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Class calendar
Date Topic Slides Reading Homework
April 9 Filters and convolutions Google Slides Szeliski, Chapter 3 HW1 

due, HW2 assigned
April 14 Interpolation and Optimization pdf, pptx Szeliski, Chapter 4

April 16 Machine Learning pdf, pptx Szeliski, Chapter 5.1-5.2

April 21 Deep Neural Networks pdf, pptx Szeliski, Chapter 5.3

April 23 Convolutional Neural Networks pdf, pptx Szeliski, Chapter 5.4 HW2 due, HW3 
assigned

April 28 Network Architectures pdf, pptx Szeliski, Chapter 5.4

April 30 Segmentation and Detection Szeliski, Chapter 6.3

May 5 DL Languages, Instance Segmentation Szeliski, Chapter 6.4

May 7 Edges, features, matching, RANSAC Szeliski, Chapter 7.1-7.2, 
8.1-8.2

HW3 due, HW4 
assigned
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https://docs.google.com/presentation/d/1Yp0UiqlAUxsnGCyeEwfmYXMunxSNdqqMWtMSfyI8UUU/
http://szeliski.org/Book/2ndEdition.htm
https://github.com/holynski/cse576_sp20_hw2
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture5-interpolationandoptimization.pdf
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture5-interpolationandoptimization.pptx
http://szeliski.org/Book/2ndEdition.htm
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture6_machinelearning_v5.pdf
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture6_machinelearning_v5.pptx
http://szeliski.org/Book/2ndEdition.htm
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture8_convolutionalneuralnetworks_v4.pdf
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture8_convolutionalneuralnetworks_v4.pptx
http://szeliski.org/Book/2ndEdition.htm
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture8_convolutionalneuralnetworks_v4.pdf
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture8_convolutionalneuralnetworks_v4.pptx
http://szeliski.org/Book/2ndEdition.htm
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture9_networkarchitectures_v3.pdf
https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture9_networkarchitectures_v3.pptx
http://szeliski.org/Book/2ndEdition.htm
http://szeliski.org/Book/2ndEdition.htm
http://szeliski.org/Book/2ndEdition.htm
http://szeliski.org/Book/2ndEdition.htm
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Readings
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Unfortunately,
not yet ready L



Segmentation and detection

• Adversarial examples
• Bottlenecks and U-Nets
• Segmentation
• Face detection
• Object detection

UW CSE 576 - Segmentation and Detection 5Richard Szeliski

Cow`

Grass

Sky



As before, I’m borrowing slides from
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Justin Johnson Fall 2019

Lecture 14:
Visualizing
CNNs
(see slides on Web site)

Lecture 14 - 7



Justin Johnson Fall 2019

Intermediate Features via (guided) backprop

Lecture 14 - 8

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.

Maximally activating patches
(Each row is a different neuron)

Guided Backprop



Justin Johnson Fall 2019

Adversarial Examples

Lecture 14 - 9

1.Start from an arbitrary image
2.Pick an arbitrary category
3.Modify the image (via gradient ascent) 

to maximize the class score
4.Stop when the network is fooled

Szegedy et al, “Intriguing properties of neural networks”, 2013



Justin Johnson Fall 2019

Adversarial Examples

Lecture 14 - 10

Boat image is CC0 public domain
Elephant image is CC0 public domain

https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Adversarial examples (con’t)

https://towardsdatascience.com/breaking-neural-networks-with-adversarial-attacks-f4290a9a45aa
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Adversarial examples (con’t)

https://towardsdatascience.com/breaking-neural-networks-with-adversarial-attacks-f4290a9a45aa
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Why 45?

https://towardsdatascience.com/breaking-neural-networks-with-adversarial-attacks-f4290a9a45aa


Adversarial examples (con’t)

https://towardsdatascience.com/breaking-neural-networks-with-adversarial-attacks-f4290a9a45aa
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Segmentation and detection

• Adversarial examples
• Bottlenecks and U-Nets
• Segmentation
• Face detection
• Object detection
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Justin Johnson Fall 2019

Lecture 16:
Semantic Segmentation

Lecture 16 - 15



Justin Johnson Fall 2019

So far: Image Classification

Lecture 15 - 16

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...This image is CC0 public domain Vector:

4096

Fully-Connected:
4096 to 1000

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 
Geoffrey Hinton, 2012. Reproduced with permission. 

https://pixabay.com/p-1246693/%3Fno_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Justin Johnson Fall 2019Lecture 16 - 18

Computer Vision Tasks: Semantic Segmentation

Classification Semantic
Segmentation

Object 
Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectsNo objects, just pixels



Justin Johnson Fall 2019

Semantic Segmentation

Lecture 16 - 19

Cow

Grass

SkyTre
es

Label each pixel in the image 
with a category label

Don’t differentiate instances, 
only care about pixels

This image is CC0 public domain

Grass

Cat

Sky Trees

https://pixabay.com/p-1246693/%3Fno_redirect
https://pixabay.com/en/cows-two-cows-dairy-agriculture-1264546/


Justin Johnson Fall 2019

Semantic Segmentation Idea: Sliding Window

Lecture 16 - 20

Full image

Extract 
patch

Classify center 
pixel with CNN

Cow

Cow

Grass

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014



Justin Johnson Fall 2019

Semantic Segmentation Idea: Sliding Window

Lecture 16 - 21

Full image

Extract 
patch

Classify center 
pixel with CNN

Cow

Cow

Grass

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Problem: Very inefficient! Not 
reusing shared features 
between overlapping patches



Justin Johnson Fall 2019

Semantic Segmentation: Fully Convolutional Network

Lecture 16 - 22

Input:
3 x H x W

Convolutions:
D x H x W

Conv Conv Conv Conv

Scores:
C x H x W

argmax

Predictions:
H x W

Design a network as a bunch of convolutional 
layers to  make predictions for pixels all at once!

Loss function: Per-Pixel cross-entropy
Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015



Justin Johnson Fall 2019

Semantic Segmentation: Fully Convolutional Network

Lecture 16 - 23

Input:
3 x H x W

Conv Conv Conv Conv argmax

Design a network as a bunch of convolutional 
layers to  make predictions for pixels all at once!

