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Segmentation and detection

Med-res: Med-res:
D,x H/4 x W/4 D,x H/4x W/4,//]

* Adversarial examples
* Bottlenecks and U-Nets
i Low-res: b

° Segmentatlon Hig—h-res: D,x H/4 x W/4

High-res:
* Face detection

* Object detection

Richard Szeliski UW CSE 576 - Segmentation and Detection 5



As before, I'm borrowing slides from

EECS 498-007 / 598-005

Deep Learning for Computer Vision
MICHIGAN Fall 2019

UNIVERSITY OF

Course Description

Computer Vision has become ubiquitous in our society, with applications in search, image understanding,
apps, mapping, medicine, drones, and self-driving cars. Core to many of these applications are visual
recognition tasks such as image classification and object detection. Recent developments in neural
network approaches have greatly advanced the performance of these state-of-the-art visual recognition
systems. This course is a deep dive into details of neural-network based deep learning methods for
computer vision. During this course, students will learn to implement, train and debug their own neural
networks and gain a detailed understanding of cutting-edge research in computer vision. We will cover
learning algorithms, neural network architectures, and practical engineering tricks for training and fine-

tuning networks for visual recognition tasks.

Instructor Graduate Student Instructors

Richard Szeliski UW CSE 576 - Segmentation and Detection



EECS 498-007 / 598-005

, Deep Learning for Computer Vision
MICHIGAN Fall 2019

Visualizing CNN Features: Gradient Ascent Visualizing CNN Features: Gradient Ascent

Use the same approach to visualize intermediate features

argmax S.(I) - A3

Better regularizer: prnntizn 12 moven ~F

® image; also during ¢
e ‘ ' | I e periodically Neural Style Transfer
[ ] 1. Gaussian blur i

2. Clip pixels with <
3. Clip pixels with <

Example outputs
~ | from my
implementation
(in Lua Torch)

More weight to More weight to
content loss style loss

Visualizing (

Adding “multi-faceted’ ==

(Plus more careful regt S0 - November 4, 2019
ructions of muliiple feature
he same “grocery

% I Neural Style Transfer Neural Style Transfer:
[ Multiple Style Images

Resizing style image before running style transfer
algorithm can transfer different types of features

Mix style from
multiple images by
taking a weighted
average of Gram

matrices

Larger style image Smaller style image

November 4, 2019

Justin Johnson Lecture 14 - 7 Fall 2019



Intermediate Features via (guided) backprop
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Maximally activating patches Guided Backprop
(Each row is a different neuron)

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission
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Adversarial Examples

1.Start from an arbitrary image

2.Pick an arbitrary category

3.Modify the image (via gradient ascent)
to maximize the class score

4.Stop when the network is fooled

Szegedy et al, “Intriguing properties of neural networks”, 2013

Fall 2019

Justin Johnson Lecture 14 -9



Adversarial Examples

African elephant koala Difference 10x Difference

Difference 10x Difference

»

Boat image is CCO public domain
Elephant image is CCO public domain

Justin Johnson Lecture 14 - 10 Fall 2019



https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Adversarial examples (con’t)

M

towards DATA SCIENCE ~ MACHINE LEARNING  PROGRAMMING  VISUALIZ

data science

Breaking neural networks with
adversarial attacks

Are the machine learning models we use intrinsically flawed?

‘P Anant Jain
s ‘ Feb 9, 2019 - 7 min read L 4
“ eb 9,2019 - 7 min read

https://towardsdatascience.com/breaking-neural-networks-with-adversarial-attacks-f4290a9a45aa

Richard Szeliski UW CSE 576 - Segmentation and Detection 11


https://towardsdatascience.com/breaking-neural-networks-with-adversarial-attacks-f4290a9a45aa

Adversarial examples (con’t)

SPEED
LIMIT

The left image shows real graffiti on a Stop sign, something that most humans would not think is ?
suspicious. The right image shows a physical perturbation applied to a Stop sign. The systems classify the W hy 45 H

sign on the right as a Speed Limit: 45 mph sign! Source: Robust Physical-World Attacks on Deep Learning

Visual Classification.

https://towardsdatascience.com/breaking-neural-networks-with-adversarial-attacks-f4290a9a45aa

Richard Szeliski UW CSE 576 - Segmentation and Detection 12


https://towardsdatascience.com/breaking-neural-networks-with-adversarial-attacks-f4290a9a45aa

Adversarial examples (con’t)

Classifier Input Classifier Output
o A i )
A — @

3

Source: Adversarial Patch: https://arxiv.org/pdf/1712.09665.pdf

https://towardsdatascience.com/breaking-neural-networks-with-adversarial-attacks-f4290a9a45aa

Richard Szeliski UW CSE 576 - Segmentation and Detection
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https://towardsdatascience.com/breaking-neural-networks-with-adversarial-attacks-f4290a9a45aa

Segmentation and detection

Med-res: Med-res:
D,xH/4xW/4 D,xH/4xW/4

e Adversarial examples
* Bottlenecks and U-Nets
* Segmentation

i Low-res:

High-res: D3 x H/4 x W/4 High-res:

* Face detection
* Object detection

Richard Szeliski UW CSE 576 - Segmentation and Detection 14



M EECS 498-00/ / 598-005

' Deep Learning for Computer Vision
MICHIGAN Fall 2019

Lecture 16:
Semantic Segmentation

Justin Johnson Lecture 16 - 15 Fall 2019



So far: Image Classification

Class Scores

iis AR A Dog: 0.05
LU Fully-Connected: Caf 0.01
e i Vector: 409610 1000
4096

Justin Johnson Lecture 15 - 16 Fall 2019


https://pixabay.com/p-1246693/%3Fno_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Computer Vision Tasks: Semantic Segmentation

Semantic
Segmentation

GRASS, , TREE,

- oKy VARN Y,
Y Y
No objects, just pixels Multiple Objects

Justin Johnson Lecture 16 - 18 Fall 2019



Semantic Segmentation

This image is CCO public domain

Label each pixel in the image
with a category label

Don’t differentiate instances,
only care about pixels

Fall 2019

Justin Johnson Lecture 16 - 19



https://pixabay.com/p-1246693/%3Fno_redirect
https://pixabay.com/en/cows-two-cows-dairy-agriculture-1264546/

Semantic Segmentation |dea: Sliding Window

Extract  Classify center
patch pixel with CNN

image

Full

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Justin Johnson Lecture 16 - 20 Fall 2019




Semantic Segmentation |dea: Sliding Window

Extract  Classify center
patch pixel with CNN

Problem: Very inefficient! Not
reusing shared features
b etwe e n Ove rl a p p | n g patc h es Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013

Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Justin Johnson Lecture 16 - 21 Fall 2019



Semantic Segmentation: Fully Convolutional Network

Design a network as a bunch of convolutional
layers to make predictions for pixels all at once!

A & L

Conv Conv Conv argmax
—

Y Scores: Predictions:

Convolutions: CxHxW HxW

DxHxW
Loss function: Per-Pixel cross-entropy

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015

Justin Johnson Lecture 16 - 22 Fall 2019



Semantic Segmentation: Fully Convolutional Network

Design a network as a bunch of convolutional
layers to make predictions for pixels all at once!

A 4 4 L

Conv Conv Conv argmax
—

Input:  Problem #1: Effective receptive
3xHxW field size is linear in number of
conv layers: With L 3x3 conv
layers, receptive field is 1+2L

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015

Justin Johnson Lecture 16 - 23 Fall 2019



Semantic Segmentation: Fully Convolutional Network

Design a network as a bunch of convolutional
layers to make predictions for pixels all at once!

o

Conv

o

o

Conv

Input:  Problem #1: Effective receptive
3xHxW field size is linear in number of
conv layers: With L 3x3 conv
layers, receptive field is 1+2L

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015

Conv argmax
e

Problem #2: Convolution on
high res images is expensive!
Recall ResNet stem aggressively
downsamples

Justin Johnson

Lecture 16 -

24 Fall 2019



Semantic Segmentation: Fully Convolutional Network

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network!

Med-res: Med-res:

/A D, xH/AXW/4  D,xH/4xW/47/

Low-res:

Input: High-res: Dsx H/4 x W/4

3x HxW High-res: Predictions:

D, x H/2 x W/2 D, xH/2 x W/2 HxW

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Justin Johnson Lecture 16 - 25 Fall 2019



Semantic Segmentation: Fully Convolutional Network

Design network as a bunch of convolutional layers, with

Downsampling: Upsampling:

: L | ;
Pooling, strided downsampling and upsampling inside the network! 229
convolution Med-res: Med-res:

/A D, xH/AXW/4  D,xH/4xW/47/

Low-res:

Input: High-res: Dsx H/4 x W/4

3x HxW High-res: Predictions:

D, x H/2 x W/2 D, xH/2 x W/2 HxW

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Justin Johnson Lecture 16 - 26 Fall 2019



In-Network Upsampling: “Unpooling”

Bed of Nails
1|0
1|2 X 0|0
34 30
0|0
Input Output
Cx2x?2 Cx4x4

Justin Johnson Lecture 16 - 27 Fall 2019



In-Network Upsampling: “Unpooling”

Bed of Nails Nearest Neighbor
1|0
1|2 X 00 1|2 »
34 3|10 314
00
Input Output Input Output
Cx2x2 Cx4x4 Cx2x2 Cx4x4

Justin Johnson Lecture 16 - 28 Fall 2019



In-Network Upsampling: Bilinear Interpolation

1.00 | 1.25 | 1.75 | 2.00
1| 2 1.50 | 1.75 | 2.25 | 2.50
3 4 ] 2.50 [2.753.25 | 3.50
3.00 [3.253.75 | 4.00
Input: Cx 2 x 2 Output: Cx4 x4
fey =) fiymax(0,1— |z —i)max(0,1—|y—j) i e {|z|—1,...,[2] + 1}
"/ Use two closest neighbors in x and y jed{lyl —1,..., [yl +1}

to construct linear approximations

Fall 2019

Lecture 16 - 29

Justin Johnson



In-Network Upsampling: Bicubic Interpolation

0.68|1.02 | 1.56 | 1.89
2 1.35|1.68 | 2.23| 2.56
>
4 2.44(2.77|3.32(3.65
3.11[3.44 |3.98(4.32
Input: Cx 2 x 2 Output: Cx4 x4

Use three closest neighbors in x and y to
construct cubic approximations
(This is how we normally resize images!)

