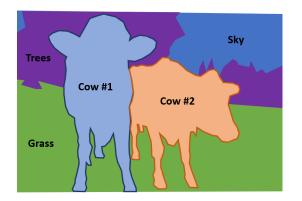
DL Frameworks and More

Computer Vision (UW EE/CSE 576)



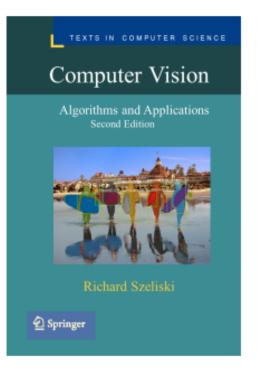
Richard Szeliski Facebook & UW Lecture 11 – May 5, 2020

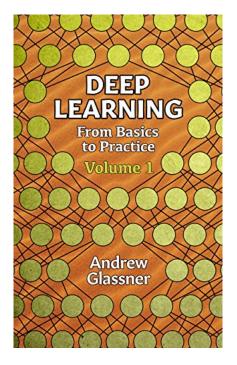
clink glass \rightarrow drink

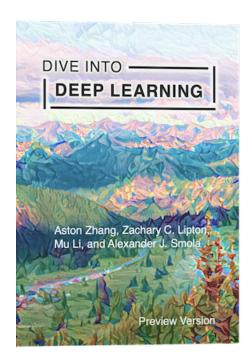
Class calendar

Date	Торіс	Slides	Reading	Homework
April 9	Filters and convolutions	Google Slides	Szeliski, Chapter 3	HW1 due, <u>HW2</u> assigned
April 14	Interpolation and Optimization	<u>pdf</u> , <u>pptx</u>	<u>Szeliski</u> , Chapter 4	
April 16	Machine Learning	<u>pdf</u> , <u>pptx</u>	Szeliski, Chapter 5.1-5.2	
April 21	Deep Neural Networks	<u>pdf</u> , <u>pptx</u>	Szeliski, Chapter 5.3	
April 23	Convolutional Neural Networks	<u>pdf</u> , <u>pptx</u>	<u>Szeliski</u> , Chapter 5.4	HW2 due, HW3 assigned
April 28	Network Architectures	<u>pdf</u> , <u>pptx</u>	Szeliski, Chapter 5.4	
April 30	Segmentation and Detection	<u>pdf</u> , <u>pptx</u>	<u>Szeliski</u> , Chapter 6.3	
May 5	DL Languages, Instance Segmentation		<u>Szeliski</u> , Chapter 6.4	
May 7	Edges, features, matching, RANSAC		<u>Szeliski</u> , Chapter 7.1-7.2, 8.1-8.2	HW3 due, HW4 assigned

References







https://d2l.ai/

Chapter 6

Readings

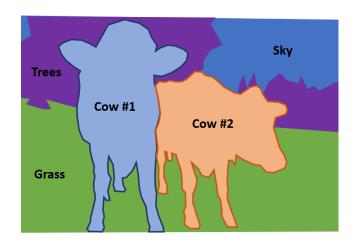
Recognition

6.1	Instance recognition	9
6.2	Image classification	22
	6.2.1 Feature-based methods	23
	6.2.2 Deep networks	5
	6.2.3 Face recognition	5
6.3	Object letection	-1
	6.3.1 Face defection (1.1.1.1.1.1.1.2.1.2.1.2.1.34	-2
	Object letedion	0
	6.3.3 General object detection	
	6.3.4 Application: Image search	<u>.</u>
6.4	Senancing tation / OT CO. O	5
	6.3.4 Application: Image search	57
	6.4.2 Instance segmentation	
	6.4.3 Pose estimation	57
	6.4.4 Panoptic segmentation	58
	6.4.5 <i>Application</i> : Intelligent photo editing	
6.5	Video understanding	
6.6	Vision and language	
6.7	Datasets and benchmarks	

UW CSE 576 - DL frameworks and more

DL software and more

- Deep learning frameworks
- Instance segmentation
- 3D neural networks
- Video



class Net(nn.Module):

def __init__(self): super(Net, self). init () # 1 input image channel, 6 output channels, 5x5 square convolution # kernel self.conv1 = nn.Conv2d(1, 6, 5) self.conv2 = nn.Conv2d(6, 16, 5)# an affine operation: y = Wx + b self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): # Max pooling over a (2, 2) window x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) # If the size is a square you can only specify a single number x = F.max pool2d(F.relu(self.conv2(x)), 2) x = x.view(-1, self.num_flat_features(x)) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x)return x

 $clink \ glass \rightarrow drink$

As before, I'm borrowing slides from

EECS 498-007 / 598-005 Deep Learning for Computer Vision Fall 2019

Course Description

UNIVERSITY OF

Computer Vision has become ubiquitous in our society, with applications in search, image understanding, apps, mapping, medicine, drones, and self-driving cars. Core to many of these applications are visual recognition tasks such as image classification and object detection. Recent developments in neural network approaches have greatly advanced the performance of these state-of-the-art visual recognition systems. This course is a deep dive into details of neural-network based deep learning methods for computer vision. During this course, students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in computer vision. We will cover learning algorithms, neural network architectures, and practical engineering tricks for training and fine-tuning networks for visual recognition tasks.

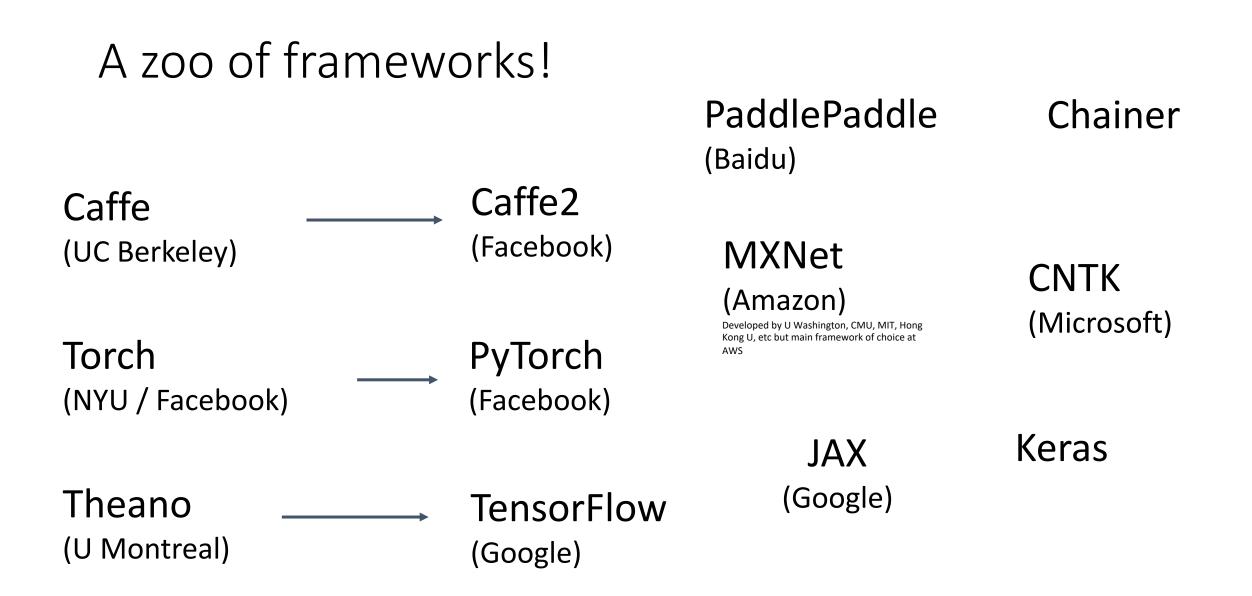
Instructor Graduate Student Instructors

EECS 498-007 / 598-005 Deep Learning for Computer Vision Fall 2019

Lecture 9: Deep Learning Frameworks

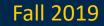
Justin Johnson

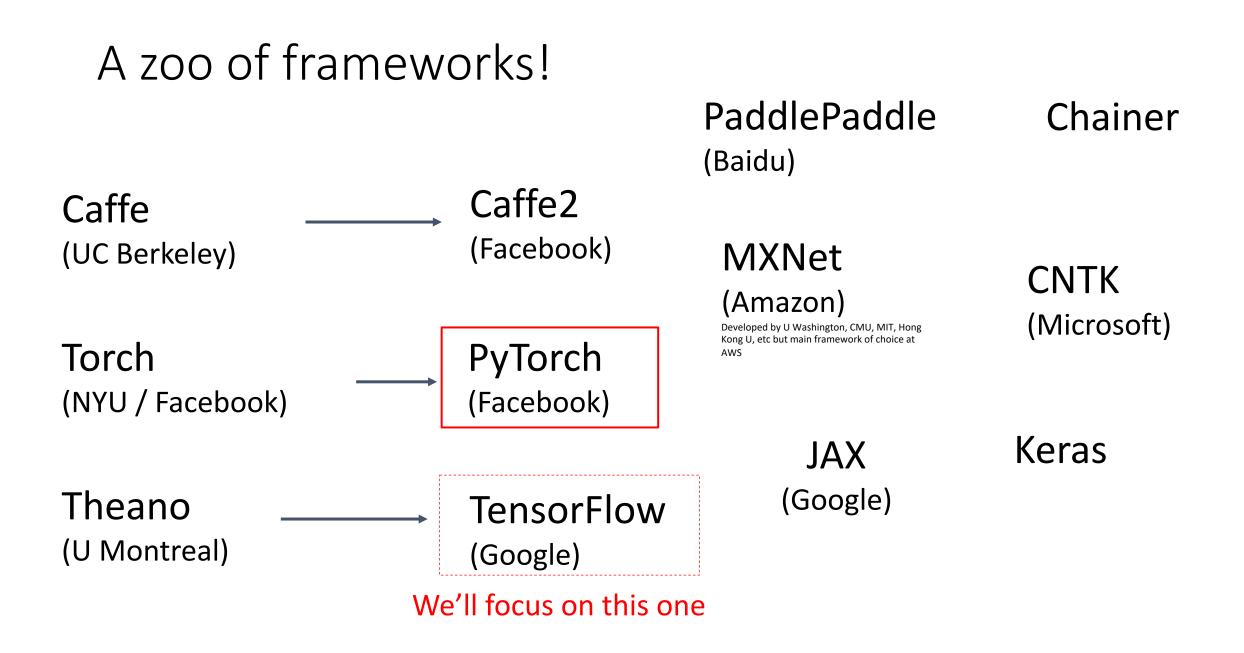
Lecture 9 - 7



Justin Johnson

Lecture 8 - 8



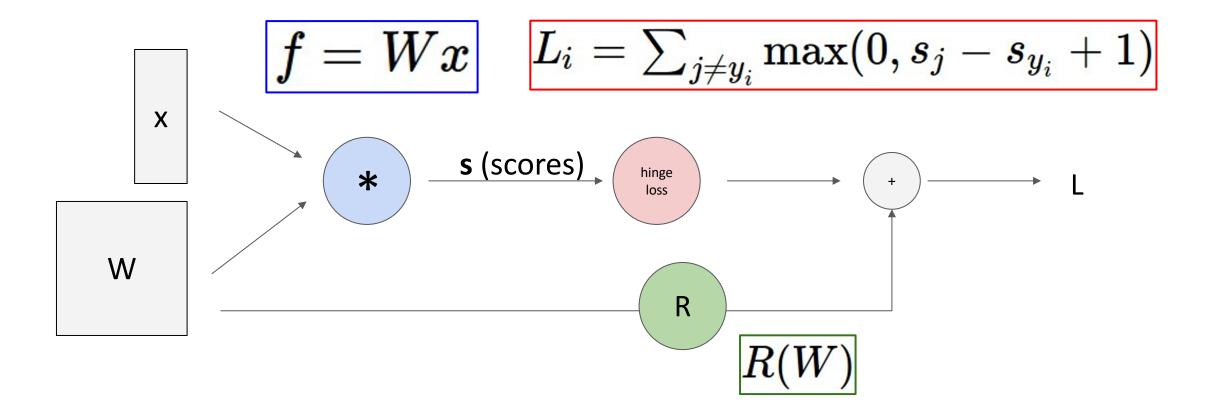


Justin Johnson

Lecture 8 - 9

Fall 2019

Recall: Computational Graphs



	• •		
	h n	hng	c o n
			son
<u> </u>	••••		

Lecture 8 - 10

The point of deep learning frameworks

- 1. Allow rapid prototyping of new ideas
- 2. Automatically compute gradients for you
- 3. Run it all efficiently on GPU (or TPU)

EECS 498-007 / 598-005 Deep Learning for Computer Vision Fall 2019

PyTorch

Justin Johnson



For this class we are using **PyTorch version 1.5** (Released April 2020), running on Google Colab

Be careful if you are looking at older PyTorch code – the API changed a lot before 1.0 (0.3 to 0.4 had big changes!)

PyTorch: Fundamental Concepts

Tensor: Like a numpy array, but can run on GPU

Autograd: Package for building computational graphs out of Tensors, and automatically computing gradients

Module: A neural network layer; may store state or learnable weights

Running example: Train a two-layer ReLU network on random data with L2 loss

```
import torch
```

```
device = torch.device('cpu')
```

N, D_in, H, D_out = 64, 1000, 100, 10 x = torch.randn(N, D_in, device=device) y = torch.randn(N, D_out, device=device) w1 = torch.randn(D_in, H, device=device) w2 = torch.randn(H, D_out, device=device)

```
learning rate = 1e-6
for t in range(500):
    h = x.mm(w1)
    h relu = h.clamp(min=0)
    y \text{ pred} = h \text{ relu.mm}(w2)
    loss = (y pred - y).pow(2).sum()
    grad y pred = 2.0 * (y \text{ pred} - y)
    grad w2 = h relu.t().mm(grad y pred)
    grad h relu = grad y pred.mm(w2.t())
    grad h = grad h relu.clone()
    grad h[h < 0] = 0
    grad w1 = x.t().mm(grad h)
    w1 -= learning rate * grad w1
    w2 -= learning rate * grad w2
```

Create random tensors for data and weights

```
device = torch.device('cpu')
```

```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in, device=device)
y = torch.randn(N, D_out, device=device)
w1 = torch.randn(D_in, H, device=device)
w2 = torch.randn(H, D_out, device=device)
```

```
learning rate = 1e-6
for t in range(500):
    h = x.mm(w1)
    h relu = h.clamp(min=0)
    y \text{ pred} = h \text{ relu.mm}(w2)
    loss = (y pred - y).pow(2).sum()
    grad y pred = 2.0 * (y \text{ pred} - y)
    grad w2 = h relu.t().mm(grad y pred)
    grad h relu = grad y pred.mm(w2.t())
    grad h = grad h relu.clone()
    grad h[h < 0] = 0
    grad w1 = x.t().mm(grad h)
    w1 -= learning rate * grad w1
    w2 -= learning rate * grad w2
```

Forward pass: compute predictions and loss

import torch

```
device = torch.device('cpu')
```

N, D_in, H, D_out = 64, 1000, 100, 10 x = torch.randn(N, D_in, device=device) y = torch.randn(N, D_out, device=device) w1 = torch.randn(D_in, H, device=device) w2 = torch.randn(H, D_out, device=device)

```
learning_rate = 1e-6
for t in range(500):
    h = x.mm(w1)
    h_relu = h.clamp(min=0)
    y_pred = h_relu.mm(w2)
    loss = (y_pred - y).pow(2).sum()
```

```
grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h_relu.t().mm(grad_y_pred)
grad_h_relu = grad_y_pred.mm(w2.t())
grad_h = grad_h_relu.clone()
grad_h[h < 0] = 0
grad_w1 = x.t().mm(grad_h)</pre>
```

```
w1 -= learning_rate * grad_w1
w2 -= learning_rate * grad_w2
```

Backward pass: manually compute gradients

```
import torch
device = torch.device('cpu')
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in, device=device)
y = torch.randn(N, D out, device=device)
w1 = torch.randn(D in, H, device=device)
w2 = torch.randn(H, D out, device=device)
learning rate = 1e-6
for t in range(500):
    h = x.mm(w1)
    h relu = h.clamp(min=0)
    y \text{ pred} = h \text{ relu.mm}(w2)
    loss = (y pred - y).pow(2).sum()
    grad y pred = 2.0 * (y \text{ pred} - y)
    grad w2 = h relu.t().mm(grad y pred)
    grad h relu = grad y pred.mm(w2.t())
    grad h = grad h relu.clone()
    grad h[h < 0] = 0
    grad w1 = x.t().mm(grad h)
```

```
w1 -= learning_rate * grad_w1
w2 -= learning_rate * grad_w2
```

Justin Johnson

Lecture 8 - 18

Fall 2019

Gradient descent step on weights

```
device = torch.device('cpu')
```

```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in, device=device)
y = torch.randn(N, D_out, device=device)
w1 = torch.randn(D_in, H, device=device)
w2 = torch.randn(H, D_out, device=device)
```

```
learning_rate = 1e-6
for t in range(500):
    h = x.mm(w1)
    h_relu = h.clamp(min=0)
    y_pred = h_relu.mm(w2)
    loss = (y_pred - y).pow(2).sum()
    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h_relu.t().mm(grad_y_pred)
    grad_h_relu = grad_y_pred.mm(w2.t())
    grad_h = grad_h_relu.clone()
    grad_w1 = x.t().mm(grad_h)
    w1 -= learning rate * grad w1
```

```
w2 -= learning_rate * grad_w2
```

```
Justin Johnson
```

To run on GPU, just use a different device!

import torch

```
device = torch.device('cpu')
```

```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in, device=device)
y = torch.randn(N, D_out, device=device)
w1 = torch.randn(D_in, H, device=device)
w2 = torch.randn(H, D_out, device=device)
```

```
learning rate = 1e-6
for t in range(500):
    h = x.mm(w1)
    h relu = h.clamp(min=0)
    y \text{ pred} = h \text{ relu.mm}(w2)
    loss = (y pred - y).pow(2).sum()
    grad y pred = 2.0 * (y \text{ pred} - y)
    grad w2 = h relu.t().mm(grad y pred)
    grad h relu = grad y pred.mm(w2.t())
    grad h = grad h relu.clone()
    grad h[h < 0] = 0
    grad w1 = x.t().mm(grad h)
    w1 -= learning rate * grad w1
    w2 -= learning rate * grad w2
```

Justin Johnson

PyTorch: Autograd

Creating Tensors with requires_grad=True enables autograd

Operations on Tensors with requires_grad=True cause PyTorch to build a computational graph

```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
```

```
learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
```

```
loss.backward()
```

```
with torch.no_grad():
    w1 -= learning_rate * w1.grad
    w2 -= learning_rate * w2.grad
    w1.grad.zero_()
    w2.grad.zero_()
```

```
PyTorch: Autograd
```

We will not want gradients (of loss) with respect to data

> Do want gradients with respect to weights

```
import torch
```

```
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
```

```
learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
```

```
loss.backward()
```

```
with torch.no_grad():
    w1 -= learning_rate * w1.grad
    w2 -= learning_rate * w2.grad
    w1.grad.zero_()
    w2.grad.zero_()
```

PyTorch: Autograd

import torch

```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
```

Forward pass looks exactly the same as before, but we don't need to track intermediate values - PyTorch keeps track of them for us in the graph

```
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
```

```
loss.backward()
```

learning rate = 1e-6

```
with torch.no_grad():
    w1 -= learning_rate * w1.grad
    w2 -= learning_rate * w2.grad
    w1.grad.zero_()
    w2.grad.zero_()
```

PyTorch: Autograd

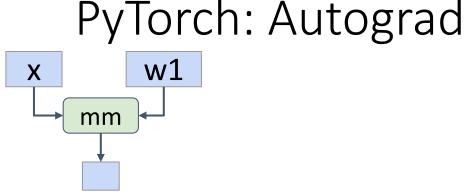
Computes gradients with respect to all inputs that have requires grad=True! import torch

```
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y \text{ pred} = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no grad():
        w1 -= learning rate * w1.grad
        w2 -= learning_rate * w2.grad
        wl.grad.zero ()
```

```
w2.grad.zero_()
```

Justin Johnson

Lecture 8 - 24



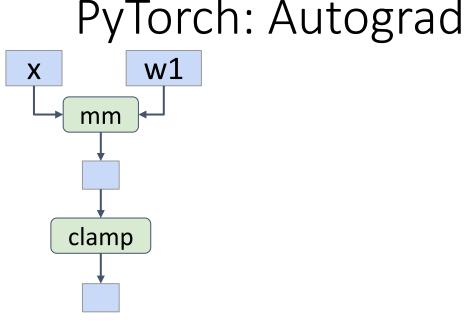
Every operation on a tensor with requires_grad=True will add to the computational graph, and the resulting tensors will also have requires_grad=True

```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
```

```
learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
```

```
loss.backward()
```

```
with torch.no_grad():
    w1 -= learning_rate * w1.grad
    w2 -= learning_rate * w2.grad
    w1.grad.zero_()
    w2.grad.zero_()
```



Every operation on a tensor with requires_grad=True will add to the computational graph, and the resulting tensors will also have requires_grad=True

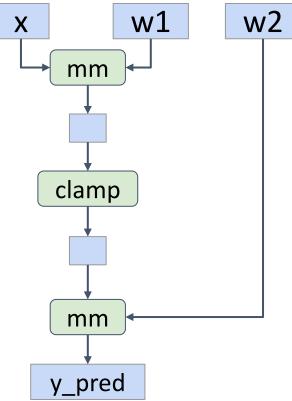
```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
```

```
learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
```

```
loss.backward()
```

```
with torch.no_grad():
    w1 -= learning_rate * w1.grad
    w2 -= learning_rate * w2.grad
    w1.grad.zero_()
    w2.grad.zero_()
```