Problem #1: Effective receptive 
field size is linear in number of 
conv layers: With L 3x3 conv 
layers, receptive field is 1+2L

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015



Justin Johnson Fall 2019

Semantic Segmentation: Fully Convolutional Network

Lecture 16 - 24

Input:
3 x H x W

Conv Conv Conv Conv argmax

Design a network as a bunch of convolutional 
layers to  make predictions for pixels all at once!

Problem #1: Effective receptive 
field size is linear in number of 
conv layers: With L 3x3 conv 
layers, receptive field is 1+2L

Problem #2: Convolution on 
high res images is expensive! 
Recall ResNet stem aggressively 
downsamples

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015



Justin Johnson Fall 2019Lecture 16 - 25

Semantic Segmentation: Fully Convolutional Network
Design network as a bunch of convolutional layers, with 
downsampling and upsampling inside the network!

High-res:
D1 x H/2 x W/2

High-res:
D1 x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Input:
3 x H x W Predictions:

H x W



Justin Johnson Fall 2019Lecture 16 - 26

Semantic Segmentation: Fully Convolutional Network
Design network as a bunch of convolutional layers, with 
downsampling and upsampling inside the network!

High-res:
D1 x H/2 x W/2

High-res:
D1 x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Input:
3 x H x W Predictions:

H x W

Downsampling:
Pooling, strided
convolution

Upsampling:
???



Justin Johnson Fall 2019

In-Network Upsampling: “Unpooling”

Lecture 16 - 27

1
3

2
4

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

Input 
C x 2 x 2

Output
C x 4 x 4

Bed of Nails



Justin Johnson Fall 2019

In-Network Upsampling: “Unpooling”

Lecture 16 - 28

1
3

2
4

1
1

1
1

2
2

2
2

3
3

3
3

4
4

4
4

Input 
C x 2 x 2

Output
C x 4 x 4

Nearest Neighbor

1
3

2
4

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

Input 
C x 2 x 2

Output
C x 4 x 4

Bed of Nails
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In-Network Upsampling: Bilinear Interpolation

Lecture 16 - 29

Input: C x 2 x 2 Output: C x 4 x 4

1 2

3 4

1.00 1.25 1.75 2.00

1.50 1.75 2.25 2.50

2.50 2.75 3.25 3.50

3.00 3.25 3.75 4.00

Use two closest neighbors in x and y 
to construct linear approximations



Justin Johnson Fall 2019

In-Network Upsampling: Bicubic Interpolation

Lecture 16 - 30

Input: C x 2 x 2 Output: C x 4 x 4

1 2

3 4

0.68 1.02 1.56 1.89

1.35 1.68 2.23 2.56

2.44 2.77 3.32 3.65

3.11 3.44 3.98 4.32

Use three closest neighbors in x and y to 
construct cubic approximations
(This is how we normally resize images!)



Justin Johnson Fall 2019

In-Network Upsampling: “Max Unpooling”

Lecture 16 - 31

5
7

6
8

1
3

2
5

6
2

3
1

1
7

2
3

2
4

1
8

Pair each downsampling layer 
with an upsampling layer

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Max Pooling: Remember 
which position had the max

Max Unpooling: Place into
remembered positions

1
3

2
4

0
0

0
1

2
0

0
0

0
3

0
0

0
0

0
4

Rest 
of 

net



Justin Johnson Fall 2019

Learnable Upsampling: Transposed Convolution

Lecture 16 - 32

Recall: Normal 3 x 3 convolution, stride 1, pad 1

Input: 4 x 4 Output: 4 x 4



Justin Johnson Fall 2019

Learnable Upsampling: Transposed Convolution

Lecture 16 - 33

Recall: Normal 3 x 3 convolution, stride 1, pad 1

Input: 4 x 4 Output: 4 x 4

Dot product 
between input 
and filter



Justin Johnson Fall 2019

Learnable Upsampling: Transposed Convolution

Lecture 16 - 34

Recall: Normal 3 x 3 convolution, stride 1, pad 1

Input: 4 x 4 Output: 4 x 4

Dot product 
between input 
and filter



Justin Johnson Fall 2019

Learnable Upsampling: Transposed Convolution

Lecture 16 - 35

Recall: Normal 3 x 3 convolution, stride 2, pad 1

Input: 4 x 4 Output: 2 x 2
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Learnable Upsampling: Transposed Convolution

Lecture 16 - 36

Recall: Normal 3 x 3 convolution, stride 2, pad 1

Input: 4 x 4 Output: 2 x 2

Dot product 
between input 
and filter
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Learnable Upsampling: Transposed Convolution

Lecture 16 - 37

Recall: Normal 3 x 3 convolution, stride 2, pad 1

Input: 4 x 4 Output: 2 x 2

Dot product 
between input 
and filter



Justin Johnson Fall 2019

Learnable Upsampling: Transposed Convolution

Lecture 16 - 38

Recall: Normal 3 x 3 convolution, stride 2, pad 1

Input: 4 x 4 Output: 2 x 2

Dot product 
between input 
and filter

Convolution with stride > 1 is “Learnable Downsampling”
Can we use stride < 1 for “Learnable Upsampling”?



Justin Johnson Fall 2019

Learnable Upsampling: Transposed Convolution

Lecture 16 - 39

Output: 4 x 4Input: 2 x 2

3 x 3 convolution transpose, stride 2
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Learnable Upsampling: Transposed Convolution

Lecture 16 - 40

Input: 2 x 2

Weight filter by 
input value and 
copy to output

3 x 3 convolution transpose, stride 2

Output: 4 x 4



Justin Johnson Fall 2019

Learnable Upsampling: Transposed Convolution

Lecture 16 - 41

3 x 3 convolution transpose, stride 2

Input: 2 x 2

Weight filter by 
input value and 
copy to output

Filter moves 2 pixels in output
for every 1 pixel in input

Output: 4 x 4
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Learnable Upsampling: Transposed Convolution

Lecture 16 - 42

3 x 3 convolution transpose, stride 2

Input: 2 x 2

Weight filter by 
input value and 
copy to output

Filter moves 2 pixels in output
for every 1 pixel in input

Sum where 
output overlaps

Output: 4 x 4



Justin Johnson Fall 2019

Learnable Upsampling: Transposed Convolution

Lecture 16 - 43

3 x 3 convolution transpose, stride 2

Input: 2 x 2

Weight filter by 
input value and 
copy to output

Output: 4 x 4

This gives 5x5 output – need to trim one 
pixel from top and left to give 4x4 output

