million YouTube videos 
annotated with labels for 
487 different types of sports

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Ground Truth
Correct prediction
Incorrect prediction
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77.7 76.8
78.7

80.2

84.4

72
74
76
78
80
82
84
86

Single
Frame

Early
Fusion

Late
Fusion

3D CNN C3D

Sports-1M Top-5 Accuracy

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Single Frame model 
works well – always 
try this first!

3D CNNs have 
improved a lot 
since 2014!

Early Fusion vs Late Fusion vs 3D CNN
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C3D: The VGG of 3D CNNs

Lecture 18 - 135

Layer Size
Input 3 x 16 x 112 x 112

Conv1 (3x3x3) 64 x 16 x 112 x 112
Pool1 (1x2x2) 64 x 16 x 56 x 56
Conv2 (3x3x3) 128 x 16 x 56 x 56
Pool2 (2x2x2) 128 x 8 x 28 x 28

Conv3a (3x3x3) 256 x 8 x 28 x 28
Conv3b (3x3x3) 256 x 8 x 28 x 28
Pool3 (2x2x2) 256 x 4 x 14 x 14

Conv4a (3x3x3) 512 x 4 x 14 x 14
Conv4b (3x3x3) 512 x 4 x 14 x 14
Pool4 (2x2x2) 512 x 2 x 7 x 7

Conv5a (3x3x3) 512 x 2 x 7 x 7
Conv5b (3x3x3) 512 x 2 x 7 x 7

Pool5 512 x 1 x 3 x 3
FC6 4096
FC7 4096
FC8 C

3D CNN that uses all 3x3x3 conv and 
2x2x2 pooling 
(except Pool1 which is 1x2x2)

Released model pretrained on Sports-
1M: Many people used this as a video 
feature extractor

Tran et al, “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015
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C3D: The VGG of 3D CNNs

Lecture 18 - 136

Layer Size MFLOPs
Input 3 x 16 x 112 x 112

Conv1 (3x3x3) 64 x 16 x 112 x 112 1.04
Pool1 (1x2x2) 64 x 16 x 56 x 56
Conv2 (3x3x3) 128 x 16 x 56 x 56 11.10
Pool2 (2x2x2) 128 x 8 x 28 x 28

Conv3a (3x3x3) 256 x 8 x 28 x 28 5.55
Conv3b (3x3x3) 256 x 8 x 28 x 28 11.10
Pool3 (2x2x2) 256 x 4 x 14 x 14

Conv4a (3x3x3) 512 x 4 x 14 x 14 2.77
Conv4b (3x3x3) 512 x 4 x 14 x 14 5.55
Pool4 (2x2x2) 512 x 2 x 7 x 7

Conv5a (3x3x3) 512 x 2 x 7 x 7 0.69
Conv5b (3x3x3) 512 x 2 x 7 x 7 0.69

Pool5 512 x 1 x 3 x 3
FC6 4096 0.51
FC7 4096 0.45
FC8 C 0.05

3D CNN that uses all 3x3x3 conv and 
2x2x2 pooling 
(except Pool1 which is 1x2x2)

Released model pretrained on Sports-
1M: Many people used this as a video 
feature extractor

Problem: 3x3x3 conv is very expensive! 
AlexNet: 0.7 GFLOP
VGG-16: 13.6 GFLOP
C3D: 39.5 GFLOP (2.9x VGG!)

Tran et al, “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015
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77.7 76.8
78.7

80.2

84.4

72
74
76
78
80
82
84
86

Single
Frame

Early
Fusion

Late
Fusion

3D CNN C3D

Sports-1M Top-5 Accuracy

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014
Tran et al, “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015

Early Fusion vs Late Fusion vs 3D CNN
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Recognizing Actions from Motion

Lecture 18 - 138

Johansson, “Visual perception of biological motion and a model for its analysis.” Perception & Psychophysics. 14(2):201-211. 1973.

We can easily recognize actions using only motion information
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Measuring Motion: Optical Flow

Lecture 18 - 139

Image at frame t

Image at frame t+1

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014
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Measuring Motion: Optical Flow

Lecture 18 - 140

Image at frame t

Image at frame t+1

Optical flow gives a displacement 
field F between images It and It+1

Tells where each pixel will 
move in the next frame:
F(x, y) = (dx, dy)
It+1(x+dx, y+dy) = It(x, y)

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014
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Measuring Motion: Optical Flow

Lecture 18 - 141

Image at frame t

Image at frame t+1

Optical flow gives a displacement 
field F between images It and It+1

Tells where each pixel will 
move in the next frame:
F(x, y) = (dx, dy)
It+1(x+dx, y+dy) = It(x, y)

Horizontal flow dx

Vertical Flow dy
Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014

Optical Flow highlights 
local motion
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Separating Motion and Appearance: Two-Stream Networks

Lecture 18 - 142

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014

Input: Stack of optical flow:
[2*(T-1)] x H x W

Early fusion: First 2D conv 
processes all flow images

Input: Single Image
3 x H x W
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65.4

73

83.7
86.9 88

50
55
60
65
70
75
80
85
90

3D CNN Spatial only Temporal only Two-stream
(fuse by average)

Two-stream
(fuse by SVM)

Accuracy on UCF-101

Separating Motion and Appearance: Two-Stream Networks

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014
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Modeling long-term temporal structure

Lecture 18 - 144

First event Second event3D 
CNN

~5 seconds

So far all our temporal CNNs only model local 
motion between frames in very short clips of 
~2-5 seconds. What about long-term structure?