Fall 2019

Lecture 16 - 30

Justin Johnson



In-Network Upsampling: “Max Unpooling”

Max Pooling: Remember
which position had the max

Justin Johnson

ﬁ

Max Unpooling: Place into
remembered positions

Rest 112 0

of — —
net 314 0
3

Pair each downsampling layer
with an upsampling layer

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Lecture 16 - 31 Fall 2019



Learnable Upsampling: Transposed Convolution

Recall: Normal 3 x 3 convolution, stride 1, pad 1

Input: 4 x4 Output: 4 x4

Justin Johnson Lecture 16 - 32 Fall 2019



Learnable Upsampling: Transposed Convolution

Recall: Normal 3 x 3 convolution, stride 1, pad 1

Dot product
between input
and filter

Input: 4 x4 Output: 4 x4

Justin Johnson Lecture 16 - 33 Fall 2019



Learnable Upsampling: Transposed Convolution

Recall: Normal 3 x 3 convolution, stride 1, pad 1

Dot product
between input
and filter

Input: 4 x4 Output: 4 x4

Justin Johnson Lecture 16 - 34 Fall 2019



Learnable Upsampling: Transposed Convolution

Recall: Normal 3 x 3 convolution, stride 2, pad 1

Input: 4 x4 Output: 2 x 2

Justin Johnson Lecture 16 - 35 Fall 2019



Learnable Upsampling: Transposed Convolution

Recall: Normal 3 x 3 convolution, stride 2, pad 1

Dot product
between input
and filter

Input: 4 x4 Output: 2 x 2

Justin Johnson Lecture 16 - 36 Fall 2019



Learnable Upsampling: Transposed Convolution

Recall: Normal 3 x 3 convolution, stride 2, pad 1

Dot product
between input
and filter

Input: 4 x4 Output: 2 x 2

Justin Johnson Lecture 16 - 37 Fall 2019



Learnable Upsampling: Transposed Convolution

Recall: Normal 3 x 3 convolution, stride 2, pad 1

Convolution with stride > 1 is “Learnable Downsampling”
Can we use stride < 1 for “Learnable Upsampling”?

>

Dot product
between input
and filter

Input: 4 x4 Output: 2 x 2

Justin Johnson Lecture 16 - 38 Fall 2019



Learnable Upsampling: Transposed Convolution

3 x 3 convolution transpose, stride 2

Input: 2 x 2 Output: 4 x4

Justin Johnson Lecture 16 - 39 Fall 2019



Learnable Upsampling: Transposed Convolution

3 x 3 convolution transpose, stride 2

Weight filter by

input value and
copy to output

Input: 2 x 2 Output: 4 x4

Justin Johnson Lecture 16 - 40 Fall 2019



Learnable Upsampling: Transposed Convolution

3 x 3 convolution transpose, stride 2

Filter moves 2 pixels in output
for every 1 pixel in input

Weight filter by

input value and
copy to output

Input: 2 x 2 Output: 4 x4

Justin Johnson Lecture 16 - 41 Fall 2019



Learnable Upsampling: Transposed Convolution

. . Sum where
3 x 3 convolution transpose, stride 2 output overlaps

Filter moves 2 pixels in output
for every 1 pixel in input

Weight filter by

input value and
copy to output

Input: 2 x 2 Output: 4 x4

Justin Johnson Lecture 16 - 42 Fall 2019



Learnable Upsampling: Transposed Convolution

. Sum where
3 x 3 convolution transpose, stride 2 output overlaps
This gives 5x5 output — need to trim one
pixel from top and left to give 4x4 output
>

Weight filter by T

input value and

copy to output
Input: 2 x 2 Output: 4 x4

Justin Johnson Lecture 16 - 43 Fall 2019



Transposed Convolution: 1D example

Input Filter

7
T

Justin Johnson

AN

Output

dX

dy

dZ

bx

0y

0Z

Lecture 16 - 44

Output has copies of
filter weighted by input

Stride 2: Move 2 pixels
output for each pixel in

input

Sum at overlaps

Fall 2019



Transposed Convolution: 1D example

Input Filter

7
~

Output

dX

dy

dZ

bx

0y

AVA

0Z

This has many names:

- Deconvelution{bad}!

- Upconvolution

- Fractionally strided

convolution

- Backward strided

convolution

- Transposed Convolution
(best name)

Justin Johnson

Lecture 16 - 45

Fall 2019



OO O K

Convolution as Matrix Multiplication (1D Example)

We can express convolution in
terms of a matrix multiplication

rxa= Xa

0
y x 0 0 0] |a  ay+bz
xr y x 0 0} bl  (ar+by—+cz
0 z yv x 0| || |bzx+cy+dz
0 0 z y zf |d - cx+dy
0

Example: 1D conv, kernel
size=3, stride=1, padding=1

Justin Johnson Lecture 16 - 46

Fall 2019



OO O K

Convolution as Matrix Multiplication (1D Example)

We can express convolution in
terms of a matrix multiplication

rxa= Xa

S o8

O 8 8

2 8 O

< 8 OO

8 oo o
|

Example: 1D conv, kernel
size=3, stride=1, padding=1

Justin Johnson

ay + bz
axr + by + cz
bxr + cy + dz

cr + dy

Transposed convolution multiplies by
the transpose of the same matrix:

OO o nvNe §

Lecture 16 - 47

oo nvwewe 8 O

onNe 8 © O

sl g=X"'qg

ax
ay + bx
az + by + cx
bz + cy + dzx
cz + dy
dz

When stride=1, transposed conv is just a
regular conv (with different padding rules)

Fall 2019




Convolution as Matrix Multiplication (1D Example)

We can express convolution in Transposed convolution multiplies by
terms of a matrix multiplication the transpose of the same matrix:
rxd=Xd T# a=AX"0

xy:cOOO]

| ay+bz
0 0z yv = O -

bxr + cy + dz

O QU O O O

Example: 1D conv, kernel
size=3, stride=2, padding=1

Justin Johnson Lecture 16 - 48 Fall 2019



Convolution as Matrix Multiplication (1D Example)

We can express convolution in Transposed convolution multiplies by
terms of a matrix multiplication the transpose of the same matrix:
Fxd—= Xa T d=Xd
0 x 0]  ar
a y 0 ay
r y x 0 0 O] {bf ay + bz = X [a]: az + bx
0 0 =z vy =« 0] c _[bx—l—cy—l—dz] 0 yi |b by
d 0 =z bz
0] 0 0 0
Example: 1D conv, kernel When stride>1, transposed convolution
size=3, stride=2, padding=1 cannot be expressed as normal conv

Justin Johnson Lecture 16 - 49 Fall 2019



Semantic Segmentation: Fully Convolutional Network

Design network as a bunch of convolutional layers, with Upsampling:
downsampling and upsampling inside the network! linterpolation,
transposed conv

Downsampling:
Pooling, strided

convolution Med-res: Med-res:

/4 D,xH/AxW/4 D,xH/4xW/4 7/

il Low-res: il
Input: .
- E W High-res: D3 x H/4 x W/4 High-res: Predictions:
D, x H/2 x W/2 D, xH/2 x W/2 HxW
Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015 LOSS funCtion: Per-Pixel Cross_entro py

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Justin Johnson Lecture 16 - 50 Fall 2019



U-Nets

 Skip connections between
encoding and decoding stages

* Widely used in image denoising,
inpainting, flow, stereo, ...

(©)

Figure 5.41  (a) The deconvolution network of Noh, Hong, and Han (2015) () 2015 IEEE
and (b—c) the U-Net of Ronneberger, Fischer, and Brox (2015), redrawn using the PlotNeu-
ralNet LaTeX package by Matt Dietke. In addition to the fine-to-coarse-to-fine bottleneck
used in (a), the U-Net also has skip connections between encoding and decoding layers at the
same resolution.

Richard Szeliski UW CSE 576 - Segmentation and Detection 51



Feature Pyramid Network

predict
X / predict
" w4
/ > 4 predict
(d) Feature Pyramid Network

Top-down enrichment of high-res features —
fast, less suboptimal

Lin et al. Feature Pyramid Networks for Object Detection. CVPR 2017.



No Compromise on Feature Quality, Still Fast

\ —>»{ 1x1 conv —? E

- e e e e e e e e e e e e e e e e e e e e e e e e = )

predict

predict

predict

Lin et al. Feature Pyramid Networks for Object Detection. CVPR 2017. See also: Shrivastava’s TDM.

Low resolution,
Strong features

High resolution,
Strong features



UPerNet: FPN + fusion

Unified Perceptual Parsing for Scene Understanding 7

PPM Head Head living room

Image

or (~450 x 720)

image for texture
(~ 48 x 48)

K—b| Conv 3x3 |—D| GIobaI_Avg. '—>| Classifier |
Pooling

Scene Head

ﬁ—‘ L —’I Conv 3x3 |—>| Classifier |
\ J Texture Head
——DI Conv 3x3 |—’| Classifier | Y

4x Conv
Object / Part / Material Head (128 Channels)

Richard Szeliski UW CSE 576 - Segmentation and Detection
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Application: monocular depth estimation

Input VP
directions

Weighted

Conv3x3(3, 64, stride=2)

combine

Conv3x3(128, 64, stride=1)

Predict label Combined normal

map map
Input lines

.
Multi-scale
feature maps Final output
ResNet101 - UPerNet
Predlct normal
baseline
Input

image

Figure 2. The full pipeline of our proposed model. The network takes an RGB image and a Manhattan line map as input, and produces
a Manhattan label map and a raw normal prediction as intermediate output. These intermediate outputs are then combined with the
analytically computed dominant vanishing points to generate a “combined normal map”. This operation is differentiable. Finally, the
combined and raw normal maps are fused through a refinement network to produce the final normal prediction.

VPLNet: Deep Single View Normal Estimation with Vanishing Points and Lines
accepted to CVPR’2020

Richard Szeliski UW CSE 576 - Segmentation and Detection 55



Segmentation and detection

Med-res: Med-res:
D,xH/4xW/4 D,xH/4xW/4

e Adversarial examples
e Bottlenecks and U-Nets
* Segmentation

i Low-res: /

High-res: D3 x H/4 x W/4 High-res:

* Face detection
* Object detection

Richard Szeliski UW CSE 576 - Segmentation and Detection 56



Classic face detection

Input image pyramid  Extracted window Corrected lighting  Histogram equalized
(20 by 20 pixels)

-

—_— e e @

L&
—i o | ‘\ Network

.
N
J

Receptive fields
Hidden units

A\
N
1
i
“g
(oo

oog Output
Input Qggg_jggg
[ bpdg ee°
- \ﬁ °
=
E \%_)8
- S y / A\ /v /

Preprocessing

Neural network

Figure 6.27 A neural network for face detection (Rowley, Baluja, and Kanade 1998a) ()
1998 IEEE. Overlapping patches are extracted from different levels of a pyramid and then
pre-processed as shown in Figure 6.25b. A three-layer neural network is then used to detect

likely face locations.