Sum where 
output overlaps
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Transposed Convolution: 1D example

Lecture 16 - 44

a
b

x
y
z

ax
ay
az+bx

by
bz

Input Filter Output
Output has copies of 
filter weighted by input

Stride 2: Move 2 pixels 
output for each pixel in 
input

Sum at overlaps
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Transposed Convolution: 1D example

Lecture 16 - 45

a
b

x
y
z

ax
ay
az+bx

by
bz

Input Filter Output This has many names:

- Deconvolution (bad)!
- Upconvolution
- Fractionally strided
convolution
- Backward strided
convolution
- Transposed Convolution

(best name)



Justin Johnson Fall 2019

Convolution as Matrix Multiplication (1D Example)

Lecture 16 - 46

We can express convolution in 
terms of a matrix multiplication 

Example: 1D conv, kernel 
size=3, stride=1, padding=1



Justin Johnson Fall 2019

Convolution as Matrix Multiplication (1D Example)

Lecture 16 - 47

We can express convolution in 
terms of a matrix multiplication 

Example: 1D conv, kernel 
size=3, stride=1, padding=1

Transposed convolution multiplies by 
the transpose of the same matrix: 

When stride=1, transposed conv is just a 
regular conv (with different padding rules)
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Convolution as Matrix Multiplication (1D Example)

Lecture 16 - 48

We can express convolution in 
terms of a matrix multiplication 

Transposed convolution multiplies by 
the transpose of the same matrix: 

Example: 1D conv, kernel 
size=3, stride=2, padding=1



Justin Johnson Fall 2019

Convolution as Matrix Multiplication (1D Example)

Lecture 16 - 49

We can express convolution in 
terms of a matrix multiplication 

Transposed convolution multiplies by 
the transpose of the same matrix: 

Example: 1D conv, kernel 
size=3, stride=2, padding=1

When stride>1, transposed convolution 
cannot be expressed as normal conv



Justin Johnson Fall 2019Lecture 16 - 50

Semantic Segmentation: Fully Convolutional Network
Design network as a bunch of convolutional layers, with 
downsampling and upsampling inside the network!

High-res:
D1 x H/2 x W/2

High-res:
D1 x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Input:
3 x H x W Predictions:

H x W

Downsampling:
Pooling, strided
convolution

Upsampling:
Iinterpolation, 
transposed conv

Loss function: Per-Pixel cross-entropy



U-Nets

• Skip connections between
encoding and decoding stages

• Widely used in image denoising,
inpainting, flow, stereo, …

Richard Szeliski UW CSE 576 - Segmentation and Detection 51



Feature Pyramid Network

Lin et al. Feature Pyramid Networks for Object Detection. CVPR 2017.

Top-down enrichment of high-res features –
fast, less suboptimal



No Compromise on Feature Quality, Still Fast

Low resolution,
Strong features

High resolution,
Strong features

Lin et al. Feature Pyramid Networks for Object Detection. CVPR 2017. See also: Shrivastava’s TDM.

FPN pyramid



UPerNet: FPN + fusion

Richard Szeliski UW CSE 576 - Segmentation and Detection 54



Application: monocular depth estimation

VPLNet: Deep Single View Normal Estimation with Vanishing Points and Lines
accepted to CVPR’2020

Richard Szeliski UW CSE 576 - Segmentation and Detection 55



Segmentation and detection

• Adversarial examples
• Bottlenecks and U-Nets
• Segmentation
• Face detection
• Object detection

UW CSE 576 - Segmentation and Detection 56Richard Szeliski
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Classic face detection

Can you find the one false positive?

Richard Szeliski UW CSE 576 - Segmentation and Detection 57



CSE 576, Spring 2008 Face Recognition and Detection 58

Face Recognition and Detection

The “Margaret Thatcher Illusion”, by Peter Thompson

Computer Vision
CSE576, Spring 2008

Richard Szeliski



Robust real-time face detection

Paul A. Viola and Michael J. Jones
Intl. J. Computer Vision
57(2), 137–154, 2004

(originally in CVPR’2001)
(slides adapted from Bill Freeman, MIT 6.869, April 2005)
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Scan classifier over locs. & scales
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Learn classifier from data

• Training Data
• 5000 faces (frontal)
• 108 non faces
• Faces are normalized
• Scale, translation

• Many variations
• Across individuals
• Illumination
• Pose (rotation both in plane and out)
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Characteristics of algorithm

• Feature set (…is huge about 16M features)
• Efficient feature selection using AdaBoost
• New image representation: Integral Image 
• Cascaded Classifier for rapid detection

ØFastest known face detector for gray scale images (2001)
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Image features

• “Rectangle filters”
• Similar to Haar wavelets 

• Differences between 
sums of pixels in
adjacent rectangles
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Constructing the classifier

• Perceptron yields a sufficiently powerful classifier

• Use AdaBoost to efficiently choose best features
• add a new hi(x) at each round
• each hi(xk) is a “decision stump” b=Ew(y [x> q])

a=Ew(y [x< q])
x

hi(x)

q
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Good reference on boosting

• Friedman, J., Hastie, T. and Tibshirani, R. Additive Logistic Regression: 
a Statistical View of Boosting

http://www-stat.stanford.edu/~hastie/Papers/boost.ps

• “We show that boosting fits an additive logistic regression model by stagewise 
optimization of a criterion very similar to the log-likelihood, and present likelihood 
based alternatives. We also propose a multi-logit boosting procedure which 
appears to have advantages over other methods proposed so far.”

http://www-stat.stanford.edu/~hastie/Papers/boost.ps


Handling Imbalance with Cascades

𝑤!