PyTorch: Autograd

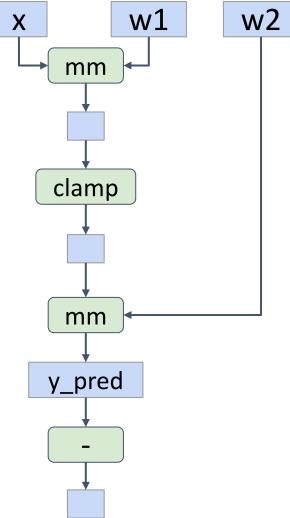


```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
```

```
learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
```

```
loss.backward()
```

```
with torch.no_grad():
    w1 -= learning_rate * w1.grad
    w2 -= learning_rate * w2.grad
    w1.grad.zero_()
    w2.grad.zero_()
```

import torch

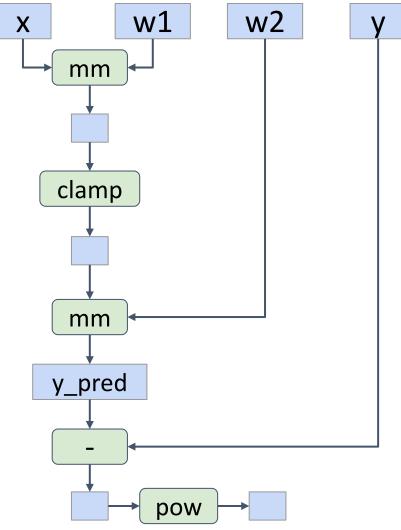
```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
```

```
learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
```

loss.backward()

```
with torch.no_grad():
    w1 -= learning_rate * w1.grad
    w2 -= learning_rate * w2.grad
    w1.grad.zero_()
    w2.grad.zero_()
```

PyTorch: Autograd



import torch

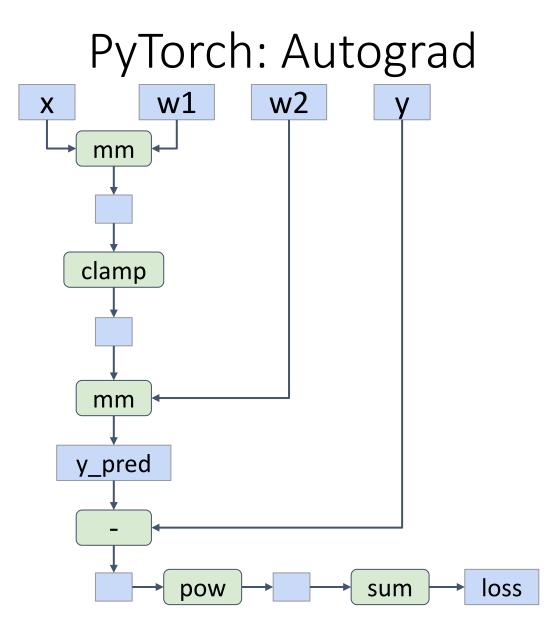
```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
```

```
learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
```

loss.backward()

```
with torch.no_grad():
    w1 -= learning_rate * w1.grad
    w2 -= learning_rate * w2.grad
    w1.grad.zero_()
    w2.grad.zero_()
```

Justin Johnson



import torch

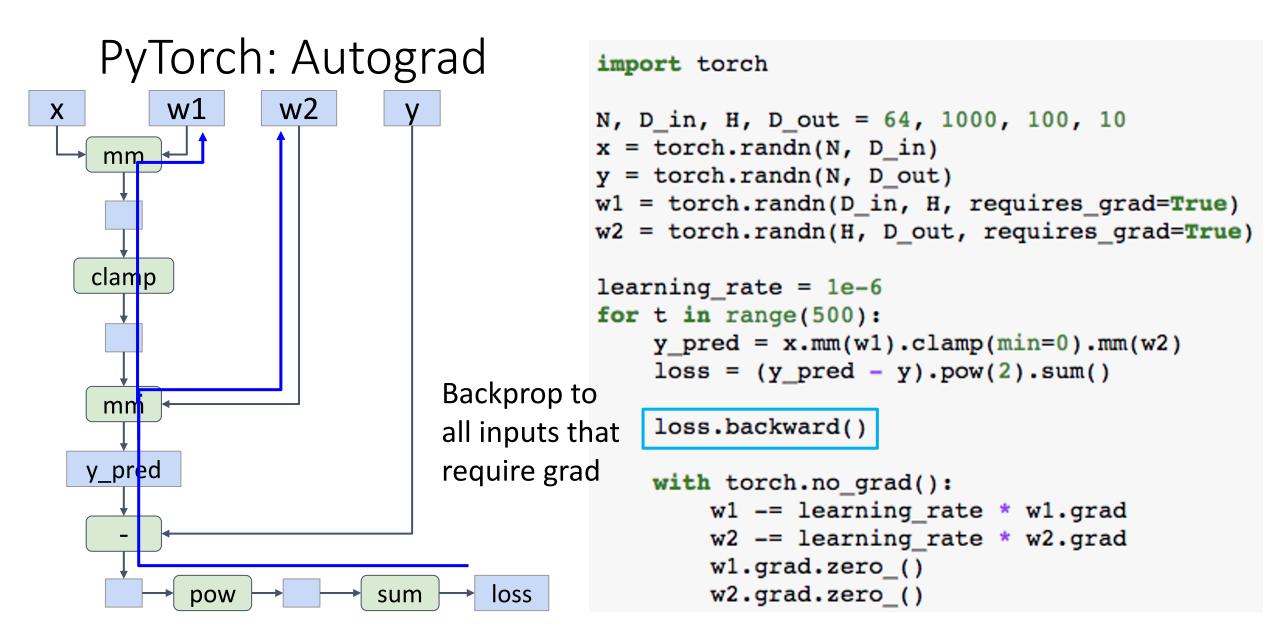
```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
```

```
learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
```

```
loss.backward()
```

```
with torch.no_grad():
    w1 -= learning_rate * w1.grad
    w2 -= learning_rate * w2.grad
    w1.grad.zero_()
    w2.grad.zero_()
```

Justin Johnson



Justin Johnson

Lecture 8 - 31

Χ

w1

w2

After backward finishes, gradients are **accumulated** into w1.grad and w2.grad and the graph is destroyed

import torch

```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
```

```
learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
```

loss.backward()

```
with torch.no_grad():
    w1 -= learning_rate * w1.grad
    w2 -= learning_rate * w2.grad
    w1.grad.zero_()
    w2.grad.zero_()
```

PyTorch: Autograd

Χ

w1

w2

After backward finishes, gradients are **accumulated** into w1.grad and w2.grad and the graph is destroyed

Make gradient step on weights

import torch

```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
```

```
learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
```

loss.backward()

```
with torch.no_grad():
    w1 -= learning_rate * w1.grad
    w2 -= learning_rate * w2.grad
    w1.grad.zero_()
    w2.grad.zero_()
```


w1

w2

Χ

After backward finishes, gradients are **accumulated** into w1.grad and w2.grad and the graph is destroyed

Set gradients to zero – forgetting this is a common bug!

import torch

```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
```

```
learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
```

loss.backward()

```
with torch.no_grad():
    w1 -= learning_rate * w1.grad
    w2 -= learning_rate * w2.grad
    w1.grad.zero_()
    w2.grad.zero_()
```

Justin Johnson

Lecture 8 - 34

PyTorch: Autograd

Χ

w1

w2

After backward finishes, gradients are **accumulated** into w1.grad and w2.grad and the graph is destroyed

Tell PyTorch not to build a graph for these operations

import torch

```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
```

```
learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
```

loss.backward()

with torch.no_grad(): w1 -= learning_rate * w1.grad w2 -= learning_rate * w2.grad w1.grad.zero_() w2.grad.zero ()

Lecture 8 - 35

PyTorch: New functions

Can define new operations using Python functions

def sigmoid(x):
 return 1.0 / (1.0 + (-x).exp())

```
import torch
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D_out)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D out, requires grad=True)
learning rate = 1e-6
for t in range(500):
  y pred = sigmoid(x.mm(w1)).mm(w2)
  loss = (y pred - y).pow(2).sum()
  loss.backward()
  if t % 50 == 0:
    print(t, loss.item())
  with torch.no grad():
    w1 -= learning_rate * w1.grad
   w2 -= learning rate * w2.grad
   wl.grad.zero ()
   w2.grad.zero ()
```

Justin Johnson

Can define new operations using Python functions

def sigmoid(x):
 return 1.0 / (1.0 + (-x).exp())

When our function runs, it will add to the graph

Gradients computed with autograd

1.0

import torch

```
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
y = torch.randn(N, D out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D out, requires grad=True)
learning rate = 1e-6
for t in range(500):
 y pred = sigmoid(x.mm(w1)).mm(w2)
  loss = (y pred - y).pow(2).sum()
  loss.backward()
  if t % 50 == 0:
    print(t, loss.item())
  with torch.no grad():
    w1 -= learning rate * w1.grad
    w2 -= learning rate * w2.grad
   w1.grad.zero ()
    w2.grad.zero ()
```

Justin Johnson

+1

Χ

* -1

exp

Can define new operations using Python functions

```
def sigmoid(x):
    return 1.0 / (1.0 + (-x).exp())
```

When our function runs, it will add to the graph

Gradients computed with autograd

1.0

Define new autograd operators by subclassing Function, define forward and backward

```
class Sigmoid(torch.autograd.Function):
  @staticmethod
  def forward(ctx, x):
    y = 1.0 / (1.0 + (-x).exp())
    ctx.save_for_backward(y)
    return y
```

```
@staticmethod
def backward(ctx, grad_y):
    y, = ctx.saved_tensors
    grad_x = grad_y * y * (1.0 - y)
    return grad_x
```

def sigmoid(x):
 return Sigmoid.apply(x)

Recall:

$$\frac{\partial}{\partial x} \Big[\sigma(x) \Big] = (1 - \sigma(x)) \sigma(x)$$

+1

Χ

* -1

exp

Can define new operations using Python functions

```
def sigmoid(x):
    return 1.0 / (1.0 + (-x).exp())
```

When our function runs, it will add to the graph

Gradients computed with autograd

1.0

Define new autograd operators by subclassing Function, define forward and backward

```
class Sigmoid(torch.autograd.Function):
  @staticmethod
  def forward(ctx, x):
    y = 1.0 / (1.0 + (-x).exp())
    ctx.save_for_backward(y)
    return y
```

```
@staticmethod
def backward(ctx, grad_y):
    y, = ctx.saved_tensors
    grad_x = grad_y * y * (1.0 - y)
    return grad_x
```

```
def sigmoid(x):
    return Sigmoid.apply(x)
```

Now when our function runs, it adds one node to the graph!

+1

Χ

exp

Can define new operations using Python functions

```
def sigmoid(x):
    return 1.0 / (1.0 + (-x).exp())
```

When our function runs, it will add to the graph

Gradients computed with autograd

1.0

Define new autograd operators by subclassing Function, define forward and backward

```
class Sigmoid(torch.autograd.Function):
  @staticmethod
  def forward(ctx, x):
    y = 1.0 / (1.0 + (-x).exp())
    ctx.save_for_backward(y)
    return y
  @staticmethod
  def backward(ctx, grad_y):
    y, = ctx.saved_tensors
    grad_x = grad_y * y * (1.0 - y)
    return grad_x
```

def sigmoid(x):
 return Sigmoid.apply(x)

In practice this is pretty rare – in most cases Python functions are good enough

Justin Johnson

+1

Χ

exp

PyTorch: nn

Higher-level wrapper for working with neural nets

Use this! It will make your life easier

import torch

```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
```

```
model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H),
    torch.nn.ReLU(),
    torch.nn.Linear(H, D_out))
```

```
learning_rate = 1e-2
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
```

```
loss.backward()
```

```
with torch.no_grad():
    for param in model.parameters():
        param -= learning_rate * param.grad
model.zero_grad()
```

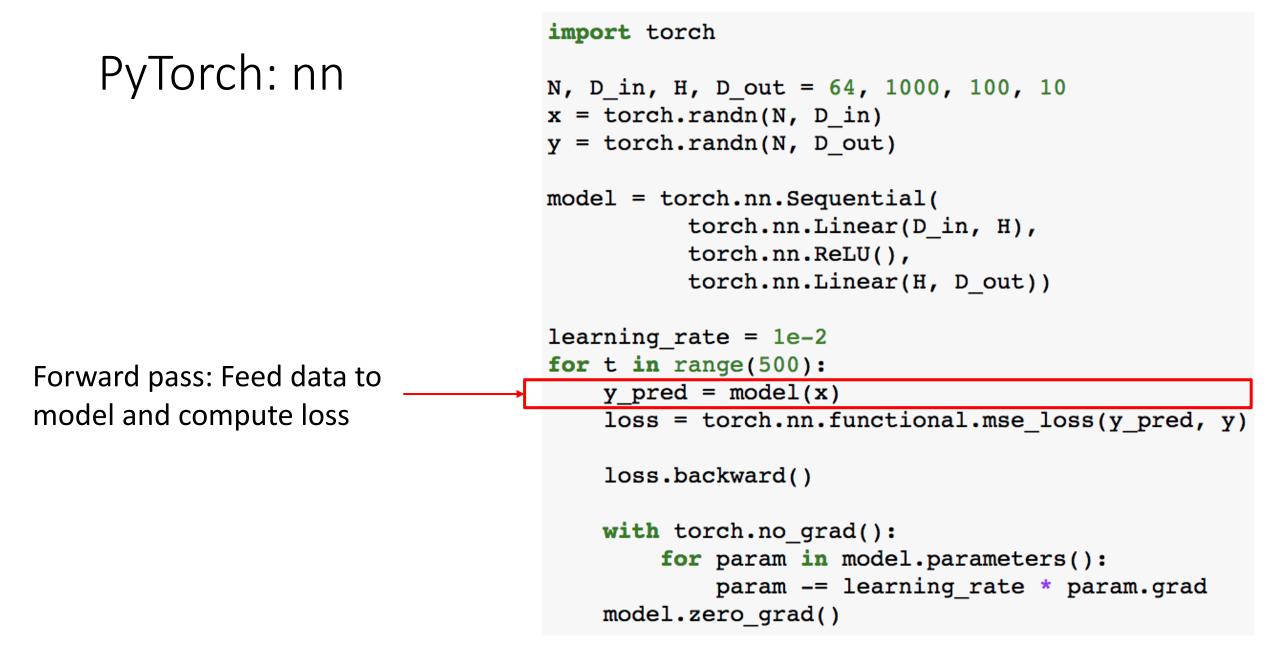
PyTorch: nn

Object-oriented API: Define model object as sequence of layers objects, each of which holds weight tensors import torch

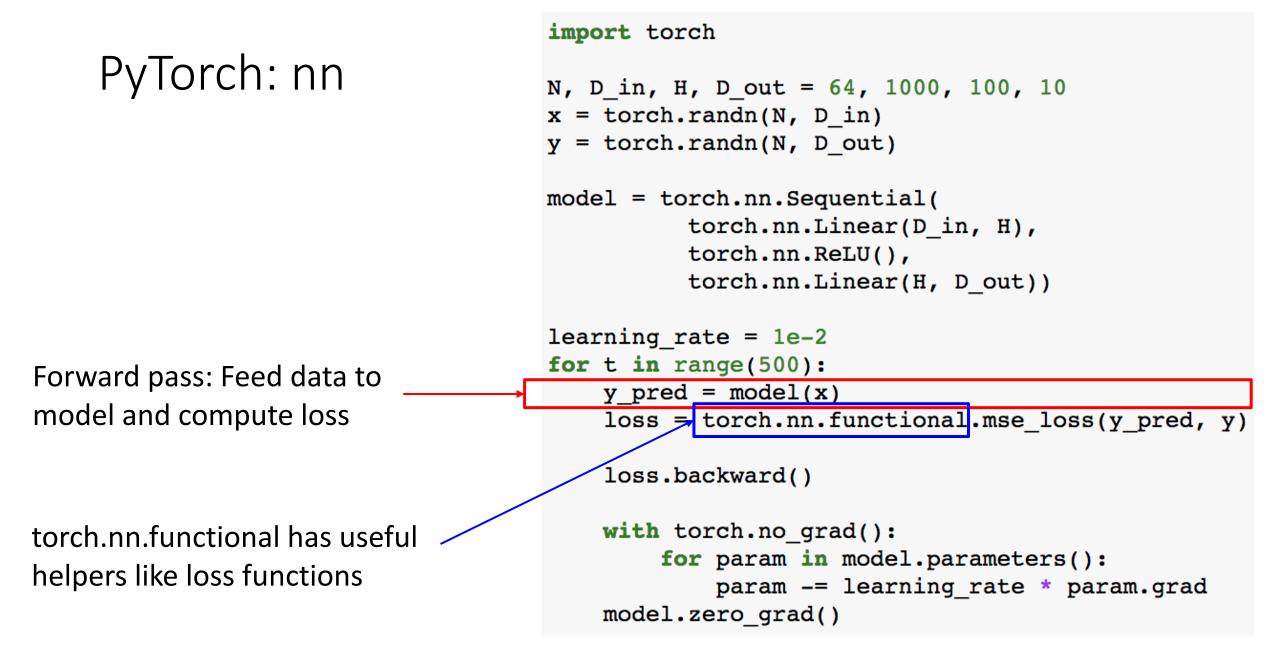
```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
```

```
model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H),
    torch.nn.ReLU(),
    torch.nn.Linear(H, D_out))
```

```
learning_rate = 1e-2
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()
    with torch.no_grad():
        for param in model.parameters():
            param -= learning_rate * param.grad
    model.zero_grad()
```



Justin Johnson



Justin Johnson

Lecture 8 - 44

Fall 2019

PyTorch: nn

Backward pass: compute gradient with respect to all model weights (they have requires_grad=True) import torch

```
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
          torch.nn.Linear(D in, H),
          torch.nn.ReLU(),
          torch.nn.Linear(H, D out))
learning rate = 1e-2
for t in range(500):
    y \text{ pred} = \text{model}(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    with torch.no grad():
        for param in model.parameters():
            param -= learning rate * param.grad
    model.zero grad()
```

Justin Johnson

Lecture 8 - 45

Fall 2019

PyTorch: nn

Make gradient step on each model parameter – (with gradients disabled) import torch

```
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
          torch.nn.Linear(D_in, H),
          torch.nn.ReLU(),
          torch.nn.Linear(H, D_out))
learning_rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(),
                               lr=learning rate)
for t in range(500):
    y \text{ pred} = \text{model}(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero grad()
```



```
import torch
    PyTorch: optim
                                      N, D in, H, D out = 64, 1000, 100, 10
                                      x = torch.randn(N, D_in)
                                      y = torch.randn(N, D out)
                                      model = torch.nn.Sequential(
                                                torch.nn.Linear(D_in, H),
                                                torch.nn.ReLU(),
                                                torch.nn.Linear(H, D_out))
                                      learning rate = 1e-4
Use an optimizer for
                                      optimizer = torch.optim.Adam(model.parameters(),
                                                                    lr=learning rate)
different update rules
                                      for t in range(500):
                                          y \text{ pred} = \text{model}(x)
                                          loss = torch.nn.functional.mse_loss(y_pred, y)
                                          loss.backward()
                                          optimizer.step()
                                          optimizer.zero grad()
```

Justin Johnson

PyTorch: optim

import torch

```
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
          torch.nn.Linear(D_in, H),
          torch.nn.ReLU(),
          torch.nn.Linear(H, D out))
learning_rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(),
                               lr=learning rate)
for t in range(500):
    y \text{ pred} = \text{model}(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()
```

After computing gradients, use optimizer to [–] update and zero gradients

Justin Johnson

PyTorch: nn Defining Modules

A PyTorch **Module** is a neural net layer; it inputs and outputs Tensors

Modules can contain weights or other modules

Very common to define your own models or layers as custom Modules

```
class TwoLayerNet(torch.nn.Module):
    def __init__(self, D_in, H, D_out):
        super(TwoLayerNet, self).__init__()
        self.linear1 = torch.nn.Linear(D_in, H)
        self.linear2 = torch.nn.Linear(H, D_out)
```

```
def forward(self, x):
    h_relu = self.linear1(x).clamp(min=0)
    y_pred = self.linear2(h_relu)
    return y_pred
```

```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
```

```
model = TwoLayerNet(D_in, H, D_out)
```

```
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
```

```
loss.backward()
optimizer.step()
optimizer.zero_grad()
```

PyTorch: nn Defining Modules

Define our whole model as a single Module

import torch

```
class TwoLayerNet(torch.nn.Module):
    def init (self, D in, H, D out):
        super(TwoLayerNet, self). init ()
        self.linear1 = torch.nn.Linear(D in, H)
        self.linear2 = torch.nn.Linear(H, D out)
    def forward(self, x):
        h relu = self.linear1(x).clamp(min=0)
        y pred = self.linear2(h relu)
        return y pred
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = TwoLayerNet(D in, H, D out)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
    y \text{ pred} = \text{model}(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    optimizer.step()
```

```
optimizer.zero_grad()
```

Justin Johnson

PyTorch: nn Defining Modules

Initializer sets up two children (Modules can contain modules)

```
class TwoLayerNet(torch.nn.Module):
```

```
def __init__(self, D_in, H, D_out):
    super(TwoLayerNet, self).__init__()
    self.linear1 = torch.nn.Linear(D_in, H)
    self.linear2 = torch.nn.Linear(H, D_out)
```

```
def forward(self, x):
    h_relu = self.linear1(x).clamp(min=0)
    y_pred = self.linear2(h_relu)
    return y_pred
```

```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D out)
```

```
model = TwoLayerNet(D_in, H, D_out)
```

```
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
```

```
loss.backward()
optimizer.step()
optimizer.zero_grad()
```