Richard Szeliski

Can you find the one false positive?
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Face Recognition and Detection

The “Margaret Thatcher lllusion”, by Peter Thompson

Computer Vision

CSES76, Spring 2008
Richard Szeliski

CSE 576, Spring 2008 Face Recognition and Detection
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Robust real-time face detection

Paul A. Viola and Michael J. Jones
Intl. J. Computer Vision
57(2), 137-154, 2004
(originally in CVPR’2001)

(slides adapted from Bill Freeman, MIT 6.869, April 2005)



Scan classifier over locs. & scales

Smallest
Scale

| 50000 Locations/Scales
CSE 576, Spring 2008 Face Recognition and Detection 60



Learn classifier from data

* Training Data
* 5000 faces (frontal)
e 108 non faces

e Faces are normalized
e Scale, translation

* Many variations

e Across individuals

e [[lumination

e Pose (rotation both in plane and out)

CSE 576, Spring 2008 Face Recognition and Detection 61



Characteristics of algorithm

e Feature set (...is huge about 16 M features)
e Efficient feature selection using AdaBoost
e New image representation: Integral Image

e Cascaded Classifier for rapid detection

» Fastest known face detector for gray scale images (2001)

CSE 576, Spring 2008 Face Recognition and Detection
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Image features

e “Rectangle filters”
e Similar to Haar wavelets

e Differences between
sums of pixels in
adjacent rectangles

O i C |

-1 otherwise

CSE 576, Spring 2008 Face Recognition and Detection 63



Constructing the classifier

* Perceptron yields a sufficiently powerful classifier

C(x) = 9( > ol (x) + b]

* Use AdaBoost to efficiently choose best features

e add a new /(x) at each round hix)

e each /,(x;) is a “decision stump” b=E.{y x> ql)

a=E,(y [x< q])

CSE 576, Spring 2008 Face Recognition and Detection 66



Good reference on boosting

* Friedman, J., Hastie, T. and Tibshirani, R. Additive Logistic Regression:

a Statistical View of Boosting
http://www-stat.stanford.edu/~hastie/Papers/boost.ps

* “We show that boosting fits an additive logistic regression model by stagewise
optimization of a criterion very similar to the log-likelihood, and present likelihood
based alternatives. We also propose a multi-logit boosting procedure which
appears to have advantages over other methods proposed so far.”

CSE 576, Spring 2008 Face Recognition and Detection 68
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Handling Imbalance with Cascades

All Sub-windows
T T T Further
Processing
F F F

Reject Sub-window

eliminate easy background step-by-step, leading to a ...

v

(slide courtesy of Ross Girshick)

... balanced problem

Final Stage

v



Trading speed for accuracy

* Given a nested set of classifier hypothesis classes e Fase s

% Detection

FACE

* Computational Risk Minimization
IMAGE . T,
SUB-WINDOW

F

NON-FACE NON-FACE

F
v

NON-FACE

70
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Sample results

CSE 576, Spring 2008

Face Recognition and Detection
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Summary (Viola-Jones)

e Fastest known face detector for gray images

e Three contributions with broad applicability:
» Cascaded classifier yields rapid classification
= AdaBoost as an extremely efficient feature selector

= Rectangle Features + Integral Image can be used for rapid image
analysis

CSE 576, Spring 2008 Face Recognition and Detection
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Modern face detectors

e Now all use DNNs

Richard Szeliski

RetinaFace: Single-stage Dense Face Localisation in the Wild

Jiankang Deng * >4 Jia Guo "2
Irene Kotsia *

Jinke Yu 2

Imperial College London *InsightFace

Abstract

Though tremendous strides have been made in uncon-
trolled face detection, accurate and efficient face locali-
sation in the wild remains an open challenge. This pa-
per presents a robust single-stage face detector, named
RetinaFace, which performs pixel-wise face localisation
on various scales of faces by taking advantages of joint
extra-supervised and self-supervised multi-task learning.
Specifically, We make contributions in the following five
aspects: (1) We manually annotate five facial landmarks
on the WIDER FACE dataset and observe significant im-
provement in hard face detection with the assistance of
this extra supervision signal. (2) We further add a self-
supervised mesh decoder branch for predicting a pixel-wise
3D shape face information in parallel with the existing su-

UW CSE 576 - Segmentation and Detection

*Middlesex University London

Yuxiang Zhou !
Stefanos Zafeiriou'*
4FaceSoft

—_? Lo Q / - Face classification

i Lyos : Face box regression
I“ o E - % Existing branch

L pts - Facial landmark regression
b 4 % Extra-supervision

Lpi.rrl

JEa— ! "
i b
H .
e W W Dense face regression
Py =
"\1_284'74'9 o Self-supervision

Figure 1. The proposed single-stage pixel-wise face localisation
method employs extra-supervised and self-supervised multi-task
learning in parallel with the existing box classification and regres-
sion branches. Each positive anchor outputs (1) a face score, (2) a
face box, (3) five facial landmarks, and (4) dense 3D face vertices
projected on the image plane.
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Modern face detectors

RetinaFace: Single-stage Dense Face Localisation in the Wild

e Now all use DNNs

Jiankang Deng * 124 Jia Guo "2 Yuxiang Zhou !
Jinke Yu ? Irene Kotsia Stefanos Zafeiriou'*
Tmperial College London *InsightFace *Middlesex University London 4FaceSoft

C6/P6
- -7110x10x256

=

[ SSOT YSe)-YnN ]

Context Module (x5)

Figure 2. An overview of the proposed single-stage dense face localisation approach. RetinaFace is designed based on the feature pyramids
with independent context modules. Following the context modules, we calculate a multi-task loss for each anchor.

Richard Szeliski UW CSE 576 - Segmentation and Detection 77



RetinaFace: Single-stage Dense Face Localisation in the Wild

Jiankang Deng * 124 Jia Guo "2 Yuxiang Zhou !

Modern face detectors
"Imperial College London InsightFace 3Middlesex University London 4FaceSoft

Richard Szeliski UW CSE 576 - Segmentation and Detection 78



WIDER FACE benchmark

WIDER FACE: A Face Detection Benchmark

Multimedia Laboratory, Department of Information Engineering, The Chinese University of Hong Kong

Richard Szeliski UW CSE 576 - Segmentation and Detection
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Segmentation and detection

Med-res: Med-res:
D,xH/4xW/4 D,xH/4xW/4

e Adversarial examples
e Bottlenecks and U-Nets
* Segmentation

i Low-res: /

High-res: D3 x H/4 x W/4 High-res:

* Face detection
* Object detection

Richard Szeliski UW CSE 576 - Segmentation and Detection 80



M EECS 498-00/ / 598-005

' Deep Learning for Computer Vision
MICHIGAN Fall 2019

Lecture 15:
Object Detection

Justin Johnson Fall 2019



Today: Object Detection

Object
Detection

-

DOG, DOG, CAT

- _/
Y

Multiple Objects

This image is CCO public domain

Justin Johnson Lecture 15 - 83 Fall 2019


https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Object Detection: Task Definition

Input: Single RGB Image

Output: A set of detected objects;
For each object predict:

1. Category label (from fixed,
known set of categories)

2. Bounding box (four numbers:
X, Yy, width, height)

Justin Johnson Lecture 15 - 84 Fall 2019



Object Detection: Challenges

- Multiple outputs: Need to output
variable numbers of objects per image

- Multiple types of output: Need to
predict "what” (category label) as well
as “where” (bounding box)

- Large images: Classification works at
224x224; need higher resolution for
detection, often ~800x600

Justin Johnson Lecture 15 - 85 Fall 2019



Detecting a single object

i

Vector:
4096

This image is CCO public domain

Justin Johnson Lecture 15 - 86 Fall 2019



https://pixabay.com/p-1246693/%3Fno_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en

DeteCting a Sing|e iject ‘““Nhat” Correct label:

Cat l
Class Scores
Fully
Connected: Cat: 0.9 Softmax
4096 to 1000 Dog: 0.05 Loss
Car: 0.01

= 8

ppppppp

Vector:
4096
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DeteCting a Sing|e iject ‘““Nhat” Correct label:

Cat l
Fully Class Scores
Connected: Cat: 0.9 Softmax
4096 to 1000 Dog: 0.05 Loss
Car: 0.01
‘ Vector: \
This image is CCO public domain 4096 Fu"y
Treat localization as a Zg;‘g‘:c":d: Box —— L2 Loss
. (@) .
regression problem! Coordinates T
(X, y, w, h)
“Where” Correct box:

(X, y', w’, h')
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DeteCting a Sing|e iject ‘““Nhat” Correct label:

Cat l
Fully Class Scores
Connected: Cat: 0.9 Softmax
4096 to 1000 Dog: 0.05 Loss
Car: 0.01 l
7 NEE = Weighted Loss
LY ol | Sum
. R Vector: \
This image is CCO public domain 4096 Fu"y
Treat localization as a Zg;gt:ct:d: Box —— L2 Loss
. (@) .
regression problem! Coordinates T
(X, y, W, h)
“Where” Correct box:

(X, y', w’, h')
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DeteCting a Sing|e iject ‘““Nhat” Correct label:

Cat l
Fully Class Scores
Connected: Cat: 0.9 Softmax
4096 to 1000 Dog: 0.05 Loss Multitask
Car: 0.01 l L oss
R L Sum
| Vector: \ ,
This image is CCO public domain Fu"y
Treat localization as a 4036 Zg;g‘:t:d: Box _ — L2 Loss
regression problem! Coordinates T
(%, ¥, w, h)
“Where” Correct box:

(X, y', w’, h')
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https://creativecommons.org/publicdomain/zero/1.0/deed.en

DeteCting a Sing|e iject ‘““Nhat” Correct label:

Cat l
. Fully Class Scores ‘
Often pretrained Connected: Cat: 0.9 Softmax
on ImageNet 4096 to 1000 Dog: 0.05 Loss Multitask
(Transfer learning) Car: 0.01 l
| e L
_— I = 0SS
) m»’_’ B = Weighted Loss
- “ o[ e Sum
| Vector: \ ,
is image is CCO public domain Fully
Treat localization as a 4096 Zg;g‘:tjd: Box _ — L2 Loss
regression problem! Coordinates T
(X, y, w, h)
“Where” Correct box:

(x’, ¥y, w’, h")
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DeteCting a Sing|e iject ‘““Nhat” Correct label:

Cat l
. Fully Class Scores
Often pretrained Connected: Cat: 0.9 So:tmax
on ImageNet 4096101000 " pog: 0.05 %% Multitask
(Transfer learning) Car: 0.01 l L oSS
S ‘ m: = Weighted LosS
| “ AL e ™ i Sum
" | Vector: \ ,
This image is CCO public domain Fu"y
Treat localization as a 4036 Zg;g‘:gtjd: Box _ — L2 Loss
regression problem! Coordinates !
(%, v, w, h)
Problem: Images can have  “\\/here” Correct box:
more than one object! (X, ¥, w’, h’)
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Detecting Multiple Objects

Duck image is free to use under the Pixabay license

Justin Johnson

13 dense

128 Max
pooling

204

48

I =)

Max
pooling

128 Max
pooling

128 204

13 dense

128 Max

pooling 204

Lecture 15 -93

E i o
— o \/ 038
\ [\e3

———>f
dense|

A
o 107 538
\ | \13

—>
13 dense ldense|

—
dense|

|h|

Need different numbers
of outputs per image

CAT: (x, y, w, h)

DOG: (x,y, w, h)
DOG: (x,y, w, h)
CAT: (x, y, w, h)

DUCK: (x, y, w, h)
~ DUCK: (x,y,w, h)

4 numbers

16 numbers

Many
numbers!