𝑤"

𝑤#

Stage 1 Stage 2 Final Stage

… balanced problemeliminate easy background step-by-step, leading to a …

(slide courtesy of Ross Girshick)
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Trading speed for accuracy

• Given a nested set of classifier hypothesis classes

• Computational Risk Minimization 
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Sample results



CSE 576, Spring 2008 Face Recognition and Detection 73

Summary (Viola-Jones)

• Fastest known face detector for gray images
• Three contributions with broad applicability:

§ Cascaded classifier yields rapid classification
§ AdaBoost as an extremely efficient feature selector
§ Rectangle Features + Integral Image can be used for rapid image 

analysis



Modern face detectors

• Now all use DNNs

Richard Szeliski UW CSE 576 - Segmentation and Detection 76



Modern face detectors

• Now all use DNNs
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Modern face detectors

Richard Szeliski UW CSE 576 - Segmentation and Detection 78



WIDER FACE benchmark

Richard Szeliski UW CSE 576 - Segmentation and Detection 79



Segmentation and detection

• Adversarial examples
• Bottlenecks and U-Nets
• Segmentation
• Face detection
• Object detection

UW CSE 576 - Segmentation and Detection 80Richard Szeliski
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Justin Johnson Fall 2019

Lecture 15: 
Object Detection



Justin Johnson Fall 2019

Today: Object Detection

Lecture 15 - 83

Classification Semantic
Segmentation

Object 
Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectsNo objects, just pixels
This image is CC0 public domain

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Justin Johnson Fall 2019

Object Detection: Task Definition

Lecture 15 - 84

Input: Single RGB Image

Output: A set of detected objects;
For each object predict:

1. Category label (from fixed, 
known set of categories)

2. Bounding box (four numbers: 
x, y, width, height)



Justin Johnson Fall 2019

Object Detection: Challenges

Lecture 15 - 85

- Multiple outputs: Need to output 
variable numbers of objects per image

- Multiple types of output: Need to 
predict ”what” (category label) as well 
as “where” (bounding box)

- Large images: Classification works at 
224x224; need higher resolution for 
detection, often ~800x600
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Detecting a single object

Lecture 15 - 86

Vector:
4096

This image is CC0 public domain

https://pixabay.com/p-1246693/%3Fno_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Detecting a single object

Lecture 15 - 87

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

Vector:
4096

Fully
Connected:

4096 to 1000

Softmax
Loss

Correct label:
Cat

This image is CC0 public domain

“What”

https://pixabay.com/p-1246693/%3Fno_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Detecting a single object

Lecture 15 - 88

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

Vector:
4096

Fully
Connected:

4096 to 1000

Box 
Coordinates
(x, y, w, h)

Fully
Connected:
4096 to 4

Softmax
Loss

L2 Loss

Correct label:
Cat

Correct box:
(x’, y’, w’, h’)

This image is CC0 public domain

“Where”

“What”

Treat localization as a 
regression problem!

https://pixabay.com/p-1246693/%3Fno_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Detecting a single object

Lecture 15 - 89

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

Vector:
4096

Fully
Connected:

4096 to 1000

Box 
Coordinates
(x, y, w, h)

Fully
Connected:
4096 to 4

Softmax
Loss

L2 Loss

Loss

Correct label:
Cat

Correct box:
(x’, y’, w’, h’)

Weighted 
Sum

This image is CC0 public domain

“Where”

“What”

Treat localization as a 
regression problem!

https://pixabay.com/p-1246693/%3Fno_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Detecting a single object

Lecture 15 - 90

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

Vector:
4096

Fully
Connected:

4096 to 1000

Box 
Coordinates
(x, y, w, h)

Fully
Connected:
4096 to 4

Softmax
Loss

L2 Loss

Loss

Correct label:
Cat

Correct box:
(x’, y’, w’, h’)

Weighted 
Sum

This image is CC0 public domain

Multitask 
Loss

“Where”

“What”

Treat localization as a 
regression problem!

https://pixabay.com/p-1246693/%3Fno_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Detecting a single object

Lecture 15 - 91

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

Vector:
4096

Fully
Connected:

4096 to 1000

Box 
Coordinates
(x, y, w, h)

Fully
Connected:
4096 to 4

Softmax
Loss

L2 Loss

Loss

Correct label:
Cat

Correct box:
(x’, y’, w’, h’)

Weighted 
Sum

This image is CC0 public domain

Multitask 
Loss

Often pretrained
on ImageNet
(Transfer learning)

“Where”

“What”

Treat localization as a 
regression problem!

https://pixabay.com/p-1246693/%3Fno_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Detecting a single object

Lecture 15 - 92

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

Vector:
4096

Fully
Connected:

4096 to 1000

Box 
Coordinates
(x, y, w, h)

Fully
Connected:
4096 to 4

Softmax
Loss

L2 Loss

Loss

Correct label:
Cat

Correct box:
(x’, y’, w’, h’)

Weighted 
Sum

This image is CC0 public domain

Multitask 
Loss

Often pretrained
on ImageNet
(Transfer learning)

“Where”

“What”

Problem: Images can have 
more than one object!

Treat localization as a 
regression problem!

https://pixabay.com/p-1246693/%3Fno_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Detecting Multiple Objects

Lecture 15 - 93

CAT: (x, y, w, h)

DOG: (x, y, w, h)
DOG: (x, y, w, h)
CAT: (x, y, w, h)

DUCK: (x, y, w, h)
DUCK: (x, y, w, h)
….

4 numbers

16 numbers

Many 
numbers!

Duck image is free to use under the Pixabay license

Need different numbers 
of outputs per image

https://pixabay.com/photos/duckling-duck-waterbird-chick-3456779/
https://pixabay.com/service/license/


Justin Johnson Fall 2019

Detecting Multiple Objects: Sliding Window

Lecture 15 - 94

Dog? NO
Cat? NO
Background? YES

Apply a CNN to many different 
crops of the image, CNN classifies 
each crop as object or background
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Detecting Multiple Objects: Sliding Window

Lecture 15 - 95

Dog? YES
Cat? NO
Background? NO

Apply a CNN to many different 
crops of the image, CNN classifies 
each crop as object or background
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Detecting Multiple Objects: Sliding Window

Lecture 15 - 96

Dog? YES
Cat? NO
Background? NO

Apply a CNN to many different 
crops of the image, CNN classifies 
each crop as object or background
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Detecting Multiple Objects: Sliding Window

Lecture 15 - 97

Dog? NO
Cat? YES
Background? NO

Apply a CNN to many different 
crops of the image, CNN classifies 
each crop as object or background
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Detecting Multiple Objects: Sliding Window

Lecture 15 - 98

Apply a CNN to many different 
crops of the image, CNN classifies 
each crop as object or background

Question: How many possible boxes 
are there in an image of size H x W?
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Detecting Multiple Objects: Sliding Window

Lecture 15 - 101

Apply a CNN to many different 
crops of the image, CNN classifies 
each crop as object or background

Question: How many possible boxes 
are there in an image of size H x W?