Justin Johnson

PyTorch: nn Defining Modules

Define forward pass using child modules and tensor operations

No need to define backward autograd will handle it

```
class TwoLayerNet(torch.nn.Module):
    def __init__(self, D_in, H, D_out):
        super(TwoLayerNet, self).__init__()
        self.linear1 = torch.nn.Linear(D_in, H)
        self.linear2 = torch.nn.Linear(H, D_out)
```

```
def forward(self, x):
    h_relu = self.linear1(x).clamp(min=0)
    y_pred = self.linear2(h_relu)
    return y_pred
```

```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
```

```
model = TwoLayerNet(D_in, H, D_out)
```

```
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
```

```
loss.backward()
optimizer.step()
optimizer.zero_grad()
```

Justin Johnson

PyTorch: nn Defining Modules

Very common to mix and match custom Module subclasses and Sequential containers

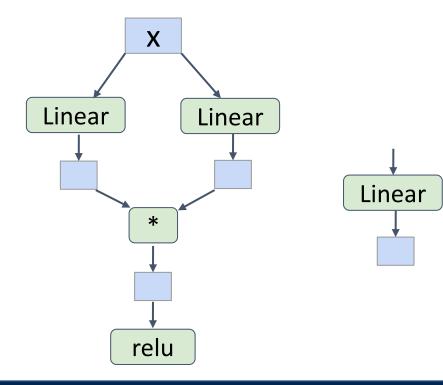
```
class ParallelBlock(torch.nn.Module):
    def __init__(self, D_in, D_out):
        super(ParallelBlock, self).__init__()
        self.linear1 = torch.nn.Linear(D_in, D_out)
        self.linear2 = torch.nn.Linear(D_in, D_out)
    def forward(self, x):
        h1 = self.linear1(x)
        h2 = self.linear2(x)
        return (h1 * h2).clamp(min=0)
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D out)
```

```
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero grad()
```

Justin Johnson

PyTorch: nn Defining Modules

Define network component as a Module subclass



import torch

```
class ParallelBlock(torch.nn.Module):
    def __init__(self, D_in, D_out):
        super(ParallelBlock, self).__init__()
        self.linear1 = torch.nn.Linear(D_in, D_out)
        self.linear2 = torch.nn.Linear(D_in, D_out)
    def forward(self, x):
        h1 = self.linear1(x)
        h2 = self.linear2(x)
        return (h1 * h2).clamp(min=0)
```

```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
```

```
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero grad()
```

Justin Johnson

PyTorch: nn Defining Modules

Stack multiple instances of the component in a sequential

Very easy to quickly build complex network architectures!

```
x
Linear
tinear
relu
x
tinear
tinear
tinear
tinear
```

```
class ParallelBlock(torch.nn.Module):
    def __init__(self, D_in, D_out):
        super(ParallelBlock, self).__init__()
        self.linear1 = torch.nn.Linear(D_in, D_out)
        self.linear2 = torch.nn.Linear(D_in, D_out)
    def forward(self, x):
        h1 = self.linear1(x)
        h2 = self.linear2(x)
        return (h1 * h2).clamp(min=0)
N, D_in, H, D_out = 64, 1000, 100, 10
    x = torch.randn(N, D in)
```

```
y = torch.randn(N, D_out)
```

```
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero grad()
```

Justin Johnson

PyTorch: DataLoaders

A **DataLoader** wraps a **Dataset** and provides minibatching, shuffling, multithreading, for you

When you need to load custom data, just write your own Dataset class import torch
from torch.utils.data import TensorDataset, DataLoader

```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
```

loader = DataLoader(TensorDataset(x, y), batch_size=8)
model = TwoLayerNet(D_in, H, D_out)

```
optimizer = torch.optim.SGD(model.parameters(), lr=1e-2)
for epoch in range(20):
    for x_batch, y_batch in loader:
        y_pred = model(x_batch)
        loss = torch.nn.functional.mse_loss(y_pred, y_batch)
        loss.backward()
        optimizer.step()
        optimizer.zero grad()
```

PyTorch: DataLoaders

Justin Johnson

import torch from torch.utils.data import TensorDataset, DataLoader N, D in, H, D out = 64, 1000, 100, 10x = torch.randn(N, D in)y = torch.randn(N, D out)loader = DataLoader(TensorDataset(x, y), batch size=8) model = TwoLayerNet(D_in, H, D_out) optimizer = torch.optim.SGD(model.parameters(), lr=1e-2) Iterate over loader to for epoch in range(20): form minibatches for x batch, y batch in loader: y pred = model(x batch) loss = torch.nn.functional.mse_loss(y_pred, y_batch) loss.backward() optimizer.step()

Lecture 8 - 57

optimizer.zero grad()

PyTorch: Pretrained Models

Super easy to use pretrained models with torchvision https://github.com/pytorch/vision

import torch
import torchvision

```
alexnet = torchvision.models.alexnet(pretrained=True)
vgg16 = torchvision.models.vgg16(pretrained=True)
resnet101 = torchvision.models.resnet101(pretrained=True)
```

Static vs Dynamic Graphs

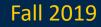
• See Justin's Lecture 8 for more slides...

Course Description

Computer Vision has become ubiquitous in our society, with applications in search, image understanding, apps, mapping, medicine, drones, and self-driving cars. Core to many of these applications are visual recognition tasks such as image classification and object detection. Recent developments in neural network approaches have greatly advanced the performance of these state-of-the-art visual recognition systems. This course is a deep dive into details of neural-network based deep learning methods for computer vision. During this course, students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in computer vision. We will cover learning algorithms, neural network architectures, and practical engineering tricks for training and fine-tuning networks for visual recognition tasks.

Instructor Graduate Student Instructors

Justin Johnson



TensorFlow and Keras

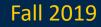
• See Justin's Lecture 8 for more slides...

Course Description

Computer Vision has become ubiquitous in our society, with applications in search, image understanding, apps, mapping, medicine, drones, and self-driving cars. Core to many of these applications are visual recognition tasks such as image classification and object detection. Recent developments in neural network approaches have greatly advanced the performance of these state-of-the-art visual recognition systems. This course is a deep dive into details of neural-network based deep learning methods for computer vision. During this course, students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in computer vision. We will cover learning algorithms, neural network architectures, and practical engineering tricks for training and fine-tuning networks for visual recognition tasks.

Instructor Graduate Student Instructors

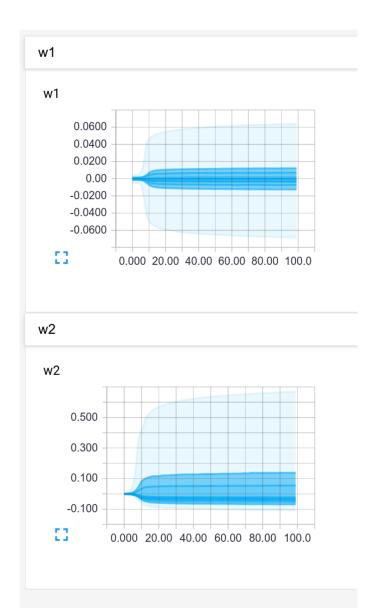
Justin Johnson



TensorBoard

Add logging to code to record loss, stats, etc Run server and get pretty graphs!

TensorBoard	
 Regex filter Split on underscores 	loss
Data download links	120
Horizontal Axis	40.0
Runs	0.00 0.000 20.00 40.00 60.00 80.00 100.0
✓ .	

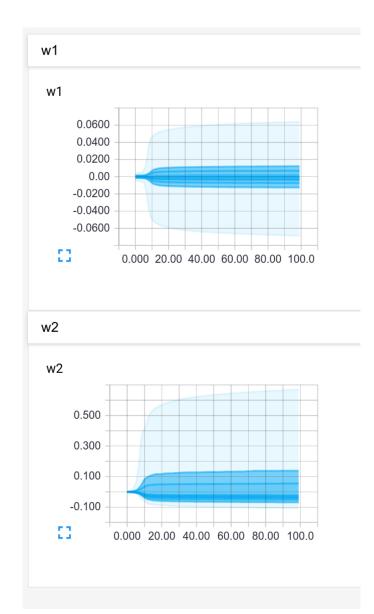


Justin Johnson

TensorBoard

Also works with PyTorch: torch.utils.tensorboard

TensorBoard	
Regex filter ×	loss loss
Data download links	120
Horizontal Axis STEP RELATIVE WALL	80.0
Runs .	C3 0.000 20.00 40.00 60.00 80.00 100.0



Justin Johnson

PyTorch vs TensorFlow

PyTorch

- My personal favorite
- Clean, imperative API
- Easy dynamic graphs for debugging
- JIT allows static graphs for production
- Cannot use TPUs
- Not easy to deploy on mobile

TensorFlow 1.0

- Static graphs by default
- Can be confusing to debug
- API a bit messy

TensorFlow 2.0

- Dynamic by default
- Standardized on Keras API
- Just came out (9/19), no consensus yet

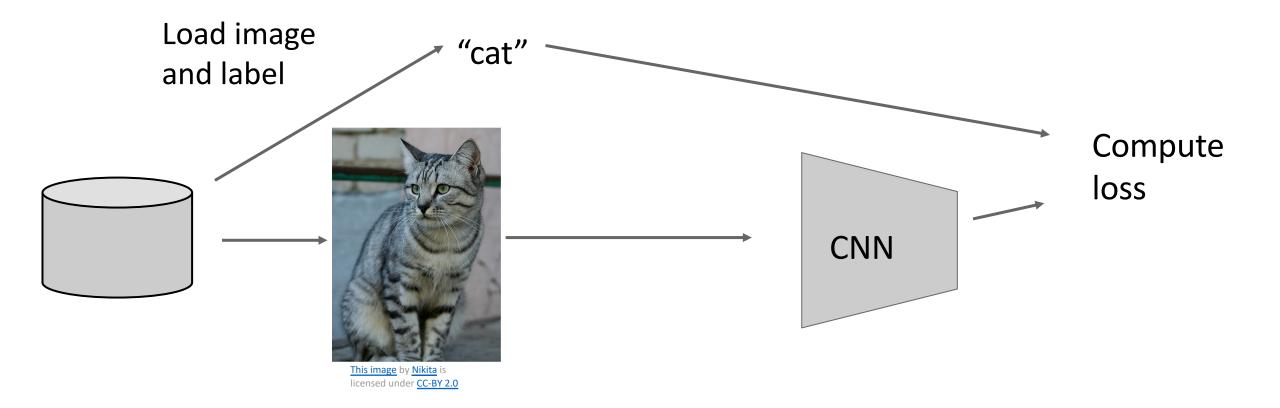
EECS 498-007 / 598-005 Deep Learning for Computer Vision Fall 2019

Lecture 10: Training Neural Networks

... just the data augmentation slides, for today ...



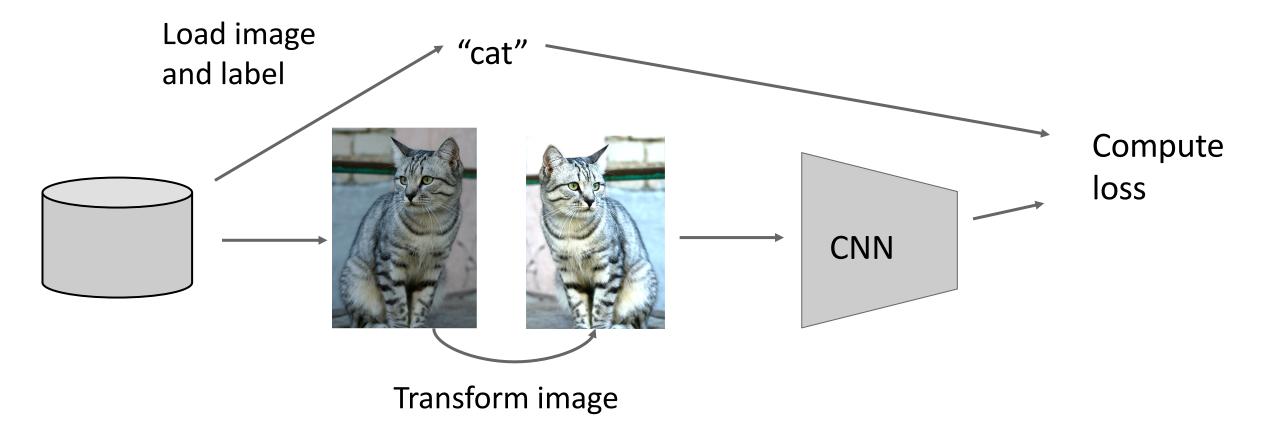
Data Augmentation



Justin Johnson



Data Augmentation



Data Augmentation: Horizontal Flips

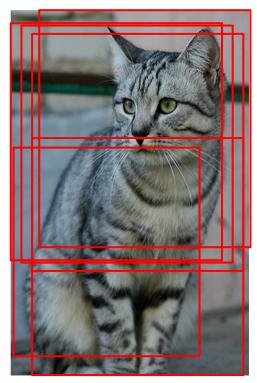
Justin Johnson



Data Augmentation: Random Crops and Scales

Training: sample random crops / scales ResNet:

- 1. Pick random L in range [256, 480]
- 2. Resize training image, short side = L
- 3. Sample random 224 x 224 patch



Justin Johnson

Data Augmentation: Random Crops and Scales

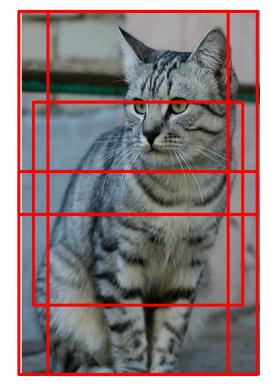
Training: sample random crops / scales ResNet:

- 1. Pick random L in range [256, 480]
- 2. Resize training image, short side = L
- 3. Sample random 224 x 224 patch

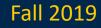
Testing: average a fixed set of crops ResNet:

1. Resize image at 5 scales: {224, 256, 384, 480, 640}

2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips



Justin Johnson



Data Augmentation: Color Jitter

Simple: Randomize contrast and brightness

More Complex:

- Apply PCA to all [R, G, B] pixels in training set
- Sample a "color offset" along principal component directions
- 3. Add offset to all pixels of a training image

(Used in AlexNet, ResNet, etc)

Justin Johnson

Data Augmentation: Get creative for your problem!

Random mix/combinations of :

- translation
- rotation
- stretching
- shearing,
- lens distortions, ... (go crazy)

HW4 and PyTorch tutorial

CSE 576 (Spring 2020) Homework 4

Welcome friends, it's time for Deep Learning with PyTorch! This homework might need a longer running time. Keep this in mind and start early.

PyTorch is a deep learning framework for fast, flexible experimentation. We are going to use it to train our classifiers.

For this homework you need to turn in this file hw4.ipynb after running your results and answering questions in-line.

Notes:

- This assignment was designed to be used with Google Colab, but feel free to set up your own environment if you wish. Just bear in mind that we cannot provide support for custom environments.
- Feel free to create new cells as needed, but please do not delete existing cells.

Before you get started, we suggest you do the PyTorch tutorial first.

You should at least do the 60 Minute Blitz up until "Training a Classifier".

Introduction by Keunhong on Thursday

V 🗇 🥒

PyTorch tutorial

- Deep Learning with PyTorch: A 60 Minute Blitz
 - What is PyTorch?
 - Autograd: Automatic Differentiation
 - Neural Networks
 - Training a Classifier
 - Optional: Data Parallelism
- Data Loading and Processing Tutorial
- Learning PyTorch with Examples
 - Tensors
 - Warm-up: numpy
 - PyTorch: Tensors
 - Autograd
 - PyTorch: Tensors and autograd
 - PyTorch: Defining New autograd Functions
 - TensorFlow: Static Graphs
 - nn module
 - PyTorch: nn

Neural Networks

Neural networks can be constructed using the torch.nn package.

Now that you had a glimpse of autograd, nn depends on autograd to define models and differentiate them. An nn.Module contains layers, and a method forward(input) \ that returns the output.

For example, look at this network that classifies digit images:

.. figure:: /_static/img/mnist.png :alt: convnet

convnet

It is a simple feed-forward network. It takes the input, feeds it through several layers one after the other, and then finally gives the output.

A typical training procedure for a neural network is as follows:

- Define the neural network that has some learnable parameters (or weights)
- · Iterate over a dataset of inputs
- · Process input through the network
- Compute the loss (how far is the output from being correct)
- · Propagate gradients back into the network's parameters
- Update the weights of the network, typically using a simple update rule: weight = weight learning_rate * gradient

Define the network

Let's define this network:

```
[ ] import torch
import torch.nn as nn
import torch.nn.functional as F
```

class Net(nn.Module):

```
def __init__(self):
    super(Net, self).__init__()
    # 1 input image channel, 6 output channels, 5x5 square convolution
    # kernel
    self.conv1 = nn.Conv2d(1, 6, 5)
    self.conv2 = nn.Conv2d(6, 16, 5)
    # an affine operation: y = Wx + b
    self.fc1 = nn.Linear(16 * 5 * 5, 120)
    self.fc2 = nn.Linear(120, 84)
    self.fc3 = nn.Linear(84, 10)
```

```
def forward(self, x):
```

```
# Max pooling over a (2, 2) window
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
# If the size is a square you can only specify a single number
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc1(x))
x = self.fc3(x)
return x
```

```
def num_flat_features(self, x):
    size = x.size()[1:] # all dimensions except the batch dimension
    num_features = 1
    for s in size:
        num_features *= s
```

```
return num_features
```

```
net = Net()
print(net)
```

Net(

- (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1)) (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1)) (fc1): Linear(in_features=400, out_features=120, bias=True) (fc2): Linear(in_features=84, out_features=10, bias=True) (fc3): Linear(in_features=84, out_features=10, bias=True)

UW CSE 576 - DL frameworks and more

Data augmentation in PyTorch

Transforms are common image transformations. They can be chained together using Compose. Additionally, there is the torchvision.transforms.functional module. Functional transforms give fine-grained control over the transformations. This is useful if you have to build a more complex transformation pipeline (e.g. in the case of segmentation tasks). CLASS torchvision.transforms.Compose(transforms) [SOURCE] Composes several transforms together. Parameters transforms (list of Transform objects) - list of transforms to compose. Example >>> transforms.Compose([transforms.CenterCrop(10), >>> transforms.ToTensor(), >>> >>>])

CLASS torchvision.transforms.TenCrop(size, vertical_flip=False)

[SOURCE]

Crop the given PIL Image into four corners and the central crop plus the flipped version of these (horizontal flipping is used by default)

NOTE

This transform returns a tuple of images and there may be a mismatch in the number of inputs and targets your Dataset returns. See below for an example of how to deal with this.

Parameters

- size (sequence or int) Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made.
- vertical_flip (bool) Use vertical flipping instead of horizontal

Example

>>> transform = Compose([

>>> TenCrop(size), # this is a list of PIL Images

>>> Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) #
returns a 4D tensor

>>>])

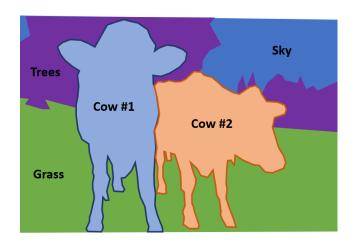
>>> #In your test loop you can do the following:

- >>> input, target = batch # input is a 5d tensor, target is 2d
- >>> bs, ncrops, c, h, w = input.size()
- >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
- >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops

TORCHVISION.TRANSFORMS

DL software and more

- Deep learning frameworks
- Instance segmentation
- 3D neural networks
- Video



class Net(nn.Module):

def __init__(self): super(Net, self). init () # 1 input image channel, 6 output channels, 5x5 square convolution # kernel self.conv1 = nn.Conv2d(1, 6, 5) self.conv2 = nn.Conv2d(6, 16, 5)# an affine operation: y = Wx + b self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): # Max pooling over a (2, 2) window x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) # If the size is a square you can only specify a single number x = F.max pool2d(F.relu(self.conv2(x)), 2) x = x.view(-1, self.num_flat_features(x)) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x)return x

 $clink \ glass \rightarrow drink$

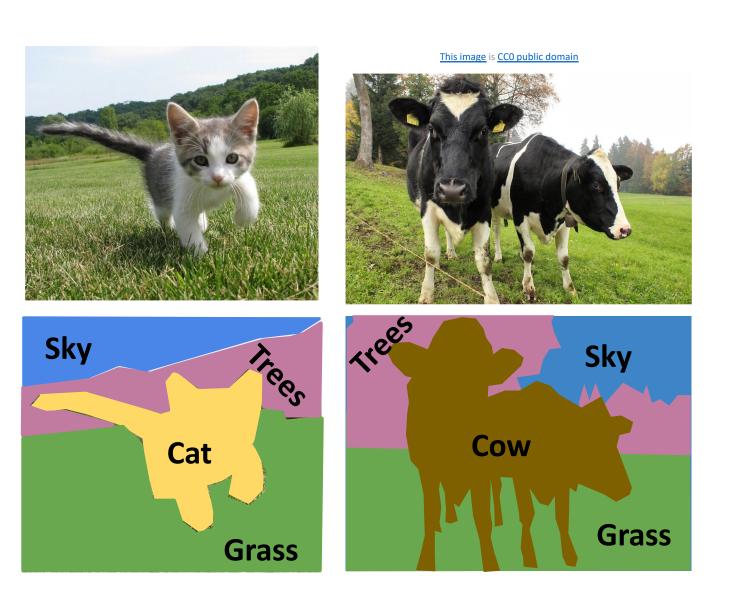
EECS 498-007 / 598-005 Deep Learning for Computer Vision Fall 2019

Lecture 16: Detection + Segmentation

Justin Johnson

Things and Stuff

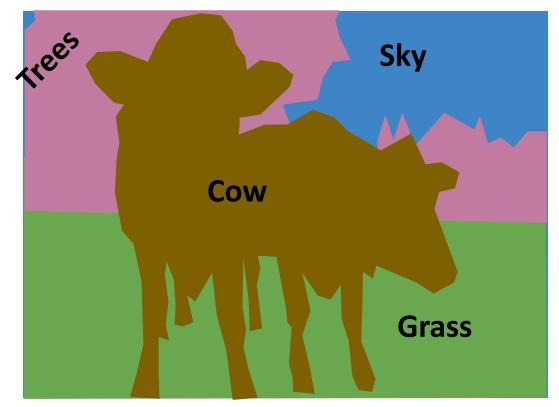
- Things: Object categories that can be separated into object instances (e.g. cats, cars, person)
- Stuff: Object categories that cannot be separated into instances (e.g. sky, grass, water, trees)



Computer Vision Tasks

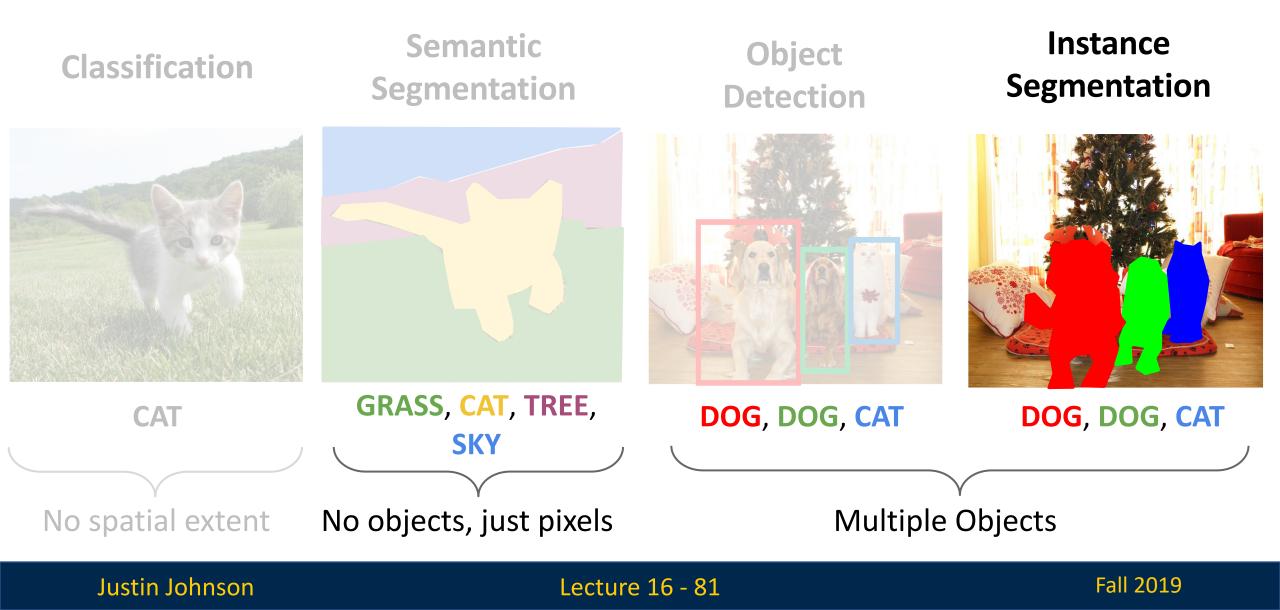
Object Detection: Detects individual object instances, but only gives box (Only things!)