Fall 2019


https://pixabay.com/photos/duckling-duck-waterbird-chick-3456779/
https://pixabay.com/service/license/

Detecting Multiple Objects: Sliding Window

Apply a CNN to many different
crops of the image, CNN classifies
each crop as object or background

2 };;;A;.:28 ><‘m><mB D og ? NO
31; I Cat? NO

eeeeeeeeee

ww L L Background? YES

Fall 2019
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Detecting Multiple Objects: Sliding Window

Apply a CNN to many different
crops of the image, CNN classifies
each crop as object or background

2 R };;;A;.:28 ><‘04><m3 Do g ? VES
31; I Cat? NO

eeeeeeeeee

wm | Background? NO

Fall 2019
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Detecting Multiple Objects: Sliding Window

Apply a CNN to many different
crops of the image, CNN classifies
each crop as object or background

- R };;;A;.:28 ><‘04><m3 Do g ? VES
31; I Cat ? NO

eeeeeeeeee

aaaaaa oL Background? NO

Fall 2019

Justin Johnson Lecture 15 - 96



Detecting Multiple Objects: Sliding Window

Apply a CNN to many different
crops of the image, CNN classifies
each crop as object or background

2 R };;;A;.:28 ><‘m><mB Dog ? NO
31; i CE':|t‘p YES

eeeeeeeeee

wm | Background? NO

Fall 2019
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Detecting Multiple Objects: Sliding Window

Justin Johnson

Apply a CNN to many different
crops of the image, CNN classifies
each crop as object or background

Question: How many possible boxes
are there in an image of size H x W?

Lecture 15 - 98

Fall 2019




Detecting Multiple Objects: Sliding Window

Justin Johnson

800 x 600 image
has ~“58M boxes!
No way we can

evaluate them all

Apply a CNN to many different
crops of the image, CNN classifies
each crop as object or background

Question: How many possible boxes
are there in an image of size H x W?

. , Total possible boxes:
Consider a box of size h x w:

H W
Possible x positions: W —w + 1 Z 2 W—w+1)(H-h+1)
Possible y positions: H—h + 1 e L

Possible positions:
(W-w+1)*(H-h+1) HH+DOWW +1)
2 2

Lecture 15 - 101 Fall 2019



Region Proposals

e Find a small set of boxes that are likely to cover all objects

o Often based on heuristics: e.g. look for “blob-like” image regions

o Relatively fast to run; e.g. Selective Search gives 2000 region
proposals in a few seconds on CPU

v

Alexe et al, “Measuring the objectness of image windows”, TPAMI 2012

Uijlings et al, “Selective Search for Object Recognition”, 1JCV 2013

Cheng et al, “BING: Binarized normed gradients for objectness estimation at 300fps”, CVPR 2014
Zitnick and Dollar, “Edge boxes: Locating object proposals from edges”, ECCV 2014

Justin Johnson Lecture 15 - 102 Fall 2019



R-CNN: Region-Based CNN

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0

R-CNN: Region-Based CNN

Regions of
Interest (Rol)
from a proposal

Girshick et al, “Rich feature hierarchies for accurate object detection and

m et h 0 d (~2 k) semantic segmentation”, CVPR 2014.

Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0

R-CNN: Region-Based CNN

/~/ Warped image
LS regions (224x224)

Regions of
Interest (Rol)

IMage # N V= from a proposal
V4 e £ 1 g '-.f"{ 3 Girshick et al, “Rich feature hierarchies for accurate object detection and
m et h 0 d (~2 k) semantic segmentation”, CVPR 2014.

Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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R-CNN: Region-Based CNN

Conv
Net

Conv
Net

Conv
Net

Forward each
region through
ConvNet

ﬁ Warped image

regions (224x224)

Regions of
Interest (Rol)
from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Fall 2019
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0

R-CNN: Region-Based CNN Classify each reglon

Class
Class 4
=ase Conv Forward each
Conv Net region through
Net ConvNet
Conv
Net ﬁWarped image
regions (224x224)

=

Regions of
Interest (Rol)

IMABE /1 £ N =N from a proposal
4 y- g '-.f"{ 3 Girshick et al, “Rich feature hierarchies for accurate object detection and
m et h 0 d (~2 k) semantic segmentation”, CVPR 2014.

Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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R-CNN: Region-Based CNN Classify each region

Bounding box regression:

Bbox || Class Predict “transform” to correct the
Bbox | | Class L ] Rol: 4 numbers (t,, t, t,, t,)
Bbox | [ Class | ®
Conv Forward each
Cony Net region through
o Net ConvNet
Net ﬁ Warped image
regions (224x224)

Regions of
Interest (Rol)

IMABE /1 £ N =N from a proposal
V4 F g '-.f"{ 3 Girshick et al, “Rich feature hierarchies for accurate object detection and
m et h 0 d (~2 k) semantic segmentation”, CVPR 2014.

Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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R-CNN: Region-Based C

NN

Classify each region

Bbox || Class
Bbox | | Class 1
Bbox | | Class N
Conv
Conv Net
Conv Net
Net

Bounding box regression:
Predict “transform” to correct the
Rol: 4 numbers (t,, t, t,, t,)

Forward each

region through

ConvNet

ﬁ Warped image

regions (224x224)

Regions of
Interest (Rol)

method (~2k)

from a proposal

Region proposal: (py, py, Ph, Pw)
Transform: (t,, t,, t,, t,)

Output box: (b,, b, by, by,)

Translate relative to box size:
bx = Px + pwtx by = py + phty

Log-space scale transform:
b, = puexplty) by =ppexp(ty,)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Fall 2019
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R-CNN: Test-time
Bbox || Class
Bbox | | Class 1
Bbox | | Class N
Conv
Conv Net
Net

Input: Single RGB Image

1. Run region proposal method to
compute ~2000 region proposals

2. Resize each region to 224x224 and run
independently through CNN to predict
class scores and bbox transform

3. Use scores to select a subset of region
proposals to output
(Many choices here: threshold on
background, or per-category? Or take
top K proposals per image?)

4. Compare with ground-truth boxes

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Fall 2019
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Comparing Boxes: Intersection over Union (loU)

How can we compare our
prediction to the ground-truth box?

Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson.
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https://commons.wikimedia.org/wiki/File:The_Puppy.jpg
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Comparing Boxes: Intersection over Union (loU)

How can we compare our
prediction to the ground-truth box?

Intersection over Union (loU)

(Also called “Jaccard similarity” or
“Jaccard index”):

Area of Intersection

Area of Union

Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson.
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Comparing Boxes: Intersection over Union (loU)

How can we compare our
prediction to the ground-truth box?

Intersection over Union (loU)

(Also called “Jaccard similarity” or
“Jaccard index”):

Area of Intersection

Area of Union

loU > 0.5 is “decent”

Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson.
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Comparing Boxes: Intersection over Union (loU)

How can we compare our
prediction to the ground-truth box?

Intersection over Union (loU)

(Also called “Jaccard similarity” or
“Jaccard index”):

Area of Intersection

Area of Union

loU > 0.5 is “decent”,
loU > 0.7 is “pretty good”,

Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson.
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Comparing Boxes: Intersection over Union (loU)

How can we compare our
prediction to the ground-truth box?

Intersection over Union (loU)

(Also called “Jaccard similarity” or
“Jaccard index”):

Area of Intersection

Area of Union

loU > 0.5 is “decent”,
loU > 0.7 is “pretty good”,
loU > 0.9 is “almost perfect”

Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson.

Justin Johnson Lecture 15-115 Fall 2019


https://commons.wikimedia.org/wiki/File:The_Puppy.jpg
https://creativecommons.org/licenses/by/2.0/deed.en

Overlapping Boxes

Problem: Object detectors often
output many overlapping detections:

20 LN me -'mw

;l = _‘-
m NIV

\‘ &\\L?-’ﬁ’i—\‘fﬂ""k WH;WMI’ f“e

Puppy image is CCO Public Domain
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Overlapping Boxes: Non Max Suppressmn (NMS)

\ SN L WL T l’lm ."

Problem: Object detectors often
output many overlapping detections:

Solution: Post-process raw
detections using Non-Max
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes

with loU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

Puppy image is CCO Public Domain
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Overlapping Boxes:

Problem: Object detectors often
output many overlapping detections:

Solution: Post-process raw
detections using Non-Max
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes
with loU > threshold (e.g. 0.7)

3. If any boxes remain, GOTO 1 B . . . M~
Y &\‘ VAR =

IOU(., .) - 0.78 NP S mwv,‘—' AT A —
‘\‘d v r ¥ S [ . S
|OU(., I) =0.05 0% E\NZ‘ - Qo ? - 3

A0 &

loU(m, =) = 0.07

Puppy image is CCO Public Domain

Justin Johnson Lecture 15-118 Fall 2019


https://commons.wikimedia.org/wiki/File:The_Puppy.jpg
https://pxhere.com/en/photo/652302
https://creativecommons.org/publicdomain/zero/1.0/

Overlapping Boxes: Non Max Suppressmn (NMS)

Problem: Object detectors often
output many overlapping detections:

Solution: Post-process raw
detections using Non-Max
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes

with loU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

. i iy N bl . e Al s e . N
loU(m, =) = 0.74 SRy 92 i
) e i > - : X . A ' - LR,
IR\ ) W Yt 3 ™
[\ N \‘\Aﬁ 'h»/"\ — .y

Puppy image is CCO Public Domain
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Overlapping Boxes: Non Max Suppress‘l“o“n (NMS)

Problem: Object detectors often
output many overlapping detections:

Solution: Post-process raw
detections using Non-Max
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes

with loU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

Puppy image is CCO Public Domain
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https://commons.wikimedia.org/wiki/File:The_Puppy.jpg
https://pxhere.com/en/photo/652302
https://creativecommons.org/publicdomain/zero/1.0/