Consider a box of size h x w:
Possible x positions: W – w + 1
Possible y positions: H – h + 1
Possible positions: 
(W – w + 1) * (H – h + 1)

Total possible boxes:

!
!"#

$

!
%"#

&

(𝑊 − 𝑤 + 1)(𝐻 − ℎ + 1)

=
𝐻(𝐻 + 1)

2
𝑊(𝑊 + 1)

2

800 x 600 image 
has ~58M boxes! 
No way we can 
evaluate them all
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Region Proposals

Lecture 15 - 102

Alexe et al, “Measuring the objectness of image windows”, TPAMI 2012
Uijlings et al, “Selective Search for Object Recognition”, IJCV 2013
Cheng et al, “BING: Binarized normed gradients for objectness estimation at 300fps”, CVPR 2014
Zitnick and Dollar, “Edge boxes: Locating object proposals from edges”, ECCV 2014

● Find a small set of boxes that are likely to cover all objects
● Often based on heuristics: e.g. look for “blob-like” image regions
● Relatively fast to run; e.g. Selective Search gives 2000 region 

proposals in a few seconds on CPU
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R-CNN: Region-Based CNN

Lecture 15 - 103

Input 
image

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0
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R-CNN: Region-Based CNN

Lecture 15 - 104

Input 
image

Regions of 
Interest (RoI) 
from a proposal 
method (~2k) Girshick et al, “Rich feature hierarchies for accurate object detection and 

semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0
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R-CNN: Region-Based CNN

Lecture 15 - 105

Input 
image

Warped image 
regions (224x224)

Regions of 
Interest (RoI) 
from a proposal 
method (~2k) Girshick et al, “Rich feature hierarchies for accurate object detection and 

semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0
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R-CNN: Region-Based CNN

Lecture 15 - 106

Input 
image

Conv
Net

Conv
Net

Conv
Net Warped image 

regions (224x224)

Regions of 
Interest (RoI) 
from a proposal 
method (~2k)

Forward each 
region through 
ConvNet

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0
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R-CNN: Region-Based CNN

Lecture 15 - 107

Input 
image

Conv
Net

Conv
Net

Conv
Net

Class

Class
Class

Warped image 
regions (224x224)

Regions of 
Interest (RoI) 
from a proposal 
method (~2k)

Forward each 
region through 
ConvNet

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Classify each region

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0
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R-CNN: Region-Based CNN

Lecture 15 - 108

Input 
image

Conv
Net

Conv
Net

Conv
Net

Class

Class
Class

Warped image 
regions (224x224)

Regions of 
Interest (RoI) 
from a proposal 
method (~2k)

Forward each 
region through 
ConvNet

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Classify each region

Bbox
Bounding box regression:
Predict “transform” to correct the 
RoI: 4 numbers (tx, ty, th, tw)Bbox

Bbox

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0
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R-CNN: Region-Based CNN

Lecture 15 - 109

Input 
image

Conv
Net

Conv
Net

Conv
Net

Class

Class
Class

Warped image 
regions (224x224)

Regions of 
Interest (RoI) 
from a proposal 
method (~2k)

Forward each 
region through 
ConvNet

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Classify each region

Bbox
Bounding box regression:
Predict “transform” to correct the 
RoI: 4 numbers (tx, ty, th, tw)Bbox

Bbox
Region proposal: (px, py, ph, pw)
Transform: (tx, ty, th, tw)
Output box: (bx, by, bh, bw)

Translate relative to box size:
bx = px + pwtx by = py + phty

Log-space scale transform:
bw = pwexp(tw)     bh = phexp(th)

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0
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R-CNN: Test-time

Lecture 15 - 110

Input 
image

Conv
Net

Conv
Net

Conv
Net

Class

Class
Class

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Bbox
Bbox

Bbox

Input: Single RGB Image

1. Run region proposal method to 
compute ~2000 region proposals

2. Resize each region to 224x224 and run 
independently through CNN to predict 
class scores and bbox transform

3. Use scores to select a subset of region 
proposals to output 
(Many choices here: threshold on 
background, or per-category? Or take 
top K proposals per image?)

4. Compare with ground-truth boxes

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0
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Comparing Boxes: Intersection over Union (IoU)

Lecture 15 - 111

Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson.

Our Prediction

Ground 
Truth

How can we compare our 
prediction to the ground-truth box?

https://commons.wikimedia.org/wiki/File:The_Puppy.jpg
https://creativecommons.org/licenses/by/2.0/deed.en
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Comparing Boxes: Intersection over Union (IoU)

Lecture 15 - 112

Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson.

Our Prediction

Ground 
Truth

How can we compare our 
prediction to the ground-truth box?

Intersection over Union (IoU)
(Also called “Jaccard similarity” or 
“Jaccard index”):

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏
𝑨𝒓𝒆𝒂 𝒐𝒇 𝑼𝒏𝒊𝒐𝒏

https://commons.wikimedia.org/wiki/File:The_Puppy.jpg
https://creativecommons.org/licenses/by/2.0/deed.en
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Comparing Boxes: Intersection over Union (IoU)

Lecture 15 - 113

Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson.

Our Prediction

Ground 
Truth

How can we compare our 
prediction to the ground-truth box?

Intersection over Union (IoU)
(Also called “Jaccard similarity” or 
“Jaccard index”):

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏
𝑨𝒓𝒆𝒂 𝒐𝒇 𝑼𝒏𝒊𝒐𝒏

IoU = 0.54

IoU > 0.5 is “decent”

https://commons.wikimedia.org/wiki/File:The_Puppy.jpg
https://creativecommons.org/licenses/by/2.0/deed.en
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Comparing Boxes: Intersection over Union (IoU)

Lecture 15 - 114

Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson.

Our Prediction

Ground 
Truth

How can we compare our 
prediction to the ground-truth box?

Intersection over Union (IoU)
(Also called “Jaccard similarity” or 
“Jaccard index”):

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏
𝑨𝒓𝒆𝒂 𝒐𝒇 𝑼𝒏𝒊𝒐𝒏

IoU = 0.71

IoU > 0.5 is “decent”,
IoU > 0.7 is “pretty good”,

https://commons.wikimedia.org/wiki/File:The_Puppy.jpg
https://creativecommons.org/licenses/by/2.0/deed.en
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Comparing Boxes: Intersection over Union (IoU)

Lecture 15 - 115

Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson.