Semantic Segmentation: Gives perpixel labels, but merges instances (Both things and stuff)



Justin Johnson

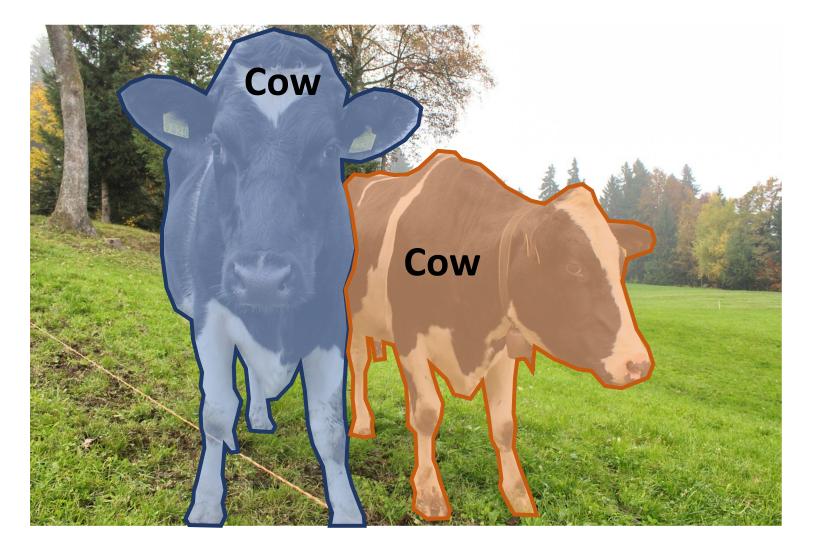
Computer Vision Tasks: Instance Segmentation



Computer Vision Tasks: Instance Segmentation

Instance Segmentation:

Detect all objects in the image, and identify the pixels that belong to each object (Only things)

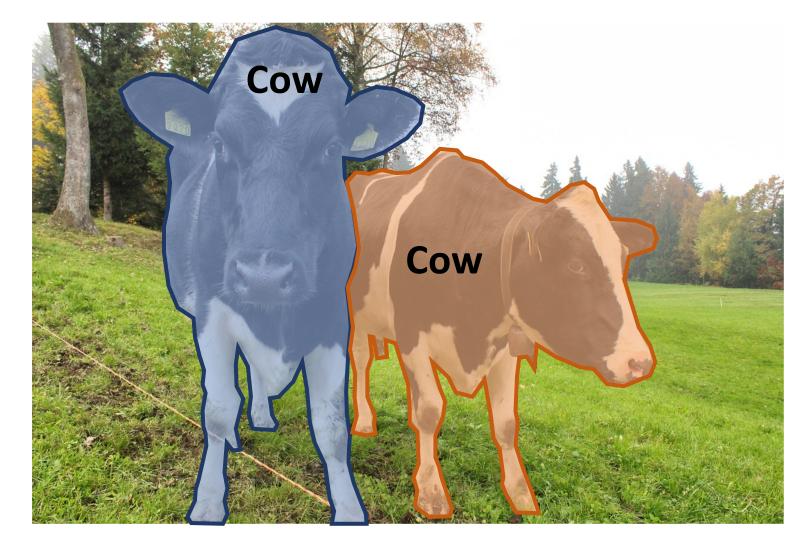


Computer Vision Tasks: Instance Segmentation

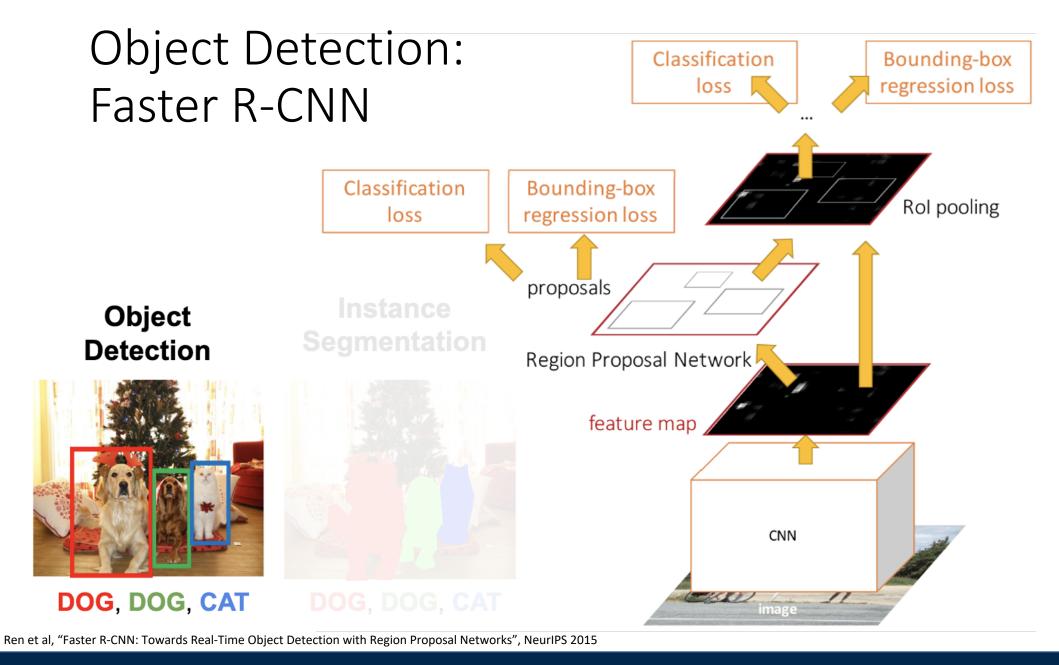
Instance Segmentation:

Detect all objects in the image, and identify the pixels that belong to each object (Only things)

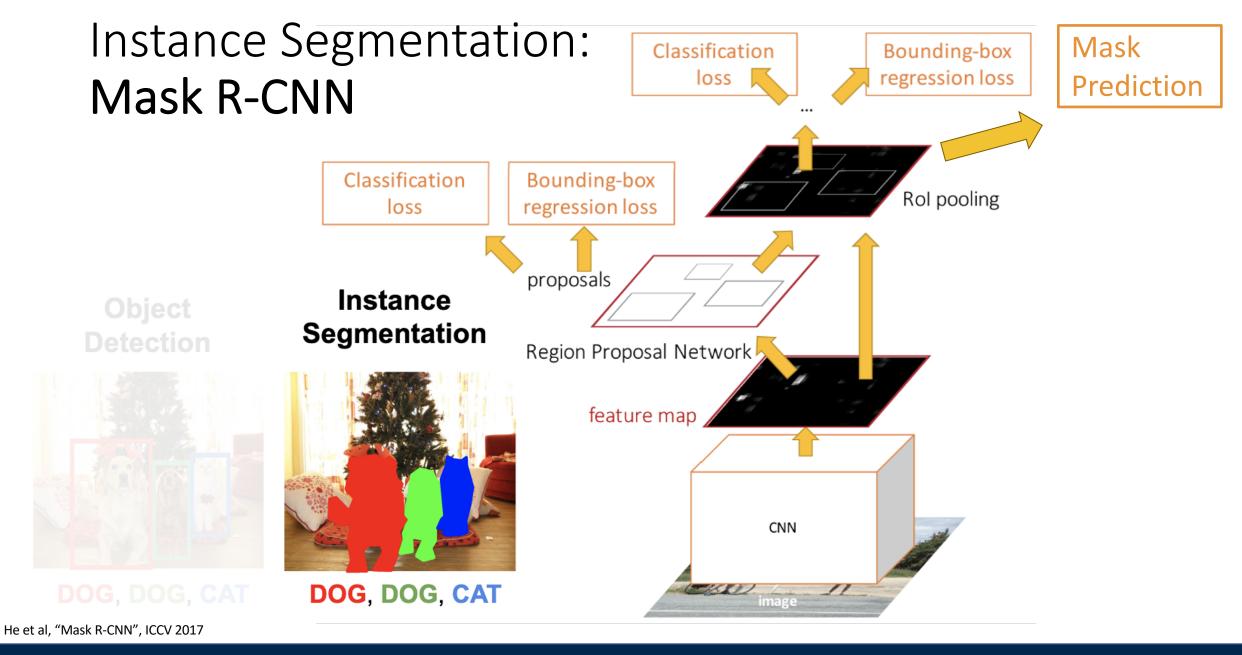
Approach: Perform object detection, then predict a segmentation mask for each object



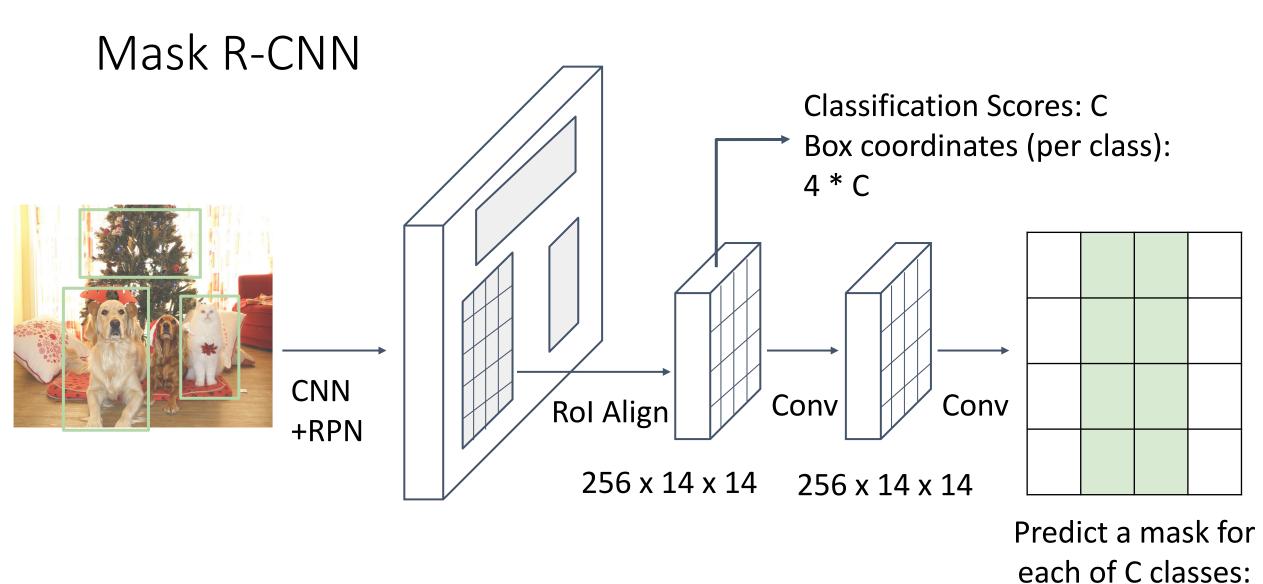
This image is CC0 public domain



Justin Johnson



Justin Johnson



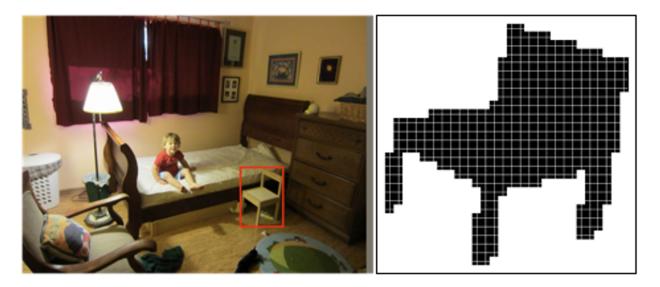
Lecture 16 - 86

C x 28 x 28

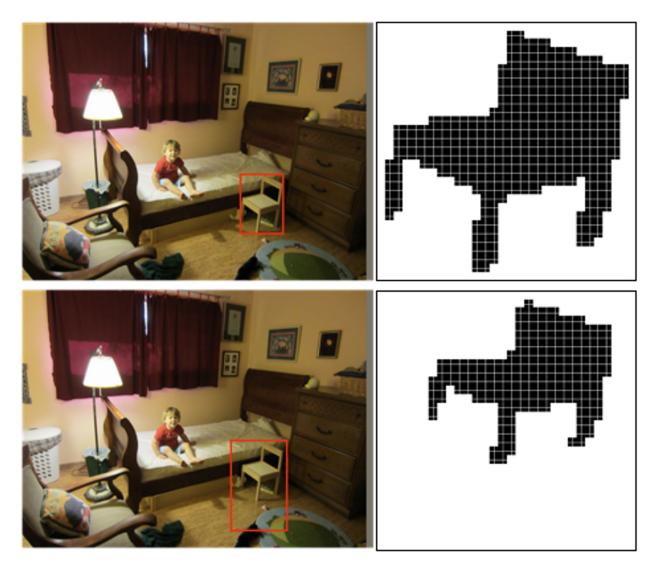
He et al, "Mask R-CNN", ICCV 2017

Justin Johnson

Fall 2019

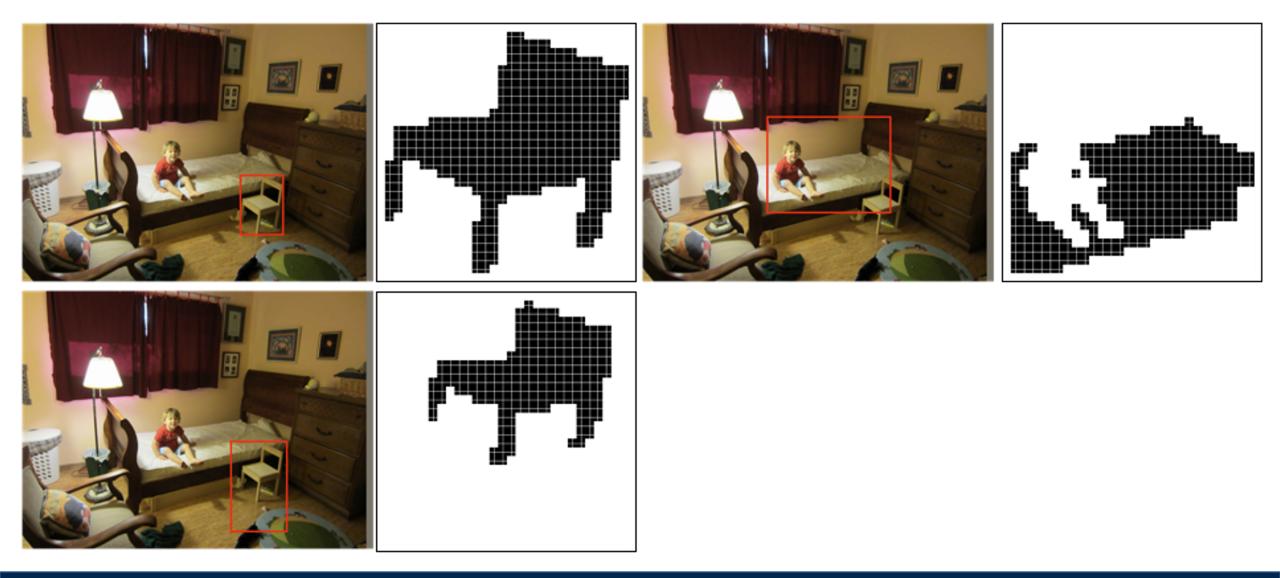


Justin Johnson

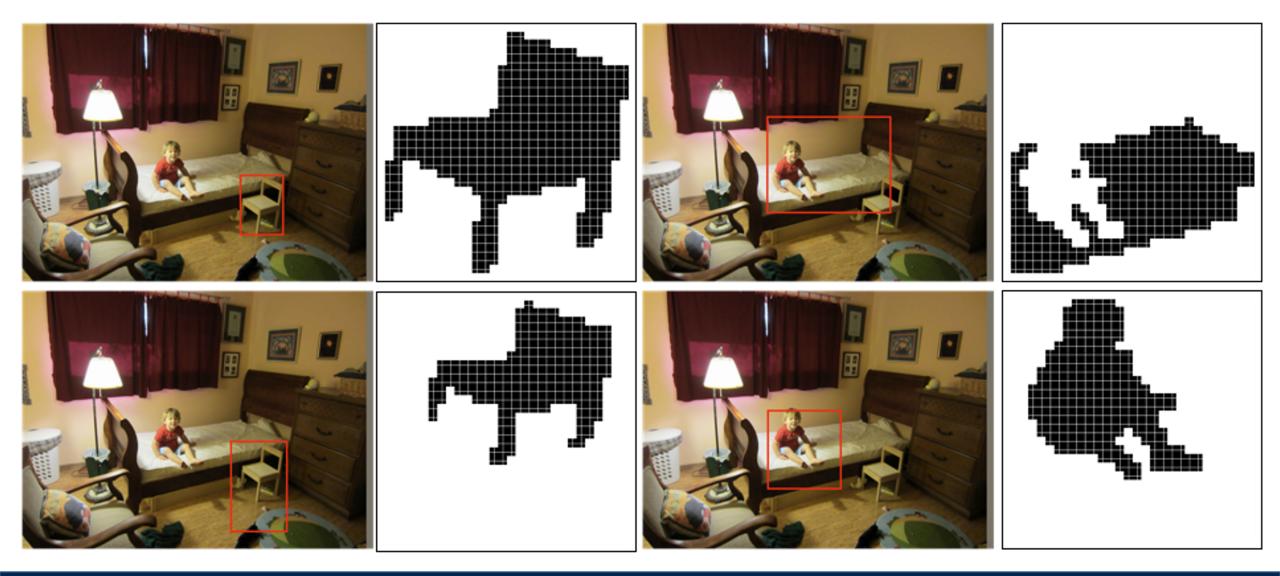


Justin Johnson



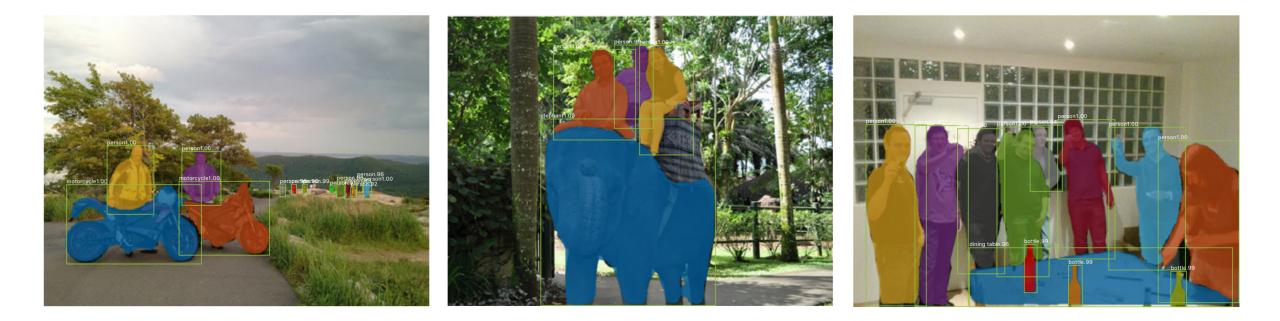


Justin Johnson

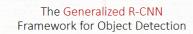


Justin Johnson

Mask R-CNN: Very Good Results!