Time
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Modeling long-term temporal structure

Lecture 18 - 145

First event Second event3D 
CNN

~5 seconds

So far all our temporal CNNs only model local 
motion between frames in very short clips of 
~2-5 seconds. What about long-term structure?

Time

We know how to 
handle sequences! 
How about recurrent 
networks?

Not covered in this class…
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Inflating 2D Networks to 3D (I3D)

Lecture 18 - 146

There has been a lot of work on architectures for images. 
Can we reuse image architectures for video?

Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool 
layer with a 3D Kt x Kh x Kw version
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Inflating 2D Networks to 3D (I3D)

Lecture 18 - 147

There has been a lot of work on architectures for images. 
Can we reuse image architectures for video?

Previous layer

3x3 
Conv

1x1 
Conv

3x3 
MaxPool

Concatenate

1x1 
Conv

1x1 
Conv

5x5 
Conv

1x1 
Conv

Inception Block: Original

Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool 
layer with a 3D Kt x Kh x Kw version
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Inflating 2D Networks to 3D (I3D)

Lecture 18 - 148

There has been a lot of work on architectures for images. 
Can we reuse image architectures for video?

Previous layer

3x3x3 
Conv

1x1x1 
Conv

3x3x3 
MaxPool

Concatenate

1x1x1 
Conv

1x1x1 
Conv

5x5x5 
Conv

1x1x1 
Conv

Inception Block: Inflated

Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool 
layer with a 3D Kt x Kh x Kw version
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Inflating 2D Networks to 3D (I3D)

Lecture 18 - 149

There has been a lot of work on architectures for images. 
Can we reuse image architectures for video?

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool 
layer with a 3D Kt x Kh x Kw version

Can use weights of 2D conv to 
initialize 3D conv: copy Kt times in 
space and divide by Kt
This gives the same result as 2D 
conv given “constant” video input

2D conv kernel:
Cin x Kh x Kw

3D conv kernel:
Cin x Kt x Kh x Kw

Input:
3 x H x W

Input:
3 x Kt x H x W

Copy kernel 
Kt times, 
divide by Kt

Output:
H x W

Output:
1 x H x W

Duplicate input 
Kt times

Output is 
the same!

Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017
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Inflating 2D Networks to 3D (I3D)

Lecture 18 - 150

There has been a lot of work on architectures for images. 
Can we reuse image architectures for video?

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool 
layer with a 3D Kt x Kh x Kw version

Can use weights of 2D conv to 
initialize 3D conv: copy Kt times in 
space and divide by Kt
This gives the same result as 2D 
conv given “constant” video input

57.9
53.9

62.8

68.4
71.6

62.2 63.3
65.6

71.1
74.2

40

45

50

55

60

65

70

75

80

Per-frame CNN CNN+LSTM Two-stream
CNN

Inflated CNN Two-stream
inflated CNN

Top-1 Accuracy on Kinetics-400

Train from scratch Pretrain on ImageNet
Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017 All using Inception CNN
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Treating time and space differently: SlowFast Networks

Lecture 18 - 156

Fast pathway

Slow pathway
Time

Channels

Space

prediction

C
C

C

αT
αT

αT βC
βC

βC

T
T

T

Slow

Fast

Lightweight (< 20% of compute)

Low framerate

High framerate
Lateral   connections

β = 1/8
e.g. α = 8

Feichtenhofer et al, “SlowFast Networks for Video Recognition”, ICCV 2019
Slide credit: Christoph Feichtenhofer
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• Dimensions are
• Strides are {temporal, spatial2} 
• The backbone is ResNet-50
• Residual blocks are shown by brackets
• Non-degenerate temporal filters are 

underlined
• Here the speed ratio is α = 8 and the 

channel ratio is β = 1/8
• Orange numbers mark fewer channels, 

for the Fast pathway
• Green numbers mark higher temporal 

resolution of the Fast pathway
• No temporal pooling is performed 

throughout the hierarchy

Feichtenhofer et al, “SlowFast Networks for Video Recognition”, ICCV 2019
Slide credit: Christoph Feichtenhofer

Treating time and space differently: SlowFast Networks
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So far: Classify short clips

Lecture 18 - 159

Swimming
Running
Jumping
Eating
Standing

Videos: Recognize actions
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Temporal Action Localization

Lecture 18 - 160

Running Jumping

Given a long untrimmed video sequence, identify 
frames corresponding to different actions

Chao et al, ” Rethinking the Faster R-CNN Architecture for Temporal Action Localization”, CVPR 2018

Can use architecture similar to Faster R-CNN: 
first generate temporal proposals then classify
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Spatio-Temporal Detection

Lecture 18 - 161

Given a long untrimmed video, detect all the people in space 
and time and classify the activities they are performing
Some examples from AVA Dataset:

Gu et al, “AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions”, CVPR 2018
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Recap: Video Models

Lecture 18 - 162

Many video models:
Single-frame CNN (Try this first!)
Late fusion
Early fusion
3D CNN / C3D
Two-stream networks
CNN + RNN
Convolutional RNN
Spatio-temporal self-attention
SlowFast networks (current SoTA)



Lots more material we won’t have time for…

Richard Szeliski UW CSE 576 - DL frameworks and more 163
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Lecture summary

• Deep learning frameworks (PyTorch)
• Instance and panoptic segmentation
• 3D neural networks
• Video

• Next lecture:
• HW4 – CNNs in PyTorch
• Edges, features, and alignment (Harpreet Sawhney)

UW CSE 576 - DL frameworks and more 165Richard Szeliski