Our Prediction

Ground 
Truth

How can we compare our 
prediction to the ground-truth box?

Intersection over Union (IoU)
(Also called “Jaccard similarity” or 
“Jaccard index”):

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏
𝑨𝒓𝒆𝒂 𝒐𝒇 𝑼𝒏𝒊𝒐𝒏

IoU = 0.91

IoU > 0.5 is “decent”,
IoU > 0.7 is “pretty good”,
IoU > 0.9 is “almost perfect”

https://commons.wikimedia.org/wiki/File:The_Puppy.jpg
https://creativecommons.org/licenses/by/2.0/deed.en
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Overlapping Boxes

Lecture 15 - 116

P(dog) = 0.9
Problem: Object detectors often 
output many overlapping detections:

P(dog) = 0.8

P(dog) = 0.75

P(dog) = 0.7

Puppy image is CC0 Public Domain

https://commons.wikimedia.org/wiki/File:The_Puppy.jpg
https://pxhere.com/en/photo/652302
https://creativecommons.org/publicdomain/zero/1.0/
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Overlapping Boxes: Non-Max Suppression (NMS)

Lecture 15 - 117

P(dog) = 0.9
Problem: Object detectors often 
output many overlapping detections:

Solution: Post-process raw 
detections using Non-Max 
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes 

with IoU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

P(dog) = 0.8

P(dog) = 0.75

P(dog) = 0.7

Puppy image is CC0 Public Domain

https://commons.wikimedia.org/wiki/File:The_Puppy.jpg
https://pxhere.com/en/photo/652302
https://creativecommons.org/publicdomain/zero/1.0/
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Overlapping Boxes: Non-Max Suppression (NMS)

Lecture 15 - 118

P(dog) = 0.9
Problem: Object detectors often 
output many overlapping detections:

Solution: Post-process raw 
detections using Non-Max 
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes 

with IoU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

P(dog) = 0.8

P(dog) = 0.75

P(dog) = 0.7

IoU(■, ■) = 0.78
IoU(■, ■) = 0.05
IoU(■, ■) = 0.07

Puppy image is CC0 Public Domain

https://commons.wikimedia.org/wiki/File:The_Puppy.jpg
https://pxhere.com/en/photo/652302
https://creativecommons.org/publicdomain/zero/1.0/
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Overlapping Boxes: Non-Max Suppression (NMS)

Lecture 15 - 119

Problem: Object detectors often 
output many overlapping detections:

Solution: Post-process raw 
detections using Non-Max 
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes 

with IoU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

P(dog) = 0.75

P(dog) = 0.7

IoU(■, ■) = 0.74

P(dog) = 0.9

Puppy image is CC0 Public Domain

https://commons.wikimedia.org/wiki/File:The_Puppy.jpg
https://pxhere.com/en/photo/652302
https://creativecommons.org/publicdomain/zero/1.0/
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Overlapping Boxes: Non-Max Suppression (NMS)

Lecture 15 - 120

Puppy image is CC0 Public Domain

Problem: Object detectors often 
output many overlapping detections:

Solution: Post-process raw 
detections using Non-Max 
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes 

with IoU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

P(dog) = 0.75P(dog) = 0.9

https://commons.wikimedia.org/wiki/File:The_Puppy.jpg
https://pxhere.com/en/photo/652302
https://creativecommons.org/publicdomain/zero/1.0/
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Overlapping Boxes: Non-Max Suppression (NMS)

Lecture 15 - 121

Crowd image is free for commercial use under the Pixabay license

Problem: Object detectors often 
output many overlapping detections:

Solution: Post-process raw 
detections using Non-Max 
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes 

with IoU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

Problem: NMS may eliminate ”good” 
boxes when objects are highly 
overlapping… no good solution =(

https://pixabay.com/photos/audience-crowd-people-persons-828584/
https://pixabay.com/service/license/
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

Lecture 15 - 122

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

Lecture 15 - 123

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

0.5
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

Lecture 15 - 124

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

Match: IoU > 0.5

0.5
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

Lecture 15 - 125

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

Match: IoU > 0.5

Precision = 1/1 = 1.0
Recall = 1/3 = 0.33

0.5

Pr
ec

isi
on

Recall 1.0
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

Lecture 15 - 126

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

Match: IoU > 0.5

Precision = 2/2 = 1.0
Recall = 2/3 = 0.67

0.5

Pr
ec

isi
on

Recall 1.0
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

Lecture 15 - 127

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

No match > 0.5 IoU with GT

Precision = 2/3 = 0.67
Recall = 2/3 = 0.67

0.5

Pr
ec

isi
on

Recall 1.0
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

Lecture 15 - 128

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

No match > 0.5 IoU with GT

Precision = 2/4 = 0.5
Recall = 2/3 = 0.67

0.5

Pr
ec

isi
on

Recall 1.0
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

Lecture 15 - 129

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

Match: > 0.5 IoU

Precision = 3/5 = 0.6
Recall = 3/3 = 1.0

0.5

Pr
ec

isi
on

Recall 1.0
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

Lecture 15 - 130

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

2. Average Precision (AP) = area under PR curve

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

0.5

Pr
ec

isi
on

Recall 1.0

Dog AP = 0.86
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

Lecture 15 - 131

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

2. Average Precision (AP) = area under PR curve

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

0.5

Pr
ec

isi
on

Recall 1.0

Dog AP = 0.86
How to get AP = 1.0: Hit all GT 
boxes with IoU > 0.5, and have no 
“false positive” detections ranked 
above any “true positives”
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

Lecture 15 - 132

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

2. Average Precision (AP) = area under PR curve
3. Mean Average Precision (mAP) = average of AP for 

each category

Dog AP = 0.86
Cat AP = 0.80
Car AP = 0.65

mAP@0.5 = 0.77
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

Lecture 15 - 133

mAP@0.5 = 0.77
mAP@0.55 = 0.71
mAP@0.60 = 0.65
…
mAP@0.95 = 0.2

COCO mAP = 0.4

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

2. Average Precision (AP) = area under PR curve
3. Mean Average Precision (mAP) = average of AP for 

each category
4. For “COCO mAP”: Compute mAP@thresh for each IoU

threshold (0.5, 0.55, 0.6, …, 0.95) and take average
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R-CNN: Region-Based CNN