Justin Johnson



ICCV 2019 Tutorial Visual Recognition for Images, Video, and 3D

Ross Girshick

facebook Artificial Intelligence Research

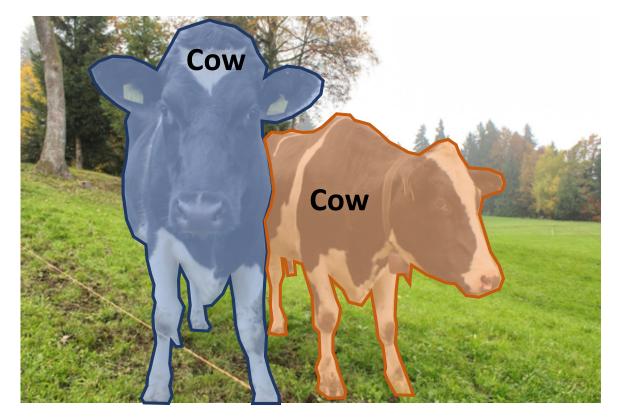
of general dense is travelisting of the

T. CARLES

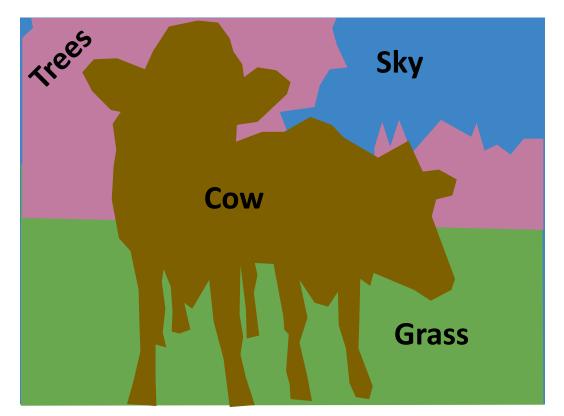
COMPANY OF MANY

Beyond Instance Segmentation

Instance Segmentation: Separate object instances, but only things



Semantic Segmentation: Identify both things and stuff, but doesn't separate instances



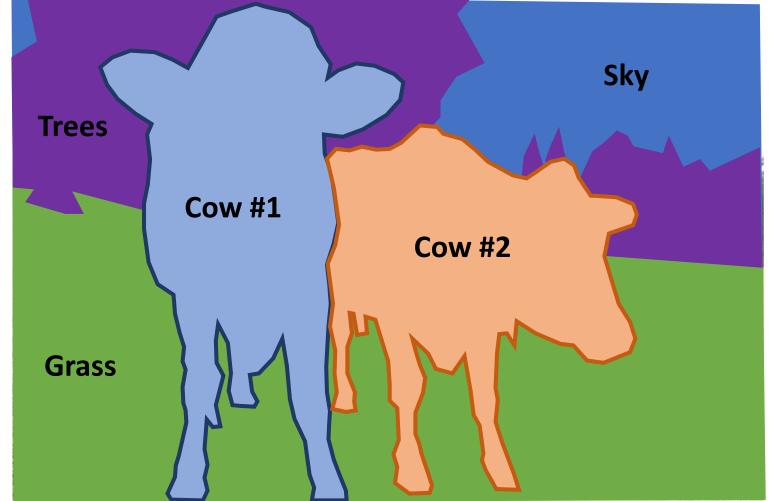
Justin Johnson

Beyond Instance Segmentation: Panoptic Segmentation

Label all pixels in the image (both things and stuff)

For "thing" categories also separate into instances

Kirillov et al, "Panoptic Segmentation", CVPR 2019 Kirillov et al, "Panoptic Feature Pyramid Networks", CVPR 2019



Justin Johnson

Beyond Instance Segmentation: Panoptic Segmentation

Kirillov et al, "Panoptic Feature Pyramid Networks", CVPR 2019

Justin Johnson

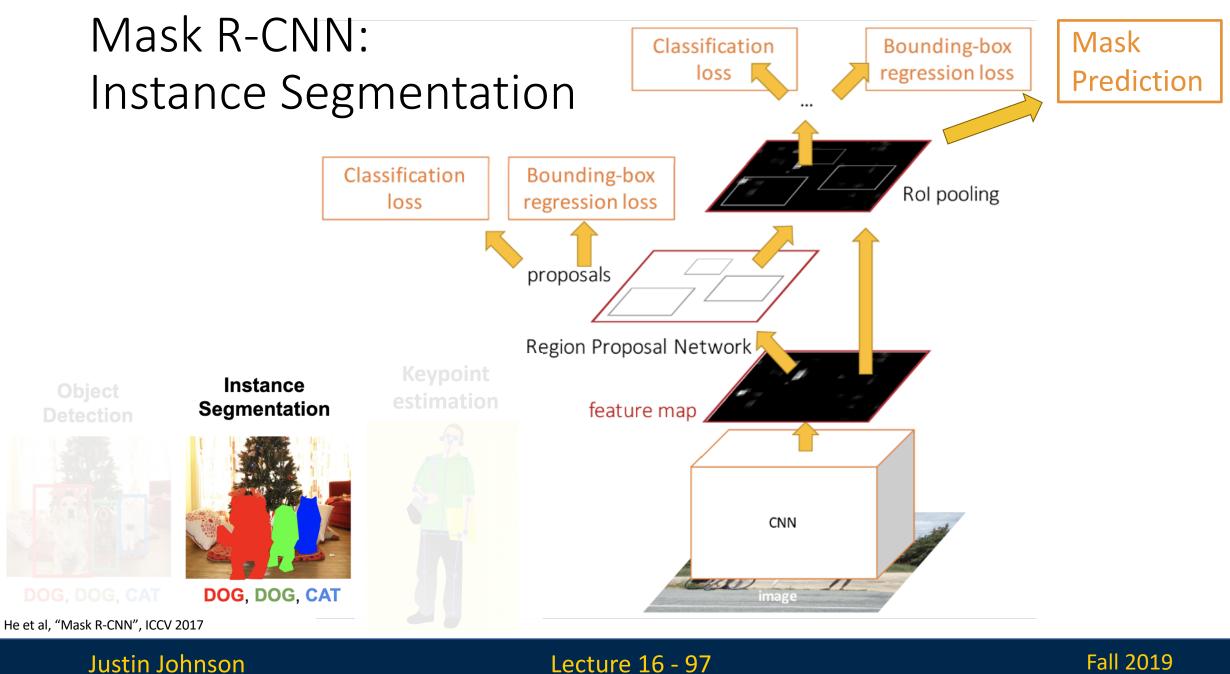
Beyond Instance Segmentation: Human Keypoints

Represent the pose of a human by locating a set of **keypoints**

e.g. 17 keypoints:

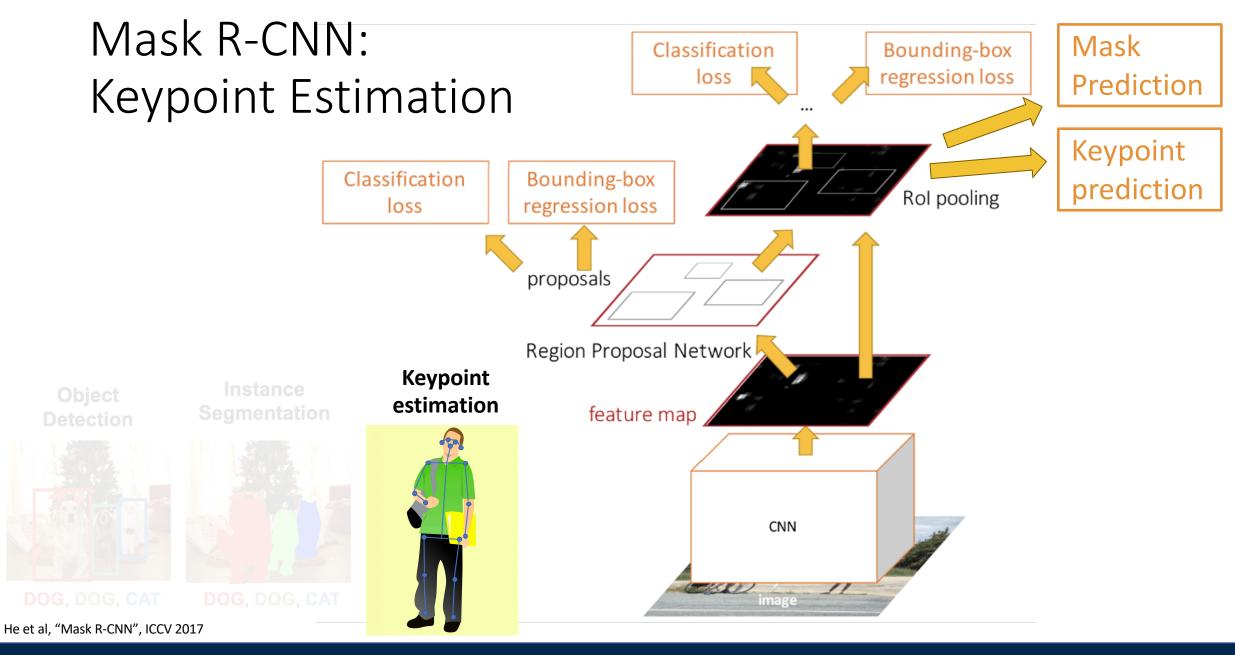
- Nose
- Left / Right eye
- Left / Right ear
- Left / Right shoulder
- Left / Right elbow
- Left / Right wrist
- Left / Right hip
- Left / Right knee
- Left / Right ankle

Person image is CC0 public domain



Lecture 16 - 97

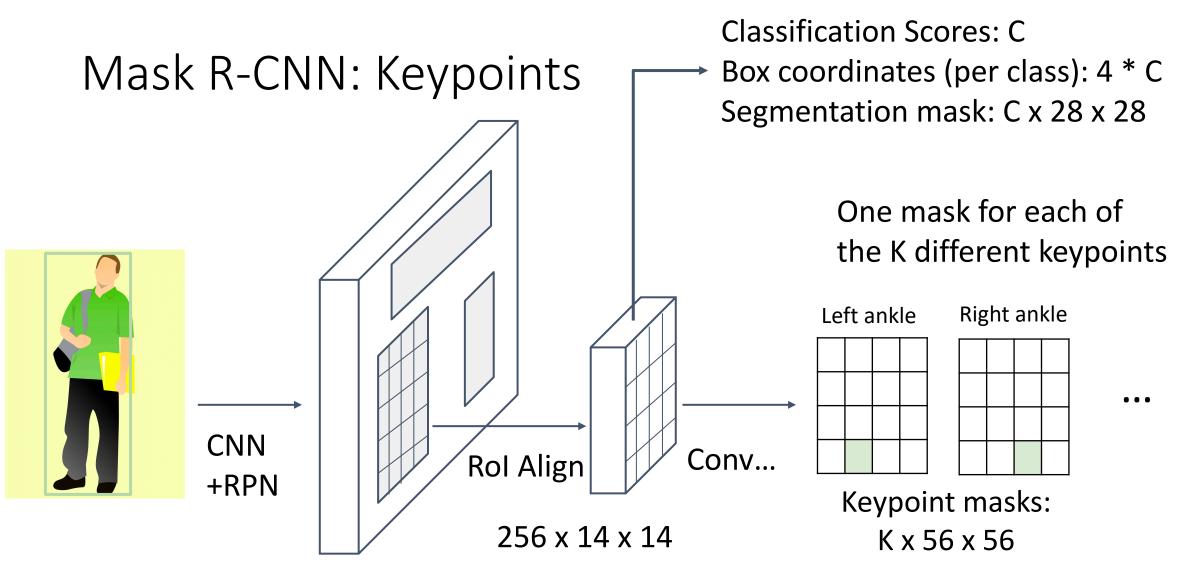
Fall 2019



Justin Johnson

Lecture 16 - 98

Fall 2019



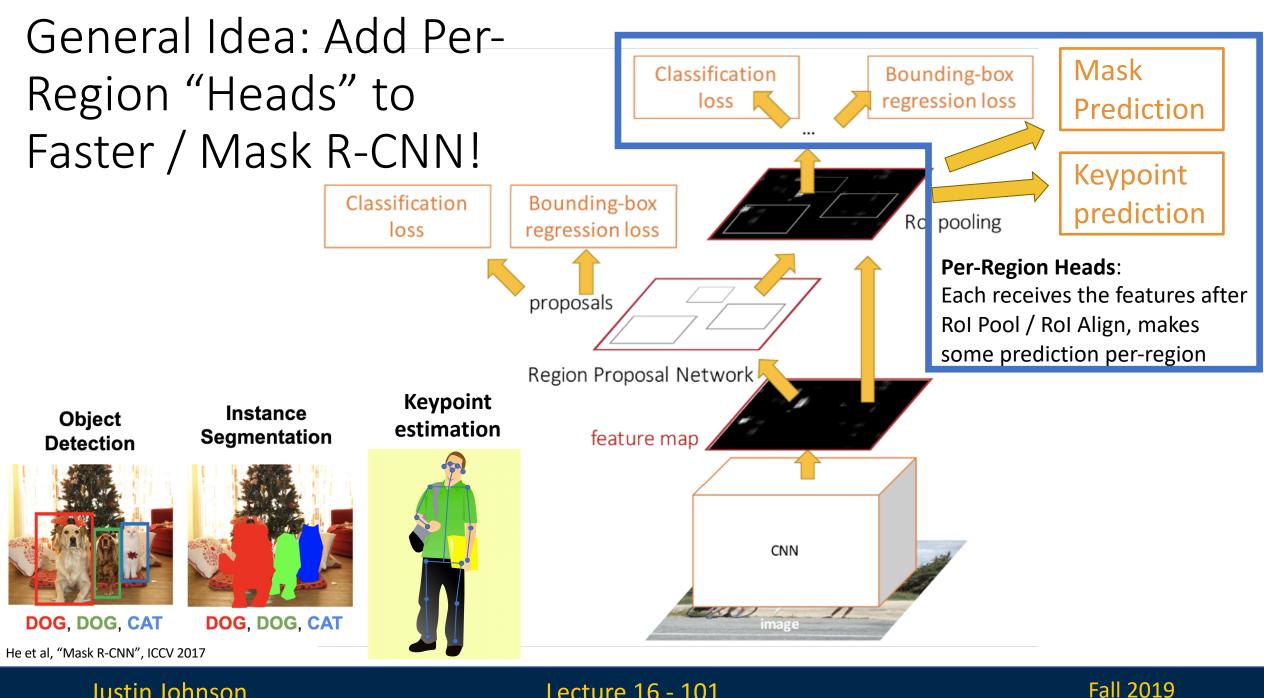
Ground-truth has one "pixel" turned on per keypoint. Train with softmax loss

He et al, "Mask R-CNN", ICCV 2017

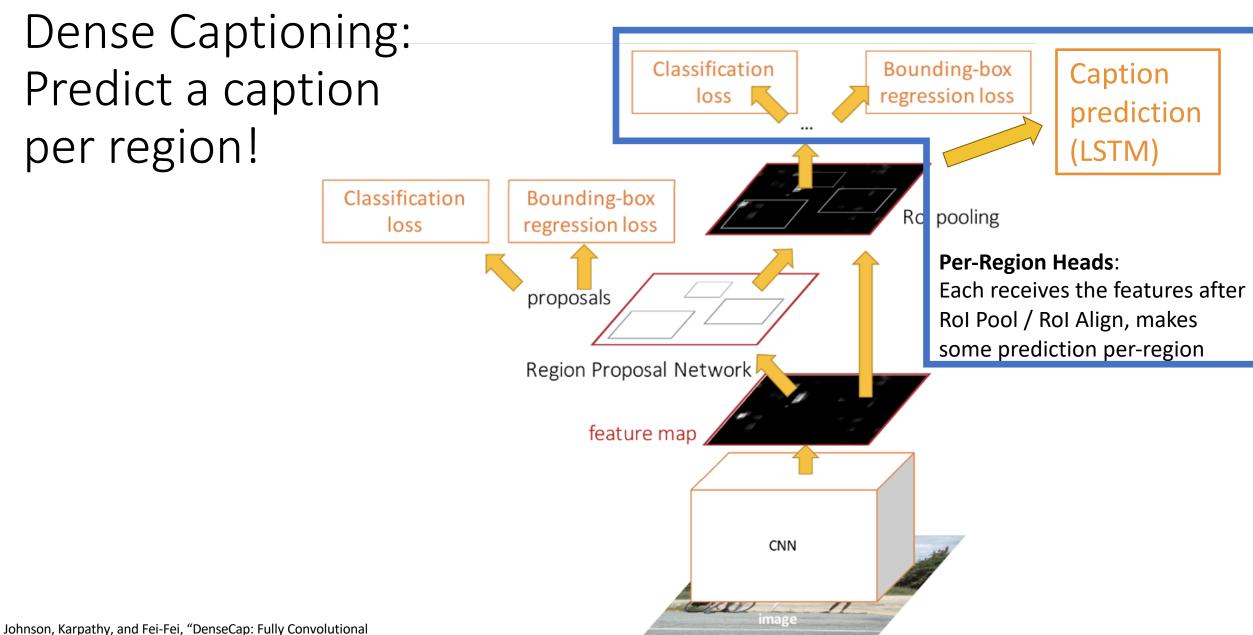
Justin Johnson

Joint Instance Segmentation and Pose Estimation

He et al, "Mask R-CNN", ICCV 2017



Justin Johnson

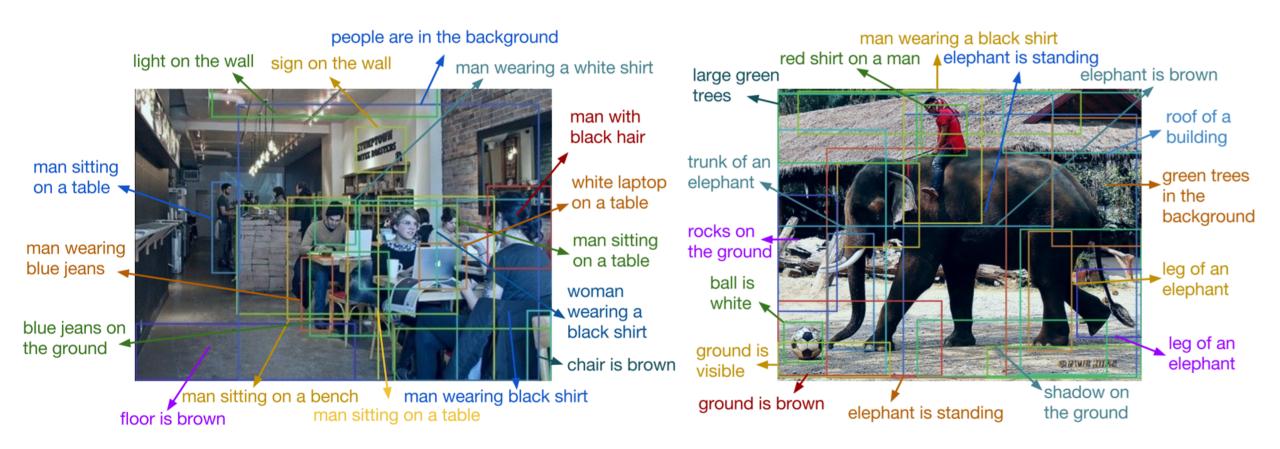


Johnson, Karpathy, and Fei-Fei, "DenseCap: Fully Convolutional Localization Networks for Dense Captioning", CVPR 2016

Justin Johnson



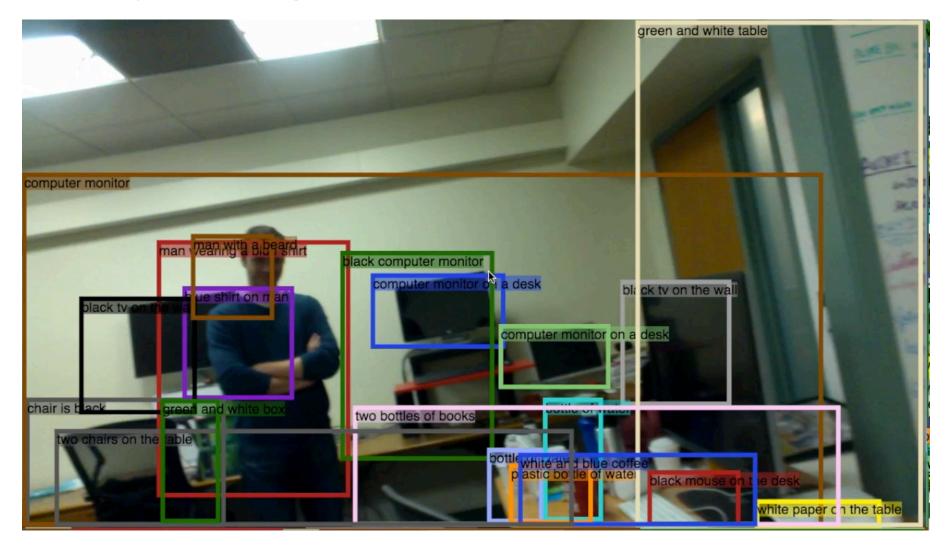
Dense Captioning



Johnson, Karpathy, and Fei-Fei, "DenseCap: Fully Convolutional Localization Networks for Dense Captioning", CVPR 2016