Overlapping Boxes: Non Max Suppressuon (NI\/IS)

Problem: Object detectors often
output many overlapping detections:

Solution: Post-process raw
detections using Non-Max
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes

with loU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

Problem: NMS may eliminate “good”
boxes when objects are highly
overlapping... no good solution =(
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https://pixabay.com/photos/audience-crowd-people-persons-828584/
https://pixabay.com/service/license/

Evaluating Object Detectors:
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) =
area under Precision vs Recall Curve

Justin Johnson Lecture 15-122

Fall 2019



All dog detections sorted by score

Evaluating Object Detectors:

Mean Average Precision (ma?) [ N I 1N IEE
1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = - - -

area under Precision vs Recall Curve

1. For each detection (highest score to lowest score) All ground-truth dog boxes

Fall 2019
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All dog detections sorted by score

Evaluating Object Detectors:
Mean Average Precision (mAP)

>
m

Match: loU > 0.5

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = -
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT
2. Otherwise mark it as negative

All ground-truth dog boxes

Fall 2019
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All dog detections sorted by score

Evaluating Object Detectors:
Mean Average Precision (mAP)

>
m

Match: loU > 0.5

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = -
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5,

All ground-truth dog boxes

mark it as positive and eliminate the GT Precision =1/1=1.0
2. Otherwise mark it as negative Recall =1/3 =0.33
3. Plot a point on PR Curve L ®
c
o
‘0
O
L
a
| I I
Recall 1.0
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All dog detections sorted by score

Evaluating Object Detectors:

Mean Average Precision (mAP) m - m - -
//// Match: loU > 0.5

1. Run object detector on all test images (with NMS) -

2. For each category, compute Average Precision (AP) =
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5,

All ground-truth dog boxes

mark it as positive and eliminate the GT Precision =2/2=1.0
2. Otherwise mark it as negative Recall = 2/3 =0.67
3. Plot a point on PR Curve L O O
c
o
‘0
O
L
a
| I I
Recall 1.0
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All dog detections sorted by score

Evaluating Object Detectors:

Mean Average Precision (mAP) m - m - -

No match > 0.5 loU with GT
1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = -
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5,

All ground-truth dog boxes

mark it as positive and eliminate the GT Precision = 2/3 =0.67
2. Otherwise mark it as negative Recall = 2/3 =0.67
3. Plot a point on PR Curve L O O
S O
Vs
O
L
a
| | |
Recall 1.0
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All dog detections sorted by score

Evaluating Object Detectors:

Mean Average Precision (mAP) m - m - -

No match > 0.5 loU with GT
1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = -
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5,

All ground-truth dog boxes

mark it as positive and eliminate the GT Precision =2/4=0.5
2. Otherwise mark it as negative Recall = 2/3 =0.67
3. Plot a point on PR Curve L O O
c
kS ®
L
§ O
o
| | |
Recall 1.0
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All dog detections sorted by score

Evaluating Object Detectors: >

Mean Average Precision (mAP) m m
Match: > 0.5 loU /

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) =
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5,

All ground-truth dog boxes

mark it as positive and eliminate the GT Precision =3/5=0.6
2. Otherwise mark it as negative Recall=3/3=1.0
3. Plot a point on PR Curve L O O
c
kS ®
% ®
S O
| -
o
| | |
Recall 1.0
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All dog detections sorted by score

Evaluating Object Detectors:

Mean Average Precision (mAP) m - m - -

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) =
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT
2. Otherwise mark it as negative
3. Plot a point on PR Curve o
2. Average Precision (AP) = area under PR curve

All ground-truth dog boxes

Precision

Dog AP =0.86

|
|
Recall 1.0
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All dog detections sorted by score

Evaluating Object Detectors:

Mean Average Precision (mAP) m - m - -

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = -
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT
2. Otherwise mark it as negative
3. Plot a point on PR Curve o

All ground-truth dog boxes

2. Average Precision (AP) = area under PR curve g
How to get AP = 1.0: Hit all GT 2
boxes with loU > 0.5, and have no g Dog AP = 0.86
“false positive” detections ranked | |
above any “true positives” " Recall ! 0
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Evaluating Object Detectors:
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)

2. For each category, compute Average Precision (AP) = Car AP = 0.65
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score) Cat AP =0.80

1. If it matches some GT box with loU > 0.5, _
mark it as positive and eliminate the GT Dog AP =0.86
2. Otherwise mark it as negative mAP@OS =0.77
3. Plot a point on PR Curve
2. Average Precision (AP) = area under PR curve
3. Mean Average Precision (mAP) = average of AP for
each category
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Evaluating Object Detectors:
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) =
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT
2. Otherwise mark it as negative
3. Plot a point on PR Curve
2. Average Precision (AP) = area under PR curve
3. Mean Average Precision (mAP) = average of AP for
each category
4. For “COCO mAP”: Compute mAP@thresh for each loU
threshold (0.5, 0.55, 0.6, ..., 0.95) and take average

Justin Johnson Lecture 15 - 133

MAP@0.5 =0.77
MAP@0.55=0.71
MAP@0.60 = 0.65

MAP@0.95 = 0.2

COCO mAP=0.4
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R-CNN: Region-Based CNN Classify each region

Bounding box regression:

Bbox || Class Predict “transform” to correct the
Bbox | | Class L ] Rol: 4 numbers (t,, t, t,, t,)
Bbox | [ Class | ®
Conv Forward each
Cony Net region through
o Net ConvNet
Net ﬁ Warped image
regions (224x224)

Regions of
Interest (Rol)

IMABE /1 £ N =N from a proposal
V4 F g '-.f"{ 3 Girshick et al, “Rich feature hierarchies for accurate object detection and
m et h 0 d (~2 k) semantic segmentation”, CVPR 2014.

Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0

R-CNN: Region-Based CNN Classify each region

Bounding box regression:

Bbox || Class Predict “transform” to correct the
Bbox | | Class L] Rol: 4 numbers (t,, t,, t;, t,,)
Bbox | | Class N .
Conv orward each
o Net region through ~ Problem: Very slow!
Net ConvNet Need to do ~2k forward
Cl\clmtv i Warped image passes for each image!
e
regions (224x224)

Regions of
Interest (Rol)

IMABE /1 £ N =N from a proposal
4 By £ o '-i"{ 3 Girshick et al, “Rich feature hierarchies for accurate object detection and
m et h 0 d (~2 k) semantic segmentation”, CVPR 2014.

Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0

R-CNN: Region-Based CNN Classify each region

Bounding box regression:

Bbox || Class Predict “transform” to correct the
Bbox | | Class L] Rol: 4 numbers (t,, t,, t;, t,,)
Bbox | | Class N .
Conv orward each
o Net region through ~ Problem: Very slow!
Net ConvNet Need to do ~2k forward
Cl\clmtv i Warped image passes for each image!
e
regions (224x224)

Solution: Run CNN
*before™ warping!

5 f ,, Regions of
Input _} Interest (Rol)

IMage /Al £ més 3~ from a proposal
4 R £ ik e ol 3 Girshick et al, “Rich feature hierarchies for accurate object detection and
m et h 0 d (~2 k) semantic segmentation”, CVPR 2014.

Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0

Justin Johnson

Lecture 15 - 137

“Slow” R-CNN

Process each region
independently

Bbox || Class

Bbox

Class

Bbox

Class

Conv

N

Conv
Net

Conv
Net

Fall 2019



Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Justin Johnson

Lecture 15 - 138

“Slow” R-CNN

Process each region

Bbox

independently
Bbox || Class
Bbox | | Class
Class N
Conv
Conv Net
Net
Conv

Fall 2019


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0

Fast R-CNN

ya

/Image features

“Backbone”

T

network:
AlexNet, VGG,
ResNet, etc

ConvNet

Run whole image

through ConvNet
—

——
Q L]
Input image

N

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Justin Johnson
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“Slow” R-CNN

Process each region

Bbox

independently
Bbox || Class
Bbox | | Class
Class N
Conv
Conv Net
Net
Conv

Fall 2019


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0

Fast R-CNN

Regions of
Interest (Rols)
from a proposal

method

//g:i/lmage features

“Backbone”

T

network:
AlexNet, VGG,
ResNet, etc

ConvNet

Run whole image

through ConvNet
—

=
——
-

» Input image

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Justin Johnson
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“Slow” R-CNN

Process each region

Bbox

independently
Bbox || Class
Bbox | | Class
Class N

Conv
Conv Net

Net

Conv
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0

Fast R-CNN
“Slow” R-CNN
Process each region

: independently
Regions of
Interest (Rols) Bbox || Class
from a proposal C R £ Bbox | | Class
method [ 7 Crop +Resizefeatures  rgro [Gass] ®
/2 !7&5/Image features o Cl\?gt"
“Backbone” Run whole image
network: through ConvNet
AlexNet, VGG,
ConvNet

ResNet, etc

Girshick, “Fast R-CNN”, ICCV 2015. Figure yright Ross Girshick, 2015; s e. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0

Fast R-CNN
“Slow” R-CNN
Process each region

. independently
Regions of = = [| Per-Region Network
Interest (Rols) 5 5 e Bbox || Class
frorr;]adproposal /t7 /'7 Crop + Resize features —=—ro—1 &
metho @&Mlmage features Cony Cﬁ:tv
“Backbone” Run whole image
network: through ConvNet
AlexNet, VGG, '
ResNet, etc S =
g
&

Input image

Girshick, “Fast R-CNN”, ICCV 2015. Figure yright Ross Girshick, 2015; source. Reproduced with permission
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0

Fast R-CNN

Regions of
Interest (Rols)
from a proposal
method

Bbox

Bbox

Bbox

Class

Class

Class

ttt

Z
9

Category and box
transform per region

Per-Region Network

/t7 )7 Crop + Resize features

“Backbone”

network:
AlexNet, VGG,
ResNet, etc

Girshick, “Fast R-CNN”, ICCV 2015. Figure

@&Mlmage features

yright Ross Girshick, 2015; source

Justin Johnson

ConvNet

. Reproduced with permission

Run whole image
through ConvNet

£
§

Input image
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“Slow” R-CNN

Process each region

Bbox

independently
Bbox || Class
Bbox | | Class
Class N
Conv
Conv Net

Fall 2019


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0

Fast R-CNN

Bbox | | Bbox || Bbox | Category and box
Class | | Class | | Class | transform per region

| ) t t Per-Region network is
Regions of Per-Region Network relatively lightweight
Interest (Rols) 5
from a proposal )7 /'7 Crop + Resize features
method /2 ! 7&5/Image features
“Backbone” Run whole image
network: through ConvNet :
AlexNet, VGG, —— Most of the computation