Lecture 15 - 134

Input 
image

Conv
Net

Conv
Net

Conv
Net

Class

Class
Class

Warped image 
regions (224x224)

Regions of 
Interest (RoI) 
from a proposal 
method (~2k)

Forward each 
region through 
ConvNet

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Classify each region

Bbox
Bounding box regression:
Predict “transform” to correct the 
RoI: 4 numbers (tx, ty, th, tw)Bbox

Bbox

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0
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R-CNN: Region-Based CNN

Lecture 15 - 135

Input 
image

Conv
Net

Conv
Net

Conv
Net

Class

Class
Class

Warped image 
regions (224x224)

Regions of 
Interest (RoI) 
from a proposal 
method (~2k)

Forward each 
region through 
ConvNet

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Classify each region

Bbox
Bounding box regression:
Predict “transform” to correct the 
RoI: 4 numbers (tx, ty, th, tw)Bbox

Bbox
Problem: Very slow! 
Need to do ~2k forward 
passes for each image!

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0
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R-CNN: Region-Based CNN

Lecture 15 - 136

Input 
image

Conv
Net

Conv
Net

Conv
Net

Class

Class
Class

Warped image 
regions (224x224)

Regions of 
Interest (RoI) 
from a proposal 
method (~2k)

Forward each 
region through 
ConvNet

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Classify each region

Bbox
Bounding box regression:
Predict “transform” to correct the 
RoI: 4 numbers (tx, ty, th, tw)Bbox

Bbox
Problem: Very slow! 
Need to do ~2k forward 
passes for each image!

Solution: Run CNN 
*before* warping!

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0
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Input	
image

Conv
Net

Conv
Net

Conv
Net

Class
Class

ClassBbox
Bbox

Bbox

“Slow” R-CNN
Process each region 

independently
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Fast R-CNN

Lecture 15 - 138

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class
Class

ClassBbox
Bbox

Bbox

“Slow” R-CNN
Process each region 

independently

Input image
Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0
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Fast R-CNN

Lecture 15 - 139

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class
Class

ClassBbox
Bbox

Bbox

“Slow” R-CNN
Process each region 

independently

ConvNet

Input image

Run whole image
through ConvNet

Image features

“Backbone” 
network: 
AlexNet, VGG, 
ResNet, etc

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0
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Fast R-CNN

Lecture 15 - 140

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class
Class

ClassBbox
Bbox

Bbox

“Slow” R-CNN
Process each region 

independently

ConvNet

Input image

Run whole image
through ConvNet

Image features

“Backbone” 
network: 
AlexNet, VGG, 
ResNet, etc

Regions of
Interest (RoIs)
from a proposal
method

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0
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Fast R-CNN

Lecture 15 - 141

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class
Class

ClassBbox
Bbox

Bbox

“Slow” R-CNN
Process each region 

independently

ConvNet

Input image

Run whole image
through ConvNet

Image features

Crop + Resize features

“Backbone” 
network: 
AlexNet, VGG, 
ResNet, etc

Regions of
Interest (RoIs)
from a proposal
method

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0
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Fast R-CNN

Lecture 15 - 142

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class
Class

ClassBbox
Bbox

Bbox

“Slow” R-CNN
Process each region 

independently

ConvNet

Input image

Run whole image
through ConvNet

Image features

Crop + Resize features

Per-Region Network

“Backbone” 
network: 
AlexNet, VGG, 
ResNet, etc

Regions of
Interest (RoIs)
from a proposal
method

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

CN
N

CN
N

CN
N

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0
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Fast R-CNN

Lecture 15 - 143

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class
Class

ClassBbox
Bbox

Bbox

“Slow” R-CNN
Process each region 

independently

ConvNet

Input image

Run whole image
through ConvNet

Image features

Crop + Resize features

Per-Region Network

“Backbone” 
network: 
AlexNet, VGG, 
ResNet, etc

Regions of
Interest (RoIs)
from a proposal
method

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

CN
N

CN
N

CN
N

Bbox

Class

Bbox

Class

Bbox

Class

Category and box 
transform per region

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0
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Fast R-CNN

Lecture 15 - 144

ConvNet

Input image

Run whole image
through ConvNet

Image features

Crop + Resize features

Per-Region Network

“Backbone” 
network: 
AlexNet, VGG, 
ResNet, etc

Regions of
Interest (RoIs)
from a proposal
method

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

CN
N

CN
N

CN
N

Bbox

Class

Bbox

Class

Bbox

Class

Category and box 
transform per region

Most of the computation 
happens in backbone 
network; this saves work for 
overlapping region proposals

Per-Region network is 
relatively lightweight

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0
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Fast R-CNN

Lecture 15 - 145

ConvNet

Input image

Run whole image
through ConvNet

Image features

Crop + Resize features

Per-Region Network

“Backbone” 
network: 
AlexNet, VGG, 
ResNet, etc

Regions of
Interest (RoIs)
from a proposal
method

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

CN
N

CN
N

CN
N

Bbox

Class

Bbox

Class

Bbox

Class

Category and box 
transform per region Example:

When using 
AlexNet for 
detection, five 
conv layers are 
used for 
backbone and 
two FC layers are 
used for per-
region network

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0
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Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

..

.

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

PoolFast R-CNN

Lecture 15 - 146

ConvNet

Input image

Run whole image
through ConvNet

Image features

Crop + Resize features

Per-Region Network

“Backbone” 
network: 
AlexNet, VGG, 
ResNet, etc

Regions of
Interest (RoIs)
from a proposal
method

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

CN
N

CN
N

CN
N

Bbox

Class

Bbox

Class

Bbox

Class

Category and box 
transform per region Example:

For ResNet, last 
stage is used as 
per-region 
network; the rest 
of the network is 
used as backbone

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0
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Fast R-CNN

Lecture 15 - 147

ConvNet

Input image

Run whole image
through ConvNet

Image features

Crop + Resize features

Per-Region Network

“Backbone” 
network: 
AlexNet, VGG, 
ResNet, etc

Regions of
Interest (RoIs)
from a proposal
method

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

CN
N

CN
N

CN
N

Bbox

Class

Bbox

Class

Bbox

Class

Category and box 
transform per region

How to crop 
features?