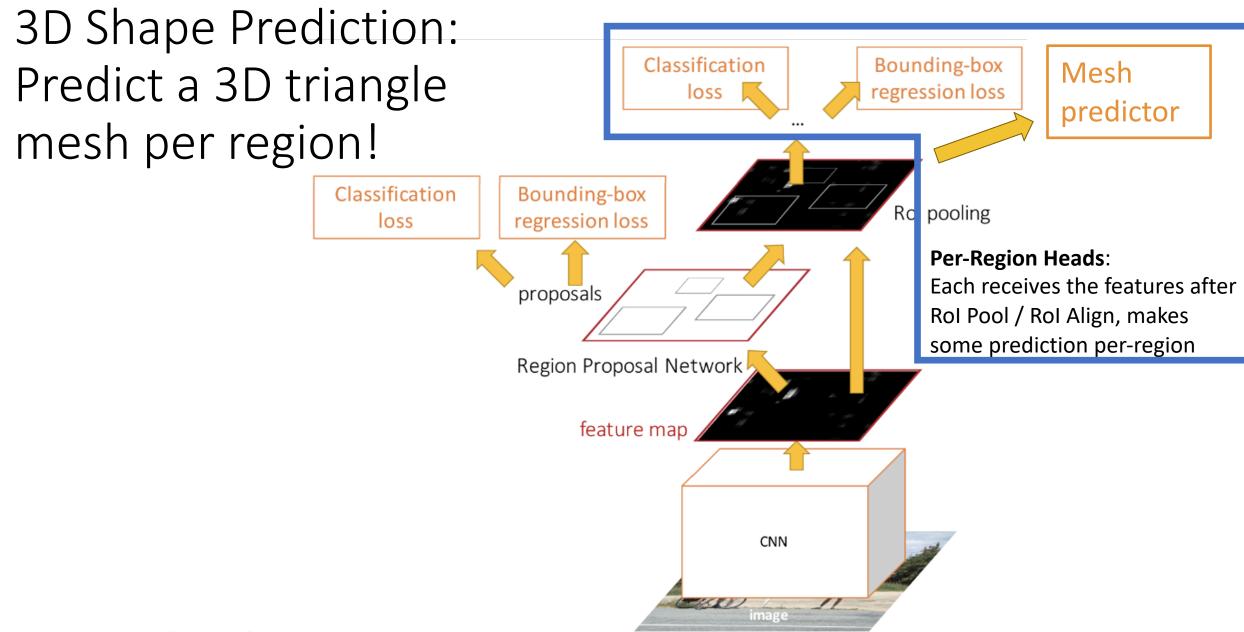
Justin Johnson

Dense Captioning



Johnson, Karpathy, and Fei-Fei, "DenseCap: Fully Convolutional Localization Networks for Dense Captioning", CVPR 2016

Justin Johnson



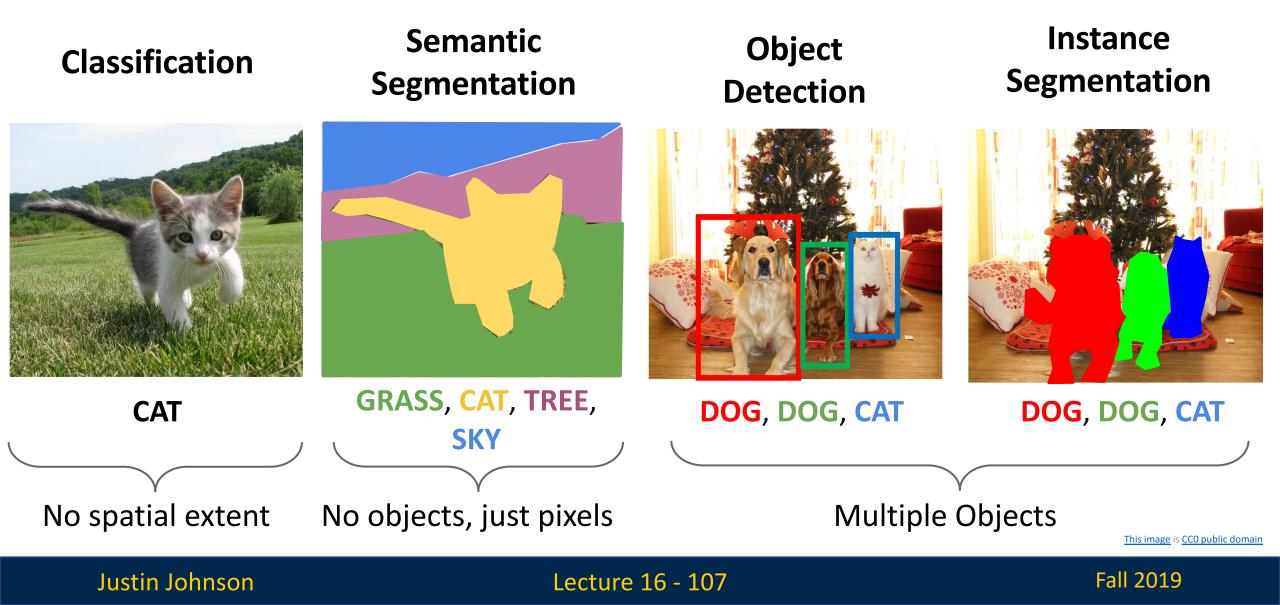
Gkioxari, Malik, and Johnson, "Mesh R-CNN", ICCV 2019

Justin Johnson

Lecture 16 - 105

Fall 2019

Summary: Many Computer Vision Tasks!

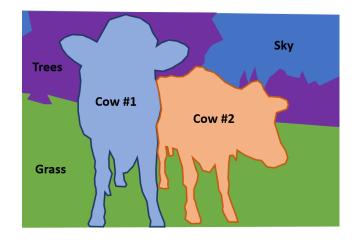


DL software and more

- Deep learning frameworks
- Instance segmentation
- -3D neural networks
- Video

class Net(nn.Module):

def __init__(self): super(Net, self). init () # 1 input image channel, 6 output channels, 5x5 square convolution # kernel self.conv1 = nn.Conv2d(1, 6, 5) self.conv2 = nn.Conv2d(6, 16, 5)# an affine operation: y = Wx + b self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): # Max pooling over a (2, 2) window x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) # If the size is a square you can only specify a single number x = F.max pool2d(F.relu(self.conv2(x)), 2) x = x.view(-1, self.num_flat_features(x)) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x)return x



 $clink \ glass \rightarrow drink$

EECS 498-007 / 598-005 Deep Learning for Computer Vision Fall 2019

Lecture 17: 3D Vision

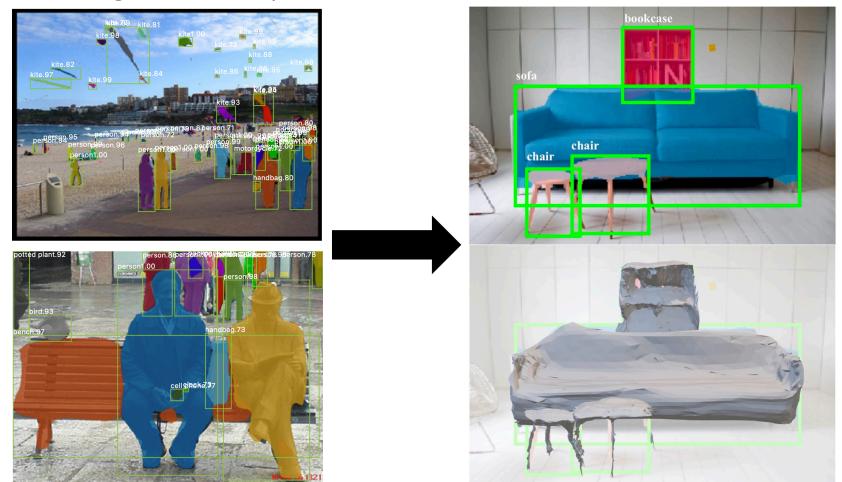
Covered in later part of the UW CSE 576 course

Justin Johnson

Today: Predicting **3D Shapes of Objects**

Mask R-CNN: 2D Image -> 2D shapes

Mesh R-CNN: 2D Image -> **3D** shapes



Gkioxari, Malik, and Johnson, "Mesh R-CNN", ICCV 2019

Justin Johnson

He, Gkioxari, Dollár, and Girshick, "Mask R-CNN",

ICCV 2017

Many more topics in 3D Vision!

Computing correspondences Multi-view stereo Structure from Motion Simultaneous Localization and Mapping (SLAM) Self-supervised learning **View Synthesis Differentiable graphics 3D** Sensors

Many non-Deep Learning methods alive and well in 3D!

Justin Johnson

EECS 498-007 / 598-005 Deep Learning for Computer Vision Fall 2019

Lecture 18: Videos

Justin Johnson

Today: Video = 2D + Time

A video is a **sequence** of images 4D tensor: T x 3 x H x W (or 3 x T x H x W)

This image is CC0 public domain



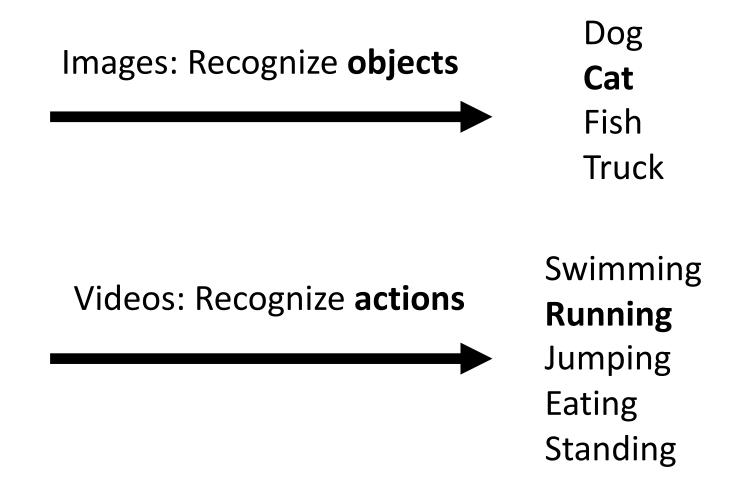
Example task: Video Classification

Input video: T x 3 x H x W Running Jumping Eating Standing

Swimming

<u>Running video</u> is in the <u>public domain</u>

Example task: Video Classification



Running video is in the public domain

Justin Johnson

Problem: Videos are big!

Videos are ~30 frames per second (fps)

Input video: T x 3 x H x W Size of uncompressed video (3 bytes per pixel):

SD (640 x 480): **~1.5 GB per minute** HD (1920 x 1080): **~10 GB per minute**

Problem: Videos are big!

Videos are ~30 frames per second (fps)

Input video: T x 3 x H x W

Size of uncompressed video (3 bytes per pixel):

SD (640 x 480): **~1.5 GB per minute** HD (1920 x 1080): **~10 GB per minute**

Solution: Train on short **clips:** low fps and low spatial resolution e.g. T = 16, H=W=112 (3.2 seconds at 5 fps, 588 KB)

Training on Clips

Raw video: Long, high FPS

Training on Clips

Raw video: Long, high FPS

Training: Train model to classify short clips with low FPS

Training on Clips

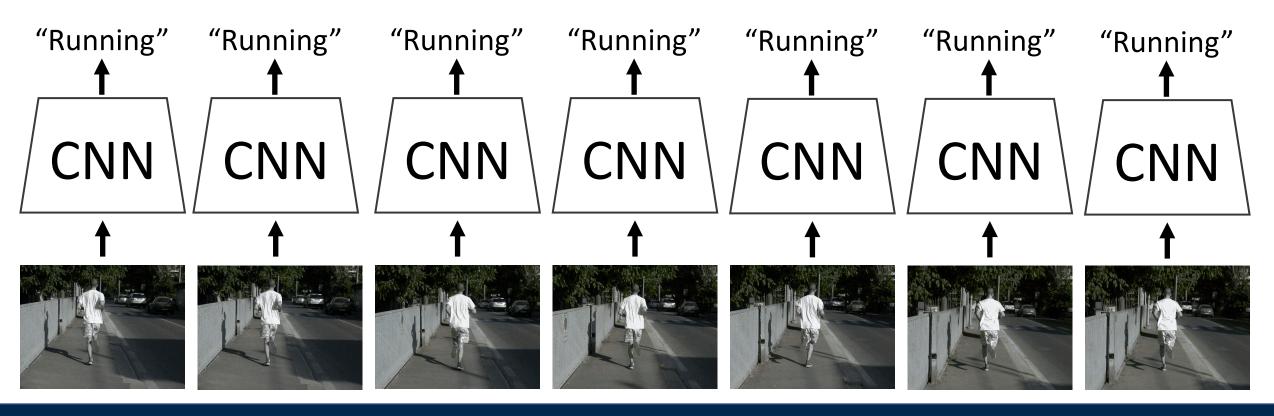
Raw video: Long, high FPS

Training: Train model to classify short clips with low FPS

Testing: Run model on different clips, average predictions

Video Classification: Single-Frame CNN

Simple idea: train normal 2D CNN to classify video frames independently (Average predicted probs at test-time) Often a **very** strong baseline for video classification



Justin Johnson

Lecture 18 - 121

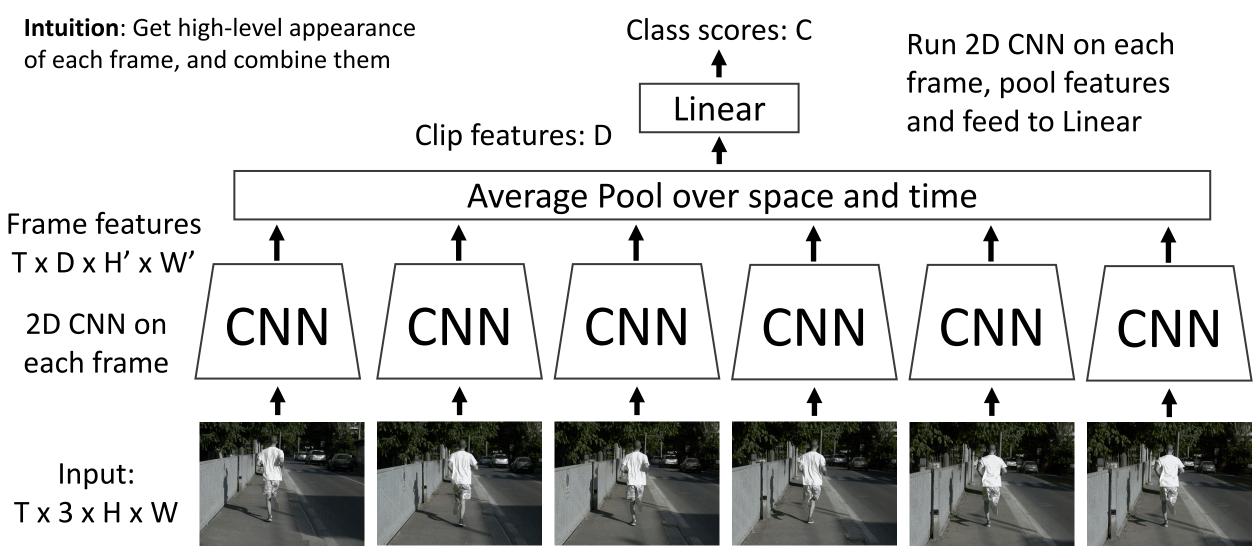
Video Classification: Late Fusion (with FC layers) **Intuition**: Get high-level appearance Class scores: C Run 2D CNN on each of each frame, and combine them frame, concatenate MLP features and feed to MLP Clip features: TDH'W' Flatten Frame features $T \times D \times H' \times W'$ CNN **CNN** CNN CNN **CNN** CNN 2D CNN on each frame Input: T x 3 x H x W

Karpathy et al, "Large-scale Video Classification with Convolutional Neural Networks", CVPR 2014

Justin Johnson

Lecture 18 - 122

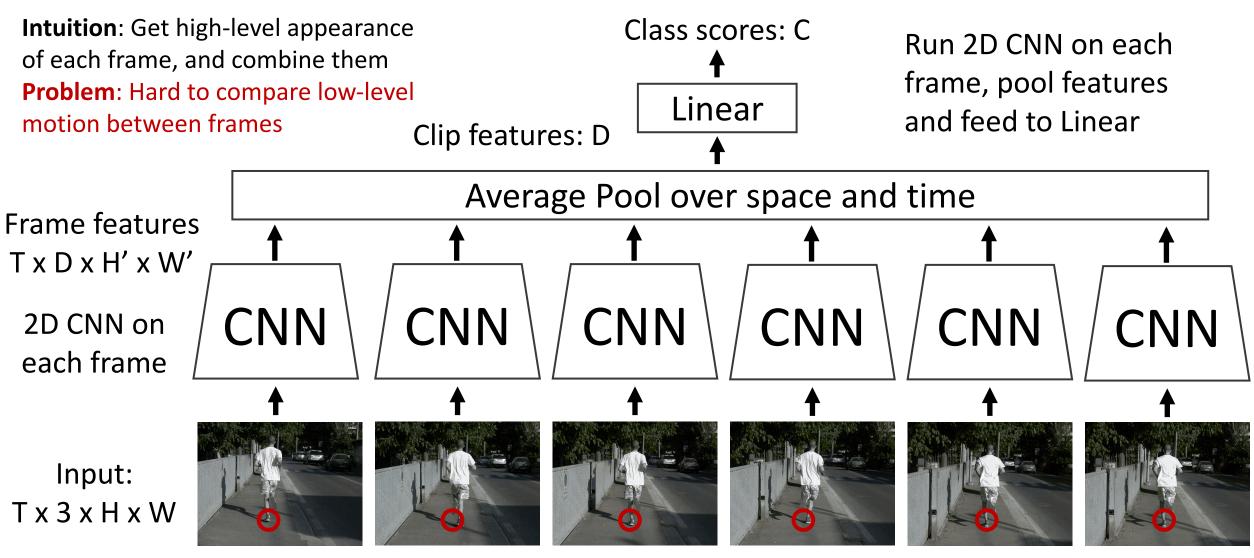
Video Classification: Late Fusion (with pooling)



Justin Johnson

Lecture 18 - 123

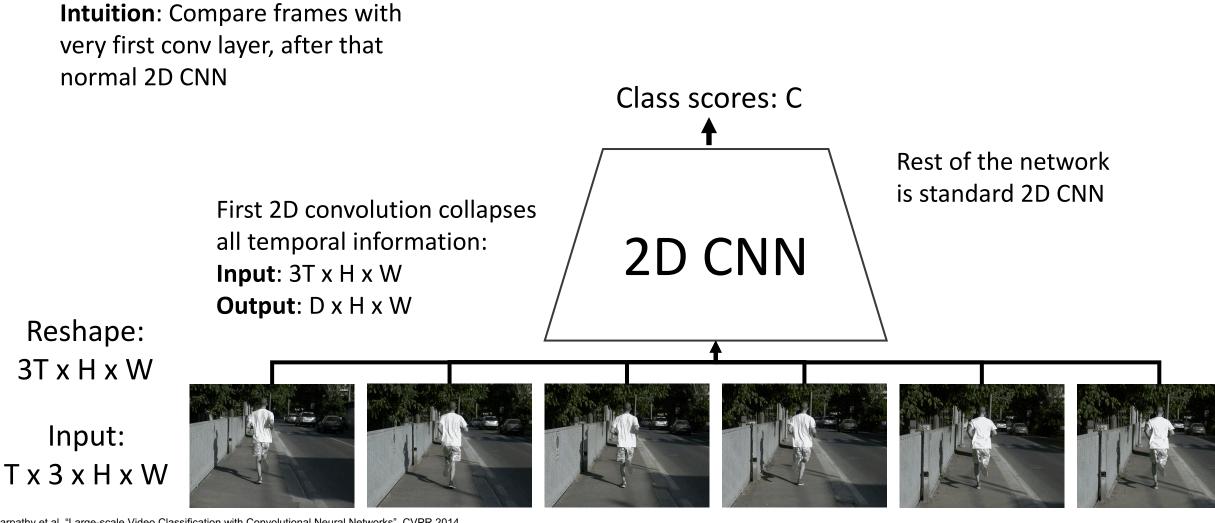
Video Classification: Late Fusion (with pooling)



Justin Johnson

Lecture 18 - 124

Video Classification: Early Fusion

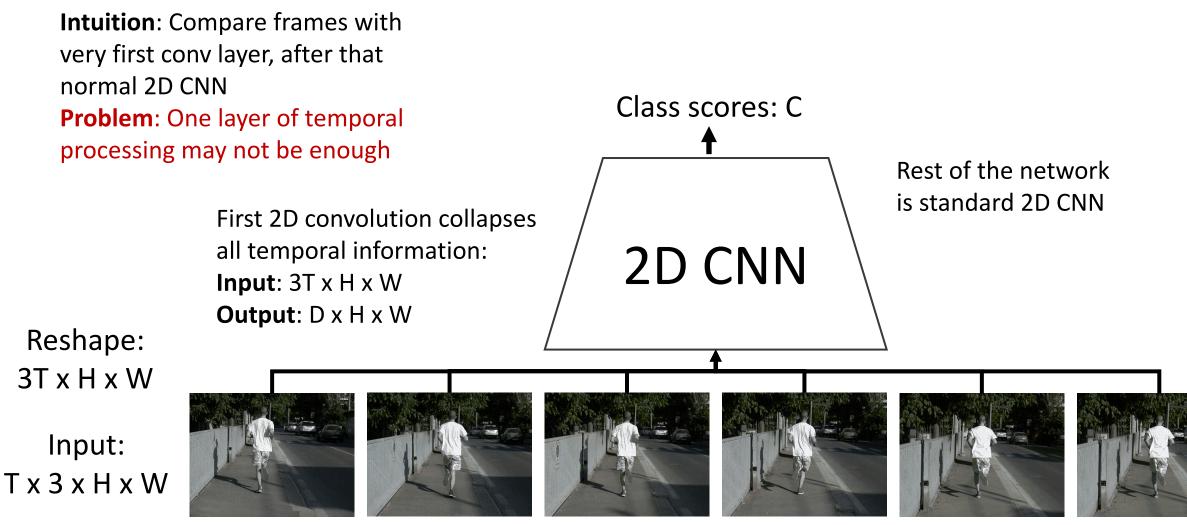


Karpathy et al, "Large-scale Video Classification with Convolutional Neural Networks", CVPR 2014

Justin Johnson

Lecture 18 - 125

Video Classification: Early Fusion



Karpathy et al, "Large-scale Video Classification with Convolutional Neural Networks", CVPR 2014