ConvNet happens in backbone

ResNet, etc network; this saves work for

overlapping region proposals

&

Input image

Girshick, “Fast R-CNN”, ICCV 2015. F right Ross Girshick, 2015; s e. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0

Fast R-CNN

Bbox | | Bbox || Bbox | Category and box c o
Class | | Class | | Class | transform per region Xamp e..
When using
- AlexNet for
Regions of = - = || Per-Region Network . .
Interest (Rols) z = = detection, five
from a proposal Crop + Resize features conv layers are
method @ used for
= &Mlmage features backbone and
“Backbone” un whole image two FC layers are
network: hrough ConvNet used for per-
AlexNet, VGG, = region network
ConvNet =
ResNet, etc

nput image

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0

Softmax |

Fast R-CNN e

3x3 conv, 512

Bbox | | Bbox | | Bbox | Category and box TN,
. Example:
Class | | Class | | Class | transform per region T
S For ResNet, last
3x3 cony, 512
‘ . 28 oy 5122 stage is used as
Regions of =zl [z[| [z ]| Per-Region Network : 8e 1>
Interest (Rols) 5 5 5 per-region
from a proposal Crop + Resize features T network; the rest

of the network is

mEthOd @ 5 33 oV 128
/ > & /Image features 3x3 conv, 128 used aS backbone

3x3 conv, 128

“Backbone” un whole image
network: hrough ConvNet e
AlexNet, VGG, - 20 con o
ResNet, etc ORI = ——

3x3 conv, 64

il
{

nput image

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0

Fast R-CNN

Bbox | | Bbox || Bbox | Category and box
Class | | Class | | Class | transform per region

ttt

Regions of - (= /z Per-Region Network

Interest (Rols) 5

from a proposal & /t7 Crop + Resize features How to crop
method &Mlmage features features?
“Backbone” Run whole image

network: through ConvNet

AlexNet, VGG,
ResNet, etc

ConvNet

-
@-
e

Input image

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0

Cropping Features: Rol Pool

Input Image
(e.g. 3 x 640 x 480)

Girshick, “Fast R-CNN”, ICCV 2015.

Justin Johnson

Lecture 15 - 148

Fall 2019



Cropping Features: Rol Pool

\
CNN
//
Input Image Image features
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

Girshick, “Fast R-CNN”, ICCV 2015.
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Cropping Features: Rol Pool

Project proposal
onto features

\
CNN
//
Input Image Image features
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

Girshick, “Fast R-CNN”, ICCV 2015.
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Cropping Features: Rol Pool

“Snap” to

Project proposal grid cells
onto features
\
CNN
//
Input Image Image features
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

Girshick, “Fast R-CNN”, ICCV 2015.
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Cropping Features: Rol Pool ... Divide into 2x2
PPITS >hap” to grid of (roughly)

Project proposal \ grid cells equal subregions

onto features

-
CNN
Input Image Image features
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

Girshick, “Fast R-CNN”, ICCV 2015.
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Cropping Features: Rol Pool ... Divide into 2x2
PPITS >hap” to grid of (roughly)

Project proposal \ grid cells equal subregions

onto features

Max-pool within
each subregion

B T
CNN :
| Region features
o R — (here 512 x 2 X 2;
RN RS B In practice e.g 512 x 7 x 7)
Input Image Image features
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15) Region features always the

same size even if input
regions have different sizes!

Girshick, “Fast R-CNN”, ICCV 2015.
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Cropping Features: Rol Pool ... Divide into 2x2
PPITS >hap” to grid of (roughly)

Project proposal \ grid cells equal subregions

onto features

Max-pool within
each subregion

B T
CNN :
| Region features
o R — (here 512 x 2 X 2;
RN RS B In practice e.g 512 x 7 x 7)
Input Image Image features
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15) Region features always the

same size even if input
regions have different sizes!

Girshick, “Fast R-CNN”, ICCV 2015.
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Cropping Features: Rol Pool .. Divide into 2x2
PPITS >hap” to grid of (roughly)

Project proposal \ grid cells equal subregions

onto features

Max-pool within
each subregion

\ 4

| Region features
e L (here 512 x 2 x 2;
In practice e.g 512 x 7 x 7)

2 ,'.’ t A e ;
SANTE AR\ R AL
MPECRAN M NN N }

Input Image Image features
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15) Region features always the
Problem: Slight misalignment due to same size even if input
Girshick, “Fast R-CNN”, ICCV 2015. snapping; different-sized subregions is weird regions have different sizes!
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Divide into equal-sized subregions

Cropping Features: Rol Align (may not be aligned to grid!)

, No “snapping”!
Project proposal

onto features

-
CNN
; i //
Input Image Image features
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

He et al, “Mask R-CNN”, ICCV 2017

Justin Johnson Lecture 15 - 156 Fall 2019



Divide into equal-sized subregions

Cropping Features: Rol Align (may not be aligned to grid!)

, No “snapping”!  Sample features at
Project proposal , lar] d boints
onto features cgularly-spaced po

in each subregion using
bilinear interpolation
e
CNN
o0 |00
v — o0 |00
Input Image Image features
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

He et al, “Mask R-CNN”, ICCV 2017
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Divide into equal-sized subregions

Cropping Features: Rol Align (may not be aligned to grid!)

. \No “snapping”!  Sample features at
Project proposal .
regularly-spaced points

onto features . . .
in each subregion using
: bilinear interpolation
oo 060 After sampling, max-
©0 1 00 pool in each subregion
CNN —
o0 |00
. o0 (00 ”
DA N Y TR Region features
Input Image Image features (here 512 x 2 x 2;
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15) ’

In practice e.g 512 x7 x 7)

He et al, “Mask R-CNN”, ICCV 2017
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Fast R-CNN vs “Slow” R-CNN

Fast R-CNN: Apply differentiable “Slow” R-CNN: Apply differentiable
cropping to shared image features cropping to shared image features
Bbox | | Bbox || Bbox | Category and box Bbox || Class
Class | | Class | | Class | transform perregion Bbox | | Class
. § i 1 LS
Regions of = Per-Region Network Bbox | | Class Conv Forward each
Interest (Rols) 3 Conv Net region through
from a proposal & b Crop + Resize features c Net ConvNet
method /;t7 onv
iﬁ Image features Net & Warped image
“Backbone” Run whole image A regions (224x224)
network: through ConvNet

AlexNet, VGG, I _,’7 Regions of

ResNet, etc Input : Interest (Rol)
L image / s BB from a proposal
y . : method (~2k)

Inputimage
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Fast R-CNN vs “Slow” R-CNN

Training time (Hours)

SPP-Net
Fast R-CNN . 8.75
Fast R-CNN
0 25 50 75 100

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “Fast R-CNN”, ICCV 2015

Lecture 15 - 168

Justin Johnson

Test time (seconds)

B 'ncluding Region propos... [l Excluding Region Propo...
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B 23
0.32
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Fast R-CNN vs “Slow” R-CNN

R-CNN

SPP-Net

Training time (Hours)

SPP-Net

Fast R-CNN . 8.75
Fast R-CNN
0

25 50 75 100

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “Fast R-CNN”, ICCV 2015
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Fast R-CNN vs “Slow” R-CNN

Test time (seconds)

Tralnlng tlme (HOU rS) B Including Region propos... [l Excluding Region Propo...
SPP-Net 23
Fast R-CNN . 8.75 g 2: Problem: Runtime
Fast R-CNN o i
0 - - s 100 0.32 dominated by

' |
region proposals!

0 15

Recall: Region proposals computed by
. s N . ” .
Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014. h eurl St IC Se I e Ct Ive Se arc h d |go rlt h m on
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014

Girshick, “Fast R-CNN”, ICCV 2015 CPU -- |et'S Iearn them with a CNN instead!
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Faster R-CNN: Learnable Region Proposals

Insert Region Proposal
Network (RPN) to predict

proposals from features 5 T

proposit;//// //////
Region Proposal Network 50
Otherwise same as Fast R-CNN:
feature map

Crop features for each -
proposal, classify each one
) Y 4

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015 Py 27 €%
Figure copyright 2015, Ross Girshick; reproduced with permission

Y Rol pooling
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Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image

Input Image

(e.g. 3 x 640 x 480) Image features
(e.g. 512 x 20 x 15)

Justin Johnson Lecture 15-172 Fall 2019




Imagine an anchor box of
fixed size at each point in

Region Proposal Network (RPN)

Run backbone CNN to get the feature map
features aligned to input image

)

-
()
V2

o 55 &% WY \
A\ - X
Nl |

s 7
b

—_
)
N

e RO N A R T

Input Image |
(e.g. 3 x 640 x 480) Image features
(e.g. 512 x 20 x 15)
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, Imagine an anchor box of
Region Proposal Network (RPN)  fyad size at each soint in

Run backbone CNN to get the feature map
features aligned to input image

Anchor is an

\ .
. object?
1x20x15
Conv
/

At each point, predict whether
Input Image the corresponding anchor
(e.g. 3 x 640 x 480) Image features contains an object (per-cell

(e.g. 512 x 20 x 15) logistic regression, predict
scores with conv layer)
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, Imagine an anchor box of
Region Proposal Network (RPN)  fyad size at each soint in

Run backbone CNN to get the feature map
features aligned to input image %

Anchor is an
. object?
1x20x15

—» Box transforms

L — 4 x20x 15
Input Image For positive boxes, also predict
(e.g. 3 x 640 x 480) Image features a box transform to regress
(e.g. 512 x 20 x 15) from anchor box to
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. Problem: Anchor box may
Region Proposal Network (RPN) have the wrong size / shape
Solution: Use K different

Run backbone CNN to get anchor boxes at each point!

features aligned to input image

i Anchor is an
- — object?
il Kx20x15

—» Box transforms
. 4K x 20 x 15

i AR A
I ¥ Y A{ & 3

RIS N TARIE 2
et RN SO N %‘ TR &
R v S NN AN S

At test time: sort all

Input Image Imase features K*20*15 boxes by their
(e.g. 3 x 640 x 480) 5 score, and take the top ~300

(e.g. 512 x 20 x 15)

as our region proposals
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Faster R-CNN: Learnable Region Proposals

Jointly train with 4 losses:

1. RPN classification: anchor box is
object / not an object

2. RPN regression: predict transform K @ 7
from anchor box to proposal box proposals/ /

3. Object classification: classify /
proposals as background / object Region Proposal Network o ey
class feature map W

4. Object regression: predict transform T
from proposal box to object box

CNN :
R copynght 2015, Ross Grshicks reptoduced with permisgion T o s NP 2018 Lmcer » /

Y Rol pooling
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Faster R-CNN: Learnable Region Proposals

R-CNN Test-Time Speed

R-CNN

SPP-Net

Fast R-CNN 2.3

Faster R-CNN| 0.2

0 15 30 45
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Faster R-CNN: Learnable Region Proposals

Faster R-CNN is a |
Two-stage object detector

ooling
First stage: Run once per image N
Backbone network proposzy
Region proposal network

) Region Proposal Network
Second stage: Run once per region feature map /

Crop features: Rol pool / align
Predict object class
Prediction bbox offset CNN _ r
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Faster R-CNN: Learnable Region Proposals

Question: Do we really = o

p)
Faster R-CNN is 3 need the second stage:

Two-stage object detector

ooling
First stage: Run once per image N
Backbone network proposzy
Region proposal network

) Region Proposal Network
Second stage: Run once per region feature map /

Crop features: Rol pool / align
Predict object class
Prediction bbox offset CNN _ r
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RPN: Classify each anchor as

Single-Stage Object Detection object / not object
Single-Stage Detector: Classify
Run backbone CNN to get each object as one of C

features aligned to input image categories (or background)

— Anchor category
—(C+1) xKx20x 15

—» Box transforms

— 4K x 20 x 15
Input Image Remember: K anchors
(e.g. 3 x 640 x 480) Image features at each position in
(e.g. 512 x 20 x 15) image feature map

Justin Johnson Lecture 15 - 181 Fall 2019



RPN: Classify each anchor as
Single-Stage Object Detection object / not object
Single-Stage Detector: Classify
each object as one of C
categories (or background)

Run backbone CNN to get
features aligned to input image

— Anchor category
—(C+1) xKx20x 15

—» Box transforms
— Cx4Kx20x 15

Sometimes use category-

Input Image specific regression: Predict
(e.g. 3 X 640 x 480) Image features P g '
(e.g. 512 x 20 x 15) different box transforms for
Redmon et al, “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016 * g *
Liu et al, “sSD: Single-Shot MultiBox Detector”, ECCV 2016 eacC h cate gory

Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017
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Object Detection: Lots of variables!

40
Faster R-CNN w/ResNet, Hi Meta Architecture
8 BV @ Faster RCNN Bl R-FCN ¢ SSD
e mmm = ———————— = =
35 R-FCN w/ @) O ©
ResNetv,v Hi Res, _ C;. ce® /
100 Proposals v H
O @ . Faster R-CNN w/Inception
R t, Hi Res, 300
30 (3 . O P:::zsalsl, S:rsides
o , O
é /
=25 4 ¢ -
O ‘ Feature Extractor
20 @ O Inception Resnet V2
] @ Inception V2
SSD w/Inception V2, Lo Res ) |nception V3
15 SSD w/MobileNet, Lo Res @ MobileNet
@ Resnetl01
® VGG
10
0 200 400 600 800 1000

GPU Time

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017
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Object Detection: Lots of variables!

40
Faster R-CNN w/ResNet, Hi Meta Architecture
LDE AL L] @ Faster RCNN Bl R-FCN @® SSD Takeaway5°
B —— : ] - °
35 Recnw/ ~ O O ©
RN i C o oo / - Two stage method (Faster
100 Proposals : ‘ ] '
() @ u Faster R-CNN w/Inception R'CNN) gEt the be5t
30 Resnet, Hi Res, 300
O roposals, Stride
o @ % o e accuracy, but are slower
<
S
= 25 ® =
§ @
O ‘ Feature Extractor
20 @ O Inception Resnet V2
@ Inception V2
SSD w/Inception V2, Lo Res @ Inception V3
15 SSD w/MobileNet, Lo Res @ MobileNet
@ Resnetl1l01
® VGG
10
0 200 400 600 800 1000

GPU Time

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017
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Object Detection: Lots of variables!

40
Faster R-CNN w/ResNet, Hi Meta Architecture
LDE AL L] @ Faster RCNN N B R-FCN | g SSD . Ta keaways:
35 RrcNw é o0 °?
i 1 C o ce / - Two stage method (Faster
100 Proposals ]
() ~ @ B Faster R-CNN w/Inception R'CNN) gEt the bESt
30 (3 ® ® Resnet, Hi Res., 300
2 % o S accuracy, but are slower
E e ° = - Single-stage methods
g ® (SSD) are much faster, but
© ®. Feature Extractor don’t perform as well
20 Pw O Inception Resnet V2
@ Inception V2
SSD w/Inception V2, Lo Res Q Inception V3
15 ’. SSD w/MobileNet, Lo Res 0 MobileNet
@ Resnetl1l01
® VGG
10
0 200 400 600 800 1000

GPU Time

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017
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Object Detection: Lots of variables!

40
Faster R-CNN w/ResNet, Hi Meta Architecture
Al ® Faster RCNN W R-FCN g Ssb - Takeaways:
35  rcnw S --"0
i 1 C o ce / - Two stage method (Faster
100 Proposals O ~ O -
@ Faster R-CNN w/Inception R'CNN) gEt the be5t
30 Resnet, Hi Res, 300
o So % © o S TERE accuracy, but are slower
£ e o = - Single-stage methods
g » o (SSD) are much faster, but
© ‘ Feature Extractor don’t per‘form as We”
20 » O Inception Resnet V2 . .
@ Inception V2 - Bigger backbones improve
SSD w/Inception V2, Lo Res @ Inception V3
15 @. SSD w/MobileNet, Lo Res O MobileNet performance’ bUt are
@® Resnet101 slower
® VGG
10
0 200 400 600 800 1000

GPU Time

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017
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Object Detection: Lots of variables!

40
Faster R-CNN w/ResNet, Hi Meta Architecture
LDE AL L] @ Faster RCNN , B R-FCN ‘ 3 SSD . Ta keaways:
35 pEcNw o = 0
i 1 Ce oo / - Two stage method (Faster
100 Proposals O % ] . /
@ Faster R-CNN w/Inception R'CNN) gEt the be5t
30 Resnet, Hi Res, 300
2 So % ® o S accuracy, but are slower
E e ° = - Single-stage methods
g o o (SSD) are much faster, but
© ®. Feature Extractor don’t perform as well
20 ) 2 O Inception Resnet V2 . .
® Inception V2 - Bigger backbones improve
~ SSDw/Incef)tionVZ,LoRes @ Inception V3 performance’ but are
15 ’ SSD w/MobileNet, Lo Res @ MobileNet
@® Resnet 101 slower
Lo ) EE - Diminishing returns for
0 200 400 600 800 1000

GPU Time slower methods

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017
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Object Detection: Lots of variables!

These results are a few years old ... since
then GPUs have gotten faster, and we’ve
improved performance with many tricks:

40
Faster R-CNN w/ResNet, Hi Meta Architecture
Rz @ FasterRCNN W RFCN @ SSD
- -—3———— "6
35 R-FCN w/ O © -
ResNet, Hi Res, i. ce /
100 Proposals O
() @ u Faster R-CNN w/Inception
Resnet, Hi Res, 300
30 . O Proposalsl, Stride 8
o @)
£
=25 ple
3] @
>
© Feature Extractor
20 O Inception Resnet V2
@® Inception V2
SSD w/Inception V2, Lo Res O Inception V3
15 SSD w/MobileNet, Lo Res @) MobileNet
@® Resnet101
® VGG
10
0 200 400 600 800 1000

GPU Time

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017 Wu et al, Detectron2, GitHub 2019
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Object Detection: Lots of variables!

aster RLCNN These results are a few years old ... since
e then GPUs have gotten faster, and we’ve
(o3m=: 42 S improved performance with many tricks:
* Faster R-CNN w/ResNet, Hi Meta Architecture - Train |Onger!
R Faster RCNN R-FCN @ SSD . .
s I / B bl bRt - Multiscale backbone: Feature Pyramid
ResNet, Hi Res, ()
BN ‘J ~ @ D- FasterR-CNl{/Incepﬁon Networks
. * So % ® IR et
%25 ¢ =
§ e
O Feature Extractor
20 O Inception Resnet V2
@® Inception V2
SSD w/lInception V2, Lo Res @® Inception V3
15 SSD w/MobileNet, Lo Res @ MobileNet
@® Resnet101
® VGG
10
0 200 400 600 800 1000

GPU Time

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017 Wu et al, Detectron2, GitHub 2019
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Object Detection: Lots of variables!

aster RLCNN These results are a few years old ... since
/ResNet-101-FPN, F R-CNN
longer training  ve/ReoNoxtA0L. then GPUs have gotten faster, and we’ve
63ms, 42.0 mAP ini . . .
oo b L improved performance with many tricks:
* Faster R-CNN w/ResNet, Hi Meta Architecture - Train |Onger!
R Faster RCNN R-FCN @ SSD . .
s I / B bl bRt - Multiscale backbone: Feature Pyramid
ResNet, Hi Res, ( ]
BN ‘J ~ @ D- FasterR-CNl{/Incepﬁon Networks
30 Resnet, Hi Res., 300
o de % ’ o e - Better backbone: ResNeXt
%25 ® =
9 e
o Feature Extractor
20 O Inception Resnet V2
@® Inception V2
SSD w/lInception V2, Lo Res @® Inception V3
15 SSD w/MobileNet, Lo Res @ MobileNet
@® Resnet101
® VGG
10
0 200 400 600 800 1000

GPU Time

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017 Wu et al, Detectron2, GitHub 2019
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Object Detection: Lots of variables!

These results are a few years old ... since
then GPUs have gotten faster, and we’ve

o fetinaiiet (S50l improved performance with many tricks:
* FasterR-CNN(\?/(lt)e:;l]::,'H?g.g mAP) Meta Architecture - Train |Onger!
EeS Soliopceals aster RC -FC SS . .
" mn | e e b - Multiscale backbone: Feature Pyramid
:;;':?z;:s':le:’ ‘) ~. (@ D- Faster R-CNI{/Incepﬁon N etworks
30 Resnet, Hi Res., 300
o e %E ? o T - Better backbone: ResNeXt
S . .
T2 $& - Single-Stage methods have improved
3

Feature Extractor
Inception Resnet V2
Inception V2
Inception V3
MobileNet
Resnet 101
VGG

N
o

SSD w/Inception V2, Lo Res

15 SSD w/MobileNet, Lo Res

N NONON N©

10
0 200 400 600 800 1000
GPU Time

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017 Wu et al, Detectron2, GitHub 2019
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Object Detection: Lots of variables!