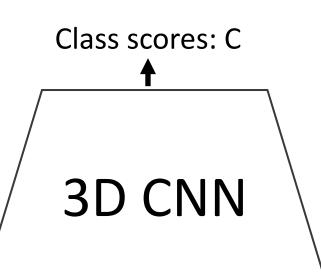
Justin Johnson

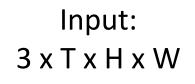
Lecture 18 - 126

Video Classification: 3D CNN

Intuition: Use 3D versions of convolution and pooling to slowly fuse temporal information over the course of the network

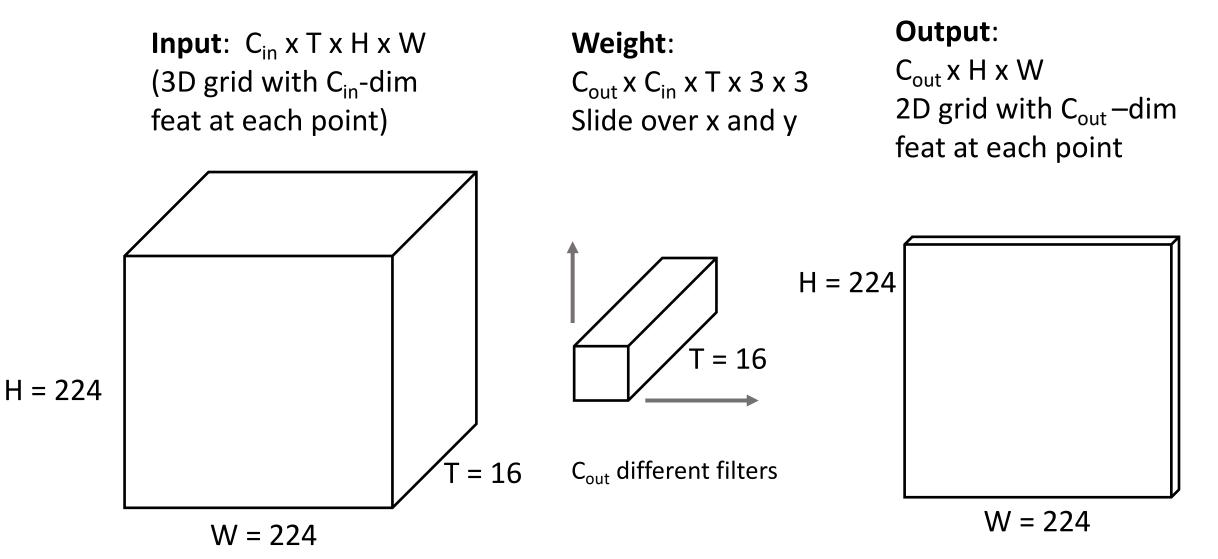
> Each layer in the network is a 4D tensor: D x T x H x W Use 3D conv and 3D pooling operations





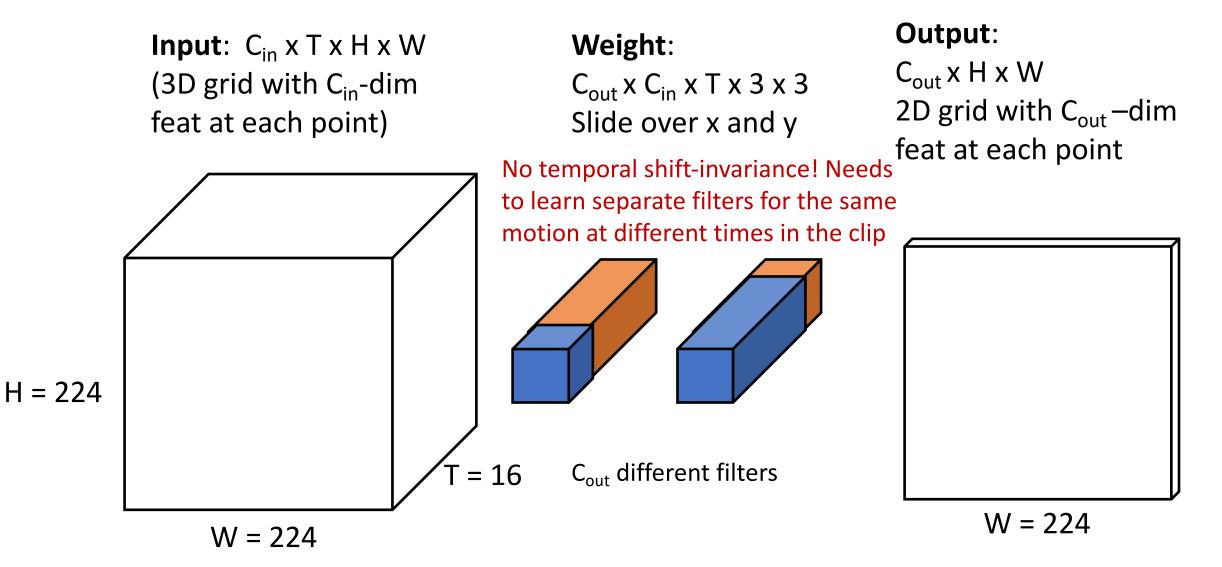
Ji et al, "3D Convolutional Neural Networks for Human Action Recognition", TPAMI 2010; Karpathy et al, "Large-scale Video Classification with Convolutional Neural Networks", CVPR 2014

Justin Johnson

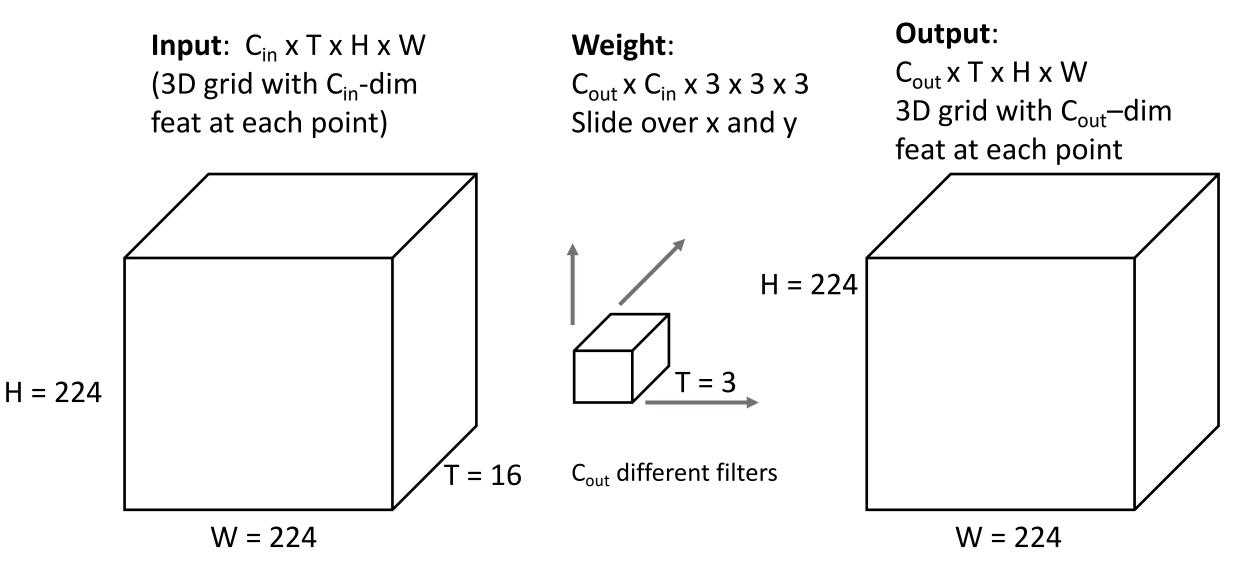


Justin Johnson

Lecture 18 - 128

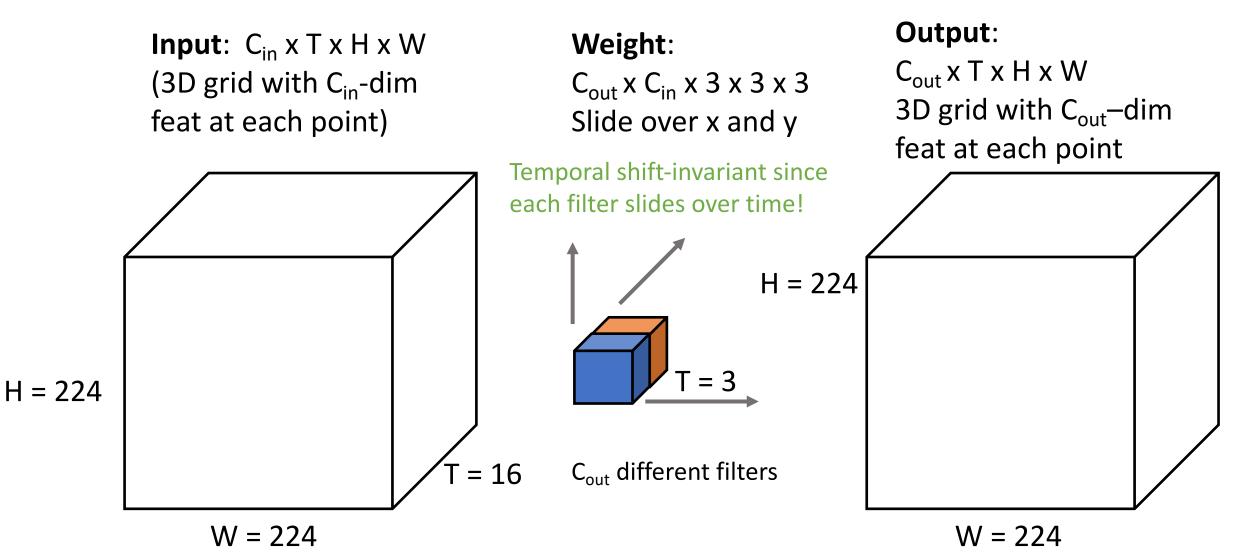


Justin Johnson



Justin Johnson

Lecture 18 - 130



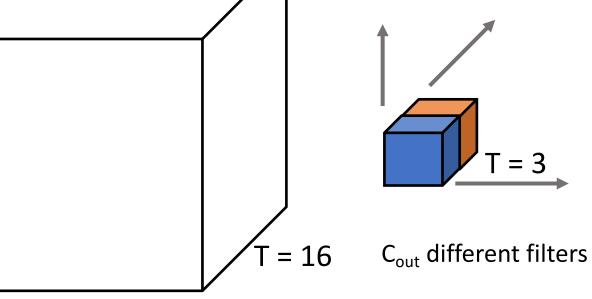
Justin Johnson

Lecture 18 - 131

Input: $C_{in} \times T \times H \times W$ (3D grid with C_{in} -dim feat at each point) Weight:

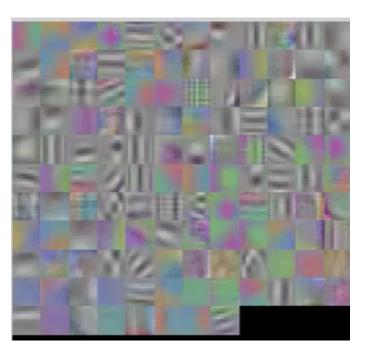
 $C_{out} \times C_{in} \times 3 \times 3 \times 3$ Slide over x and y

Temporal shift-invariant since each filter slides over time!



W = 224

First-layer filters have shape 3 (RGB) x 4 (frames) x 5 x 5 (space) Can visualize as video clips!



Karpathy et al, "Large-scale Video Classification with Convolutional Neural Networks", CVPR 2014

Fall 2019

Justin Johnson

H = 224

Example Video Dataset: Sports-1M



1 million YouTube videos
 annotated with labels for
 487 different types of sports

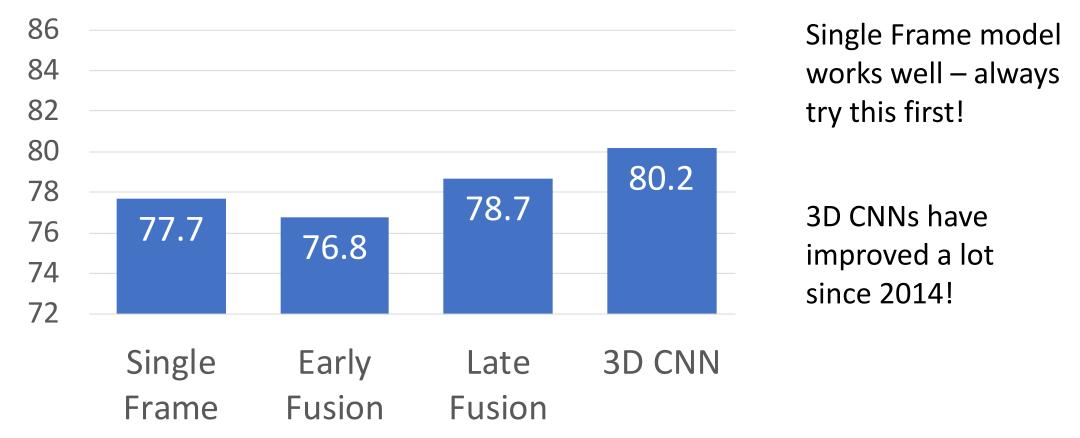
Ground Truth Correct prediction Incorrect prediction

Karpathy et al, "Large-scale Video Classification with Convolutional Neural Networks", CVPR 2014

Justin Johnson

Early Fusion vs Late Fusion vs 3D CNN

Sports-1M Top-5 Accuracy



Karpathy et al, "Large-scale Video Classification with Convolutional Neural Networks", CVPR 2014

C3D: The VGG of 3D CNNs

3D CNN that uses all 3x3x3 conv and 2x2x2 pooling (except Pool1 which is 1x2x2)

Released model pretrained on Sports-1M: Many people used this as a video feature extractor

Layer	Size
Input	3 x 16 x 112 x 112
Conv1 (3x3x3)	64 x 16 x 112 x 112
Pool1 (1x2x2)	64 x 16 x 56 x 56
Conv2 (3x3x3)	128 x 16 x 56 x 56
Pool2 (2x2x2)	128 x 8 x 28 x 28
Conv3a (3x3x3)	256 x 8 x 28 x 28
Conv3b (3x3x3)	256 x 8 x 28 x 28
Pool3 (2x2x2)	256 x 4 x 14 x 14
Conv4a (3x3x3)	512 x 4 x 14 x 14
Conv4b (3x3x3)	512 x 4 x 14 x 14
Pool4 (2x2x2)	512 x 2 x 7 x 7
Conv5a (3x3x3)	512 x 2 x 7 x 7
Conv5b (3x3x3)	512 x 2 x 7 x 7
Pool5	512 x 1 x 3 x 3
FC6	4096
FC7	4096
FC8	С

Tran et al, "Learning Spatiotemporal Features with 3D Convolutional Networks", ICCV 2015

C3D: The VGG of 3D CNNs

3D CNN that uses all 3x3x3 conv and 2x2x2 pooling (except Pool1 which is 1x2x2)

Released model pretrained on Sports-1M: Many people used this as a video feature extractor

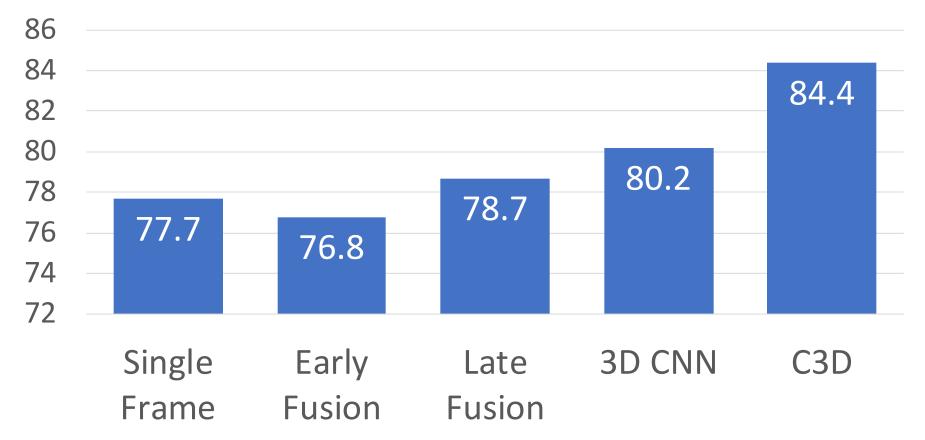
Problem: 3x3x3 conv is very expensive! <u>AlexNet</u>: 0.7 GFLOP <u>VGG-16</u>: 13.6 GFLOP <u>C3D</u>: **39.5 GFLOP (2.9x VGG!)**

Layer	Size	MFLOPs
Input	3 x 16 x 112 x 112	
Conv1 (3x3x3)	64 x 16 x 112 x 112	1.04
Pool1 (1x2x2)	64 x 16 x 56 x 56	
Conv2 (3x3x3)	128 x 16 x 56 x 56	11.10
Pool2 (2x2x2)	128 x 8 x 28 x 28	
Conv3a (3x3x3)	256 x 8 x 28 x 28	5.55
Conv3b (3x3x3)	256 x 8 x 28 x 28	11.10
Pool3 (2x2x2)	256 x 4 x 14 x 14	
Conv4a (3x3x3)	512 x 4 x 14 x 14	2.77
Conv4b (3x3x3)	512 x 4 x 14 x 14	5.55
Pool4 (2x2x2)	512 x 2 x 7 x 7	
Conv5a (3x3x3)	512 x 2 x 7 x 7	0.69
Conv5b (3x3x3)	512 x 2 x 7 x 7	0.69
Pool5	512 x 1 x 3 x 3	
FC6	4096	0.51
FC7	4096	0.45
FC8	С	0.05

Tran et al, "Learning Spatiotemporal Features with 3D Convolutional Networks", ICCV 2015

Early Fusion vs Late Fusion vs 3D CNN

Sports-1M Top-5 Accuracy

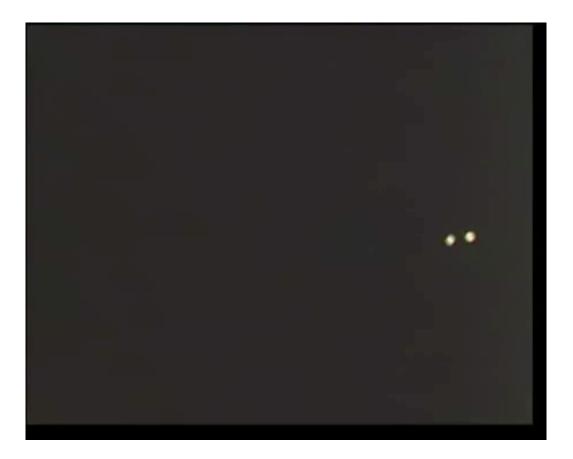


Karpathy et al, "Large-scale Video Classification with Convolutional Neural Networks", CVPR 2014 Tran et al. "Learning Spatiotemporal Features with 3D Convolutional Networks", ICCV 2015

Justin Johnson

Recognizing Actions from Motion

We can easily recognize actions using only motion information

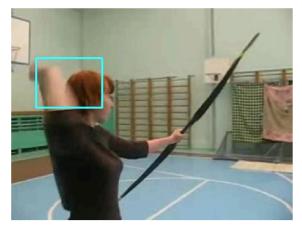


Johansson, "Visual perception of biological motion and a model for its analysis." Perception & Psychophysics. 14(2):201-211. 1973.