O ot 152 These results are a few years old ... since
PEUSESIS, then GPUs have gotten faster, and we’ve
. improved performance with many tricks:
* Faster R-CNN w/ResNet, Hi Meta Architecture - Train |Onger!
Res, 50 Proposals aster -FC SS . .
- j B b - Multiscale backbone: Feature Pyramid
ResNet, Hi Res, ()
onrere ‘) ~ (@ D- FasterR-CNl{/Incepﬁon Networks
30 Resnet, Hi Res., 300
o do %E ° 5 T - Better backbone: ResNeXt
€ . .
S 2 *H - Single-Stage methods have improved
5 Feature Extractor = Very blg mOde|S WOrk better
20 O Inception Resnet V2
@® Inception V2
SSD w/lInception V2, Lo Res @® Inception V3
15 $SD w/MobileNet, Lo Res @ MobileNet
@® Resnet101
® VGG
100 200 400 600 800 1000

GPU Time

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017 Wu et al, Detectron2, GitHub 2019
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Object Detection: Lots of variables!

Mask R-CNN [ ] :
@ e e vssk kNN wireexeas, 1 N€se results are a few years old ... since
N Hesttime augmentation  than GPUs have gotten faster, and we’ve
(? ms, 51.4 mAP) ’
. improved performance with many tricks:
* Faster R-CNN w/ResNet, Hi Meta Architecture - Train |Onger!
Res, 50 Proposals @ Faster RCNN B R-FCN ¢ SSD . .
35 vrover j o= -G o5~ o o - Multiscale backbone: Feature Pyramid
ResNet, Hi Res, ")
BN L .. (aa D- FasterR-CNl{/Incepﬁon Networks
30 Resnet, Hi Res, 300
o do %E ° o - Better backbone: ResNeXt
o . .
= 25 M - Single-Stage methods have improved
5 50 Feature Extractor = Very b|g mOdE|S WOrk better
O Inception Resnet V2 . .
/ o ncepion 2 - Test-time augmentation pushes
SSD w/Inception V2, Lo Res ncep on
15 $SD w/MobileNet, Lo Res @ MobileNet numbers up
@® Resnet101
® VGG
10
0 200 400 600 800 1000
GPU Time
Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017 Wu et al, Detectron2, GitHub 2019
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Object Detection: Lots of variables!

Current leaderboard
winner: 55 mAP

Method ???
® et 152 Runtime 772 > These results are a few years old ... since
N then GPUs have gotten faster, and we’ve
. improved performance with many tricks:
* Faster R-CNN w/ResNet, Hi Meta Architecture - Train |Onger!
R Faster RCNN R-FCN SSD . .
35 vrover j . . QtO. o= 2 o - Multiscale backbone: Feature Pyramid
ResNet, Hi Res, ")
BN L .. (aa D- FasterR-CNl{/Incepﬁon Networks
30 Resnet, Hi Res, 300
o Se %E ? o e - Better backbone: ResNeXt
S . .
= 25 M - Single-Stage methods have improved
5 50 Feature Extractor - Very blg mOde|S WOrk better
O Inception Resnet V2 . .
/ o ncepion 2 - Test-time augmentation pushes
SSD w/Inception V2, Lo Res ncep on
15 $SD w/MobileNet, Lo Res @ MobileNet numbers up
@® Resnet101
i’ Cr - Big ensembles, more data, etc
0 200 400 600 800 1000
GPU Time
Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017 https://competitions.codalab.org/competitions/20794#results
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https://competitions.codalab.org/competitions/20794

Object Detection: Open-Source Code

Object detection is hard! Don’t implement it yourself

TensorFlow Detection API:

https://github.com/tensorflow/models/tree/master/research/object detection
Faster R-CNN, SSD, RFCN, Mask R-CNN

Detectron2 (PyTorch):

https://github.com/facebookresearch/detectron2
Fast / Faster / Mask R-CNN, RetinaNet
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https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/facebookresearch/detectron2

Ssummary

“Slow” R-CNN: Run
CNN independently

for each region

Bbox || Class
Bbox | | Class

L
Bbox | | Cass Conv Forward each
Conv Net region through
Net ConvNet
Conv
Net ﬁWarped image
ﬁ regions (224x224)

= Regions of
Input Interest (Rol)
Image from a proposal

method (~2k)

Fast R-CNN: Apply
differentiable
cropping to shared
image features

Bbox

Bbox

Bbox | Category and box

CI

transform per region

Regions of

Interest (Rols)
from a proposal
method

“Backbone”
network:
AlexNet, VGG,
ResNet, etc

' ' ' Per-Region Network

Crop + Resize features
Image features

Run whole image
through ConvNet
: —

Lecture 15 - 196

Faster R-CNN:
Compute proposals
with CNN

Region Proposal Network
feature map ”

Single-Stage:
Fully convolutional
detector

Fall 2019

Justin Johnson



A few more slides from:

Richard Szeliski

A

The Generalized R-CNN
Framework for Object Detection

ICCV 2019 Tutorial
Visual Recognition for Images, Video, and 3D

Ross Girshick

facebook Artificial Intellicence Research

UW CSE 576 - Segmentation and Detection

197



COCO Object Detection Average Precision (%)

Past Early
(best circa 2015
2012)

Progress within
DL methods: -~

> 3x!
15
s I
[ ]
DPM Fast R-CNN
(Pre DL) (AlexNet)

~4 years Late
2018
49
36 39
29
19

Fast R-CNN Faster R-CNN Faster R-CNN Faster R-CNN Mask R-CNN
(VGG-16) (VGG-16) (ResNet-50) (R-101-FPN) (X-152-FPN)



Modern object detection
IS a complex web of related
methods

e _M@ = C/NN le lL Ba){, A'( M
‘W e i (n QYA
i | paper). |
‘ S PP net w(-h Loy S s ~<Q;:§
e e | o ”"/}‘i
‘fVa-‘uu{ ’—"v,j;
Fort P-capy VB HL o Sy —ic oy
\ /V\ wilai —bioy.
P fmmo'{ bo\,(/u'a\m.e e
J Pa—s-t&r P—- CN N
( loht - N\ C
lLg ®
heost / b ;
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FPN |
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Steady Progress on Boxes and Masks

> R-CNN [Girshick et al. 2014]

» SPP-net [He et al. 2014]

» Fast R-CNN [Girshick. 2015]

» Faster R-CNN [Rren et al. 2015]

» R-FCN [Dai et al. 2016]

» Feature Pyramid Networks + Faster R-CNN [Lin et al. 2017]

» Mask R-CNN [He et al. 2017]

» Training with Large Minibatches (MegDet) [peng, Xiao, Li, et al. 2017]

> Cascade R-CNN [Cai & Vasconcelos 2018]
> ...



Lin et al. Feature Pyramid Networks for Object Detection. CVPR 2017.

Faster R-CNN with a Feature Pyramid Network

Per-image computation Per-region computation for each r; € r(I)

fi=FNG)

I\ | s { RolPool } — »‘ MLP
l' \- _\""‘ <‘;‘ -
b

Softmax clf. }

A

Box regressor }

The whole-image feature representation
can be improved by making it multi-scale




FPN: Improving Scale Invariance and Equivariance

Detectors need to

1. Classify (invariance) and

2. Localize (equivariance)
objects over a wide range of scales

FPN improves this ability




Strategy 1: Image Pyramid

predict

predict

predict

/ —— predict

(a) Featurized image pyramid

Standard solution — slow!
(E.g., Viola & Jones, HOG, DPM, SPP-net,
multi-scale Fast R-CNN, ...)




Strategy 2: Multi-scale Features (Single-scale
Map)

> predict

(b) Single feature map
Leave it all to the features — fast, suboptimal
(E.g., Fast/er R-CNN, YOLO, ...)




Strategy 3: Naive In-network Pyramid

» predict
—»| predict
/ P
A
predict
+

(c) Pyramidal feature hierarchy

Use the internal pyramid — fast, suboptimal
(E.g., = SSD, ...)




Strategy 3: Naive In-network Pyramid

« Low resolution,

> predict Strong features
/ —>» predict
A « High resolution,
predict

Weak features

(c) Pyramidal feature hierarchy

Use the internal pyramid — fast, suboptimal
(E.g., = SSD, ...)




Strategy 4: Feature Pyramid Network

predict
X / predict
" w4
/ > 4 predict
(d) Feature Pyramid Network

Top-down enrichment of high-res features —
fast, less suboptimal

Lin et al. Feature Pyramid Networks for Object Detection. CVPR 2017.



No Compromise on Feature Quality, Still Fast

\ —>»{ 1x1 conv —? E

- e e e e e e e e e e e e e e e e e e e e e e e e = )

predict

predict

predict

Lin et al. Feature Pyramid Networks for Object Detection. CVPR 2017. See also: Shrivastava’s TDM.

Low resolution,
Strong features

High resolution,
Strong features



RetinaNet: Classification and Regression Subnets

class+box A
* subnets y , class
’ ' subnet

|

subnets

WxH ...
| X256
\ I
¢ class+box | ° | | 1 1 |
v )$ subnets ' : '
WxH J...
X256 |

y4 )$ class+box

\\ |
/ \\ : »
N box

subnet

(a) ResNet (b) feature pyramid net (c) class subnet (top) (d) box subnet (bottom)



Handling Imbalance with Cascades

All Sub-windows
T T T Further
Processing
F F F

Reject Sub-window

eliminate easy background step-by-step, leading to a ...

v

... balanced problem

Final Stage

v



L0ss: “Soft” Hard-Example Mining

CE(p:) = — log(p)
FL(pt) = —(1 — pt)" log(pt)

(&)

T I TR
=00

= 2222

well-classified (“easy”)
examples
: A
~
0 0.2 0.4 0.6 0.8 1

probability of ground truth class



Generalized R-CNN: Adding More Heads

=

ResNet50
// L A P‘PN
A7 ’
RolAlign|
conv>
/// L/

Mask R-CNN DensePose
[He, Gkioxari, Dollar, Girshick] [GUler, Neverova, Kokkinos]

Box/Mask Branch |- box, class, 2D mask Cubified Mesh

Al Vert Align

&

e —o o

¢ e
d *
VoxelBranch [l > WO —
f = L *
L 2 L 3 L 3
Cubify
& B P
S _-::::>?7$‘ 3
% —> e e

Vert Align Graph conv Refine
Rl

MESh R-CNN Mesh Refinement Branch Final Mesh
[Gkioxari, Malik, Johnson. ICCV 2019]

Vert Align Graph conv Refine




Segmentation and detection

Med-res: Med-res:
D,x H/4 x W/4 D,x H/4x W/4,//]

* Adversarial examples
* Bottlenecks and U-Nets
i Low-res: b

° Segmentatlon Hig—h-res: D,x H/4 x W/4

High-res:
* Face detection

* Object detection

Richard Szeliski UW CSE 576 - Segmentation and Detection 214