Justin Johnson

Measuring Motion: Optical Flow

Image at frame t



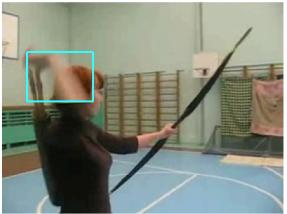


Image at frame t+1

Simonyan and Zisserman, "Two-stream convolutional networks for action recognition in videos", NeurIPS 2014

Justin Johnson

Measuring Motion: Optical Flow

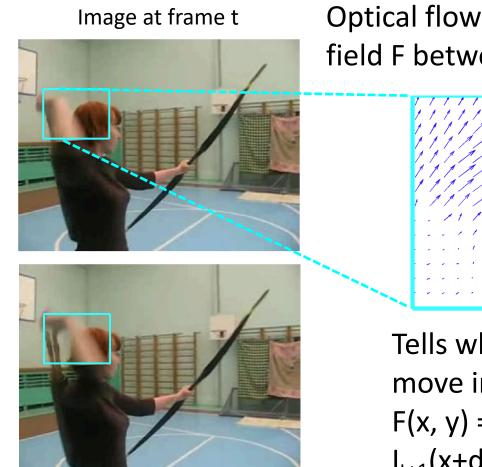
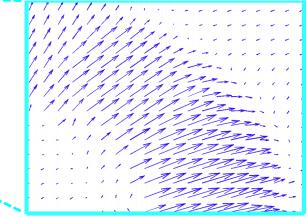


Image at frame t+1

Optical flow gives a displacement field F between images I_t and I_{t+1}



Tells where each pixel will move in the next frame: F(x, y) = (dx, dy) $I_{t+1}(x+dx, y+dy) = I_t(x, y)$

Simonyan and Zisserman, "Two-stream convolutional networks for action recognition in videos", NeurIPS 2014

Justin Johnson

Measuring Motion: Optical Flow

Optical flow gives a displacement field F between images ${\sf I}_t$ and ${\sf I}_{t+1}$

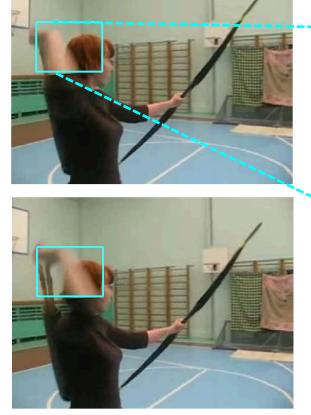
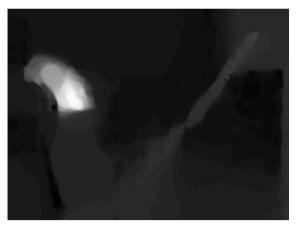


Image at frame t

Image at frame t+1

Tells where each pixel will move in the next frame: F(x, y) = (dx, dy) $I_{t+1}(x+dx, y+dy) = I_t(x, y)$ Optical Flow highlights local motion

Horizontal flow dx



Vertical Flow dy

Simonyan and Zisserman, "Two-stream convolutional networks for action recognition in videos", NeurIPS 2014

Justin Johnson

Separating Motion and Appearance: Two-Stream Networks

Input: Single Image 3 x H x W

Se.		Spatial stream ConvNet								
	single frame	conv1 7x7x96 stride 2 norm. pool 2x2	conv2 5x5x256 stride 2 norm. pool 2x2	conv3 3x3x512 stride 1	conv4 3x3x512 stride 1	conv5 3x3x512 stride 1 pool 2x2	full6 4096 dropout	full7 2048 dropout	softmax	cla
		Temporal stream ConvNet				sco fusi				
input video	multi-frame	conv1 7x7x96 stride 2 norm. pool 2x2	conv2 5x5x256 stride 2 pool 2x2	conv3 3x3x512 stride 1	conv4 3x3x512 stride 1	conv5 3x3x512 stride 1 pool 2x2	full6 4096 dropout	full7 2048 dropout	softmax	

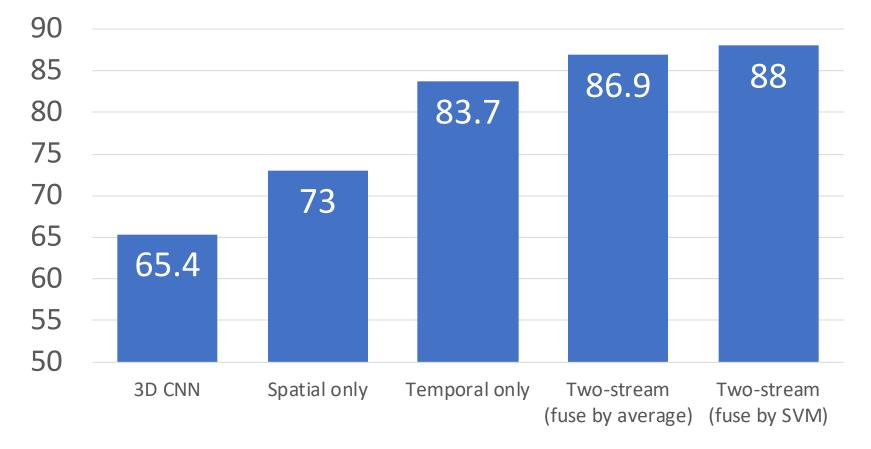
Input: Stack of optical flow: [2*(T-1)] x H x W **Early fusion**: First 2D conv processes all flow images

Simonyan and Zisserman, "Two-stream convolutional networks for action recognition in videos", NeurIPS 2014

Justin Johnson

Separating Motion and Appearance: Two-Stream Networks

Accuracy on UCF-101

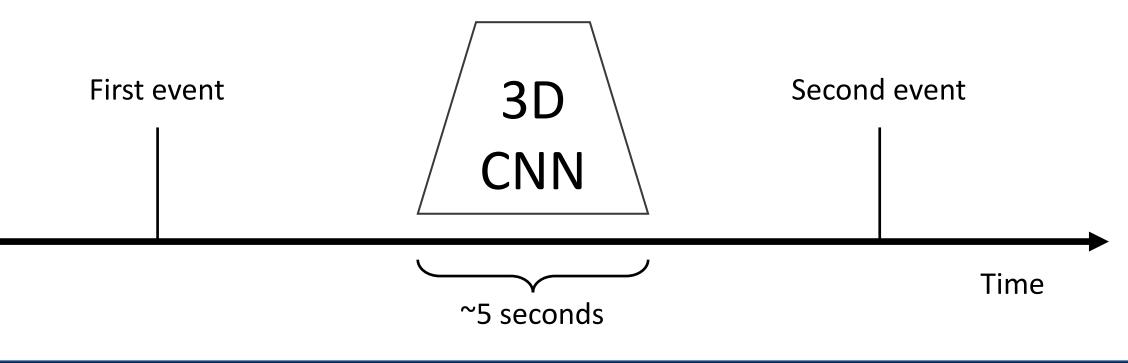


Simonyan and Zisserman, "Two-stream convolutional networks for action recognition in videos", NeurIPS 2014

Justin Johnson

Modeling long-term temporal structure

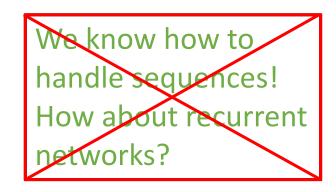
So far all our temporal CNNs only model local motion between frames in very short clips of ~2-5 seconds. What about long-term structure?

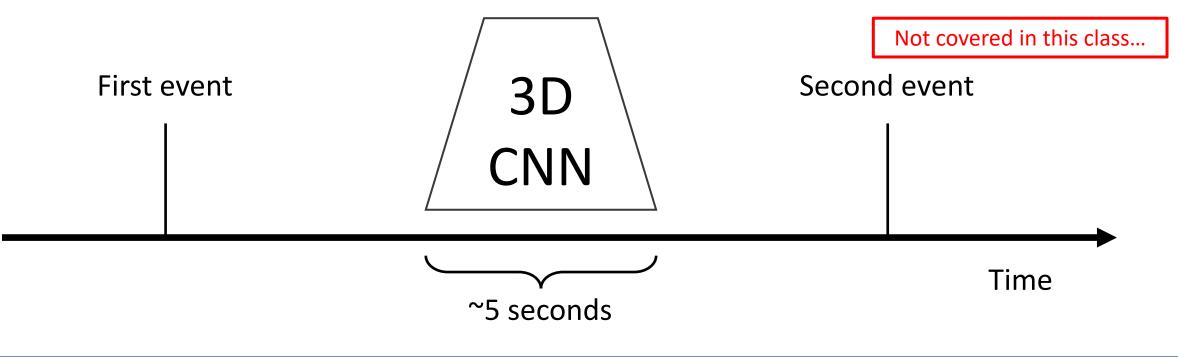


Justin Johnson	Lecture 18 - 144	Fall 2019

Modeling long-term temporal structure

So far all our temporal CNNs only model local motion between frames in very short clips of ~2-5 seconds. What about long-term structure?





Justin Johnson	Lecture 18 - 145	Fall 2019

There has been a lot of work on architectures for images. Can we reuse image architectures for video?

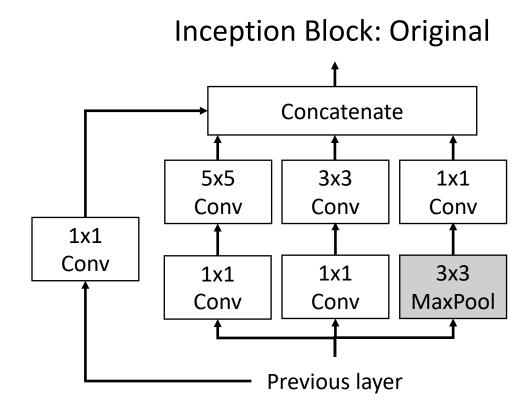
Idea: take a 2D CNN architecture.

Replace each 2D $K_h \times K_w$ conv/pool layer with a 3D $K_t \times K_h \times K_w$ version

Carreira and Zisserman, "Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset", CVPR 2017

There has been a lot of work on architectures for images. Can we reuse image architectures for video?

Idea: take a 2D CNN architecture. Replace each 2D $K_h x K_w conv/pool$ layer with a 3D $K_t x K_h x K_w version$



Carreira and Zisserman, "Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset", CVPR 2017

Justin Johnson

There has been a lot of work on architectures for images. Can we reuse image architectures for video?

Inception Block: Inflated Idea: take a 2D CNN architecture. Replace each 2D $K_h \times K_w$ conv/pool Concatenate layer with a 3D K_t x K_h x K_w version **5x**5x5 **3x**3x3 Conv Conv **1x**1x1 Conv **1x**1x1 **1x**1x1 Conv Conv **Previous** layer

Carreira and Zisserman, "Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset", CVPR 2017

Justin Johnson

Lecture 18 - 148

1x1x1

Conv

3x3x3

MaxPool

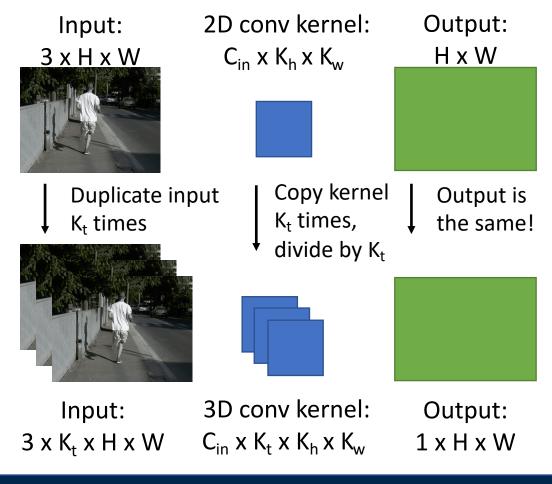
There has been a lot of work on architectures for images. Can we reuse image architectures for video?

Idea: take a 2D CNN architecture.

Replace each 2D $K_h x K_w \text{ conv/pool}$ layer with a 3D $K_t x K_h x K_w \text{ version}$

Can use weights of 2D conv to initialize 3D conv: copy K_t times in space and divide by K_t This gives the same result as 2D conv given "constant" video input

Carreira and Zisserman, "Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset", CVPR 2017



Fall 2019

Justin Johnson

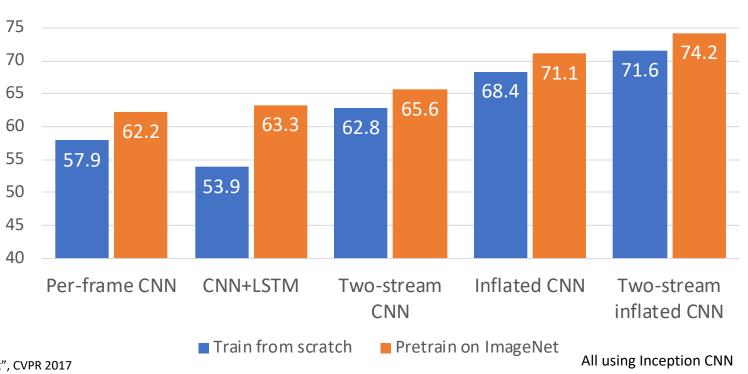
There has been a lot of work on architectures for images. Can we reuse image architectures for video?

80

Idea: take a 2D CNN architecture.

Replace each 2D $K_h x K_w conv/pool$ layer with a 3D $K_t x K_h x K_w version$

Can use weights of 2D conv to initialize 3D conv: copy K_t times in space and divide by K_t This gives the same result as 2D conv given "constant" video input Top-1 Accuracy on Kinetics-400

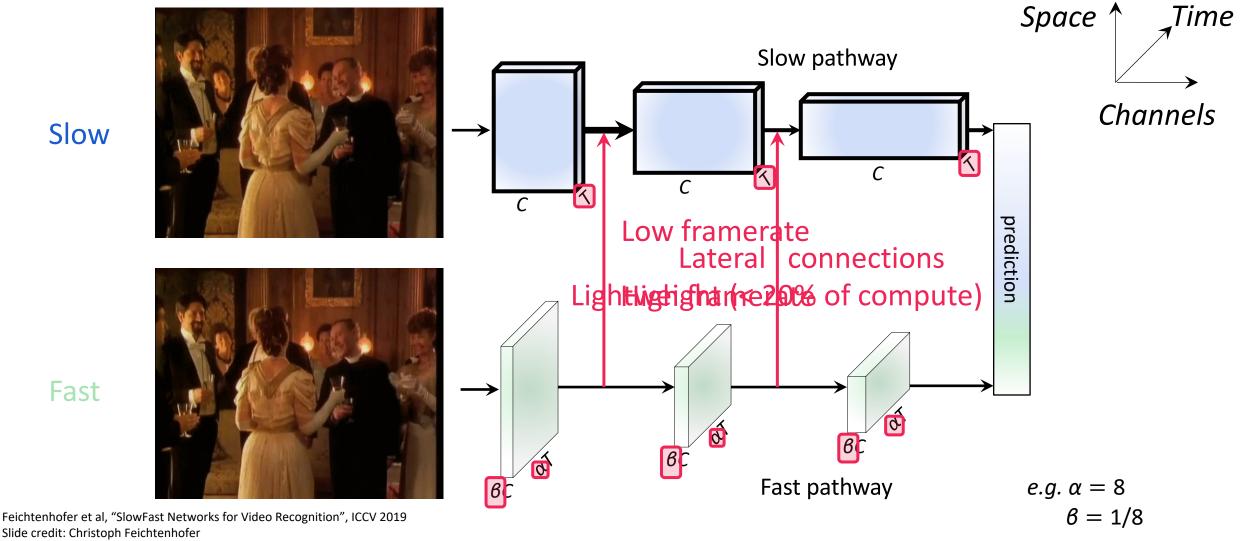


Fall 2019

Carreira and Zisserman, "Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset", CVPR 2017

Justin Johnson

Treating time and space differently: SlowFast Networks



Slow

Fast

Justin Johnson

Treating time and space differently: SlowFast Networks

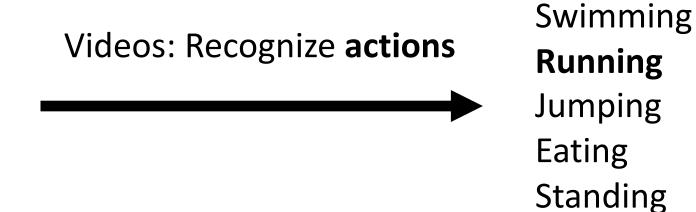
- Dimensions are $\{T \times S^2, C\}$
- Strides are {temporal, spatial²}
- The backbone is ResNet-50
- Residual blocks are shown by brackets
- Non-degenerate temporal filters are underlined
- Here the speed ratio is $\alpha = 8$ and the channel ratio is $\beta = 1/8$
- Orange numbers mark fewer channels, for the Fast pathway
- Green numbers mark higher temporal resolution of the Fast pathway
- No temporal *pooling* is performed throughout the hierarchy

stage	Slow pathway	Fast pathway	output sizes $T \times S^2$	
raw clip	-	-	64×224^2	
data layer	stride 16, 1 ²	stride 2 , 1 ²	$Slow: 4 \times 224^2$ Fast: 32 × 224 ²	
conv ₁	1×7^2 , 64 stride 1, 2 ²	$\frac{5 \times 7^2}{\text{stride 1, } 2^2}, 8$	$Slow: 4 \times 112^{2}$ Fast: 32 × 112 ²	
$pool_1$	1×3^2 max stride 1, 2^2	1×3^2 max stride 1, 2^2	$Slow: 4 \times 56^2$ Fast: 32 ×56 ²	
res ₂	$\begin{bmatrix} 1 \times 1^2, 64\\ 1 \times 3^2, 64\\ 1 \times 1^2, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} \frac{3 \times 1^2, 8}{1 \times 3^2, 8}\\ 1 \times 1^2, 32 \end{bmatrix} \times 3$	$Slow: 4 \times 56^{2}$ Fast: 32×56 ²	
res ₃	$\begin{bmatrix} 1 \times 1^2, 128 \\ 1 \times 3^2, 128 \\ 1 \times 1^2, 512 \end{bmatrix} \times 4$	$\left[\begin{array}{c} \frac{3\times1^2}{1\times3^2}, 16\\ 1\times1^2, 64 \end{array}\right] \times 4$	$Slow: 4 \times 28^2$ Fast: 32 × 28^2	
res ₄	$\left[\begin{array}{c} \frac{3 \times 1^2, 256}{1 \times 3^2, 256}\\ 1 \times 1^2, 1024 \end{array}\right] \times 6$	$\begin{bmatrix} \frac{3\times1^2, 32}{1\times3^2, 32}\\ 1\times1^2, 128 \end{bmatrix} \times 6$	$Slow: 4 \times 14^2$ Fast: 32×14 ²	
res ₅	$\left[\begin{array}{c} \frac{3 \times 1^2, 512}{1 \times 3^2, 512}\\ 1 \times 1^2, 2048 \end{array}\right] \times 3$	$\begin{bmatrix} \frac{3\times1^2, 64}{1\times3^2, 64}\\ 1\times1^2, 256 \end{bmatrix} \times 3$	$Slow: 4 \times 7^{2}$ Fast: 32 ×7 ²	
	# classes			

Feichtenhofer et al, "SlowFast Networks for Video Recognition", ICCV 2019 Slide credit: Christoph Feichtenhofer

Justin Johnson

So far: Classify short clips



Lecture 18 - 159

Justin Johnson

Temporal Action Localization

Given a long untrimmed video sequence, identify frames corresponding to different actions

Can use architecture similar to Faster R-CNN: first generate **temporal proposals** then **classify**

Chao et al, "Rethinking the Faster R-CNN Architecture for Temporal Action Localization", CVPR 2018

Justin Johnson

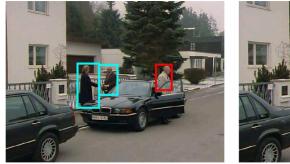
Lecture 18 - 160

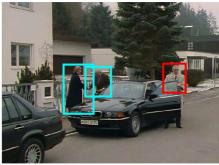
Fall 2019

Spatio-Temporal Detection

Given a long untrimmed video, detect all the people in space and time and classify the activities they are performing Some examples from AVA Dataset:

clink glass \rightarrow drink





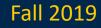
open \rightarrow close

grab (a person) \rightarrow hug

look at phone \rightarrow answer phone

Gu et al, "AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions", CVPR 2018

Justin Johnson



Recap: Video Models

Many video models:

Single-frame CNN (Try this first!) Late fusion Early fusion 3D CNN / C3D Two-stream networks CNN + RNN**Convolutional RNN** Spatio-temporal self-attention SlowFast networks (current SoTA)

Lots more material we won't have time for...

EECS 498-007 / 598-005 Deep Learning for Computer Vision Fall 2019

Course Description

UNIVERSITY OF

Computer Vision has become ubiquitous in our society, with applications in search, image understanding, apps, mapping, medicine, drones, and self-driving cars. Core to many of these applications are visual recognition tasks such as image classification and object detection. Recent developments in neural network approaches have greatly advanced the performance of these state-of-the-art visual recognition systems. This course is a deep dive into details of neural-network based deep learning methods for computer vision. During this course, students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in computer vision. We will cover learning algorithms, neural network architectures, and practical engineering tricks for training and fine-tuning networks for visual recognition tasks.

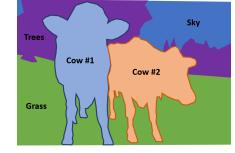
Instructor Graduate Student Instructors

Lots more material we won't have time for...

Event	Description	Event	Description	Event	Description	Event	Description
Lecture 1	Course Introduction Computer vision overview Historical context Course logistics	Lecture 7	Convolutional Networks Convolution Pooling Batch Normalization	Lecture 13	Attention Multimodal attention Self-Attention Transformers	Lecture 19	Generative Models I Supervised vs Unsupervised learni Discriminative vs Generative mode Autoregressive models
Lecture 2	Image Classification Data-driven approach K-Nearest Neighbor Hyperparameters Cross-validation	Lecture 8 Lecture 9	CNN Architectures AlexNet, VGG, ResNet Size vs Accuracy Grouped and Separable Convolutions Neural Architecture Search Hardware and Software CPUs, GPUs, TPUs Dynamic vs Static graphs PyTorch, TensorFlow	Lecture 14	Visualizing and Understanding Feature visualization Adversarial examples DeepDream, Style transfer	Lecture 20	Variational Autoencoders Generative Models II More Variational Autoencoders Generative Adversarial Networks
Lecture 3	Linear Classifiers Softmax / SVM classifiers			Lecture 15	Object Detection Single-stage detectors Two-stage detectors	Lecture 21	Reinforcement Learning RL problem setup Bellman Equation
L2 regularization Optimization Stochastic Gradient Descent Momentum, AdaGrad, Adam Second-order optimizers	Lecture 10	Training Neural Networks I Activation functions Data preprocessing Weight initialization	Lecture 16	Image Segmentation Semantic segmentation Instance segmentation	gmentation	Q-Learning Policy Gradient Conclusion	
			Data augmentation Regularization (Dropout, etc)		Keypoint estimation 3D vision	Lecture 22	Course recap The future of computer vision
Lecture 5	Neural Networks Feature transforms Fully-connected networks Universal approximation Convexity	Lecture 11	Training Neural Networks II Learning rate schedules Hyperparameter optimization Model ensembles Transfer learning Large-batch training	Lecture 17	3D shape representations Depth estimation 3D shape prediction Voxels, Pointclouds, SDFs, Meshes Videos Video classification		
Lecture 6	Backpropagation Computational Graphs Backpropagation Matrix multiplication example	Lecture 12	Recurrent Networks RNN, LSTM, GRU Language modeling Sequence-to-sequence Image captioning	Lecture 18	Early / Late fusion 3D CNNs Two-stream networks		

Lecture summary

- Deep learning frameworks (PyTorch)
- Instance and panoptic segmentation
- 3D neural networks
- Video



class Net(nn.Module):
 def __init__(self):

kernel

def forward(self, x):

return x

x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x)

super(Net, self).__init__()

self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(5, 16, 5)
an affine operation: y = Nx + b
self.fc1 = nn.Linear(120, 84)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

Max pooling over a (2, 2) window x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))

x = F.max_pool2d(F.relu(self.conv2(x)), 2) x = x.view(-1, self.num_flat_features(x))

1 input image channel, 6 output channels, 5x5 square convolution

If the size is a square you can only specify a single number

 $clink \ glass \rightarrow drink$

- Next lecture:
 - HW4 CNNs in PyTorch
 - Edges, features, and alignment (Harpreet Sawhney)