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf%3Fdl=0
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Cropping Features: RoI Pool

Lecture 15 - 148

Input Image
(e.g. 3 x 640 x 480)

Girshick, “Fast R-CNN”, ICCV 2015.
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Cropping Features: RoI Pool

Lecture 15 - 149

Input Image
(e.g. 3 x 640 x 480)

CNN

Girshick, “Fast R-CNN”, ICCV 2015.

Image features
(e.g. 512 x 20 x 15)
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Cropping Features: RoI Pool

Lecture 15 - 150

Input Image
(e.g. 3 x 640 x 480)

CNN

Girshick, “Fast R-CNN”, ICCV 2015.

Image features
(e.g. 512 x 20 x 15)

Project proposal 
onto features
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Cropping Features: RoI Pool

Lecture 15 - 151

Input Image
(e.g. 3 x 640 x 480)

CNN

Girshick, “Fast R-CNN”, ICCV 2015.

Image features
(e.g. 512 x 20 x 15)

Project proposal 
onto features

“Snap” to 
grid cells
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Cropping Features: RoI Pool

Lecture 15 - 152

Input Image
(e.g. 3 x 640 x 480)

CNN

Girshick, “Fast R-CNN”, ICCV 2015.

Image features
(e.g. 512 x 20 x 15)

Project proposal 
onto features

“Snap” to 
grid cells

Divide into 2x2 
grid of (roughly) 
equal subregions
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Cropping Features: RoI Pool

Lecture 15 - 153

Input Image
(e.g. 3 x 640 x 480)

CNN

Girshick, “Fast R-CNN”, ICCV 2015.

Image features
(e.g. 512 x 20 x 15)

Project proposal 
onto features

“Snap” to 
grid cells

Divide into 2x2 
grid of (roughly) 
equal subregions

Max-pool within 
each subregion

Region features
(here 512 x 2 x 2;

In practice e.g 512 x 7 x 7)

Region features always the 
same size even if input 

regions have different sizes!
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Cropping Features: RoI Pool

Lecture 15 - 154

Input Image
(e.g. 3 x 640 x 480)

CNN

Girshick, “Fast R-CNN”, ICCV 2015.

Image features
(e.g. 512 x 20 x 15)

Project proposal 
onto features

“Snap” to 
grid cells

Divide into 2x2 
grid of (roughly) 
equal subregions

Max-pool within 
each subregion

Region features
(here 512 x 2 x 2;

In practice e.g 512 x 7 x 7)

Region features always the 
same size even if input 

regions have different sizes!
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Cropping Features: RoI Pool

Lecture 15 - 155

Input Image
(e.g. 3 x 640 x 480)

CNN

Girshick, “Fast R-CNN”, ICCV 2015.

Image features
(e.g. 512 x 20 x 15)

Project proposal 
onto features

“Snap” to 
grid cells

Divide into 2x2 
grid of (roughly) 
equal subregions

Max-pool within 
each subregion

Region features
(here 512 x 2 x 2;

In practice e.g 512 x 7 x 7)

Region features always the 
same size even if input 

regions have different sizes!
Problem: Slight misalignment due to 
snapping; different-sized subregions is weird
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Cropping Features: RoI Align

Lecture 15 - 156

Input Image
(e.g. 3 x 640 x 480)

CNN

Image features
(e.g. 512 x 20 x 15)

Project proposal 
onto features

He et al, “Mask R-CNN”, ICCV 2017

No “snapping”!

Divide into equal-sized subregions
(may not be aligned to grid!)
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Cropping Features: RoI Align

Lecture 15 - 157

Input Image
(e.g. 3 x 640 x 480)

CNN

Image features
(e.g. 512 x 20 x 15)

Project proposal 
onto features

He et al, “Mask R-CNN”, ICCV 2017

No “snapping”!

Divide into equal-sized subregions
(may not be aligned to grid!)

Sample features at 
regularly-spaced points 
in each subregion using 
bilinear interpolation
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Cropping Features: RoI Align

Lecture 15 - 166

Input Image
(e.g. 3 x 640 x 480)

CNN

Image features
(e.g. 512 x 20 x 15)

Project proposal 
onto features

He et al, “Mask R-CNN”, ICCV 2017

No “snapping”!

Divide into equal-sized subregions
(may not be aligned to grid!)

Sample features at 
regularly-spaced points 
in each subregion using 
bilinear interpolation

After sampling, max-
pool in each subregion

Region features
(here 512 x 2 x 2;

In practice e.g 512 x 7 x 7)
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Fast R-CNN vs “Slow” R-CNN

Lecture 15 - 167

ConvNet

Input	image

Run	whole	image
through	ConvNet

Image features
Crop	+	Resize	features

Per-Region Network

“Backbone”	
network:	
AlexNet,	VGG,	
ResNet,	etc

Regions	of
Interest	(RoIs)
from	a	proposal
method

CN
N

CN
N

CN
N

Bbox

Class

Bbox

Class

Bbox

Class
Category	and	box	
transform	per	region

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class
Class

Class

Warped	image	
regions	(224x224)

Regions	of	
Interest	(RoI)	
from	a	proposal	
method (~2k)

Forward	each	
region	through	
ConvNet

Bbox
Bbox

Bbox

Fast R-CNN: Apply differentiable 
cropping to shared image features

“Slow” R-CNN: Apply differentiable 
cropping to shared image features
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Fast R-CNN vs “Slow” R-CNN

Lecture 15 - 168

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “Fast R-CNN”, ICCV 2015
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Fast R-CNN vs “Slow” R-CNN

Lecture 15 - 169

Problem: Runtime 
dominated by 
region proposals!

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “Fast R-CNN”, ICCV 2015
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Fast R-CNN vs “Slow” R-CNN

Lecture 15 - 170

Problem: Runtime 
dominated by 
region proposals!

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “Fast R-CNN”, ICCV 2015

Recall: Region proposals computed by 
heuristic ”Selective Search” algorithm on 
CPU -- let’s learn them with a CNN instead!
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Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
Figure copyright 2015, Ross Girshick; reproduced with permission

Insert Region Proposal 
Network (RPN) to predict 
proposals from features

Otherwise same as Fast R-CNN: 
Crop features for each 
proposal, classify each one

Faster R-CNN: Learnable Region Proposals
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Region Proposal Network (RPN)

Lecture 15 - 172

CNN

Input Image
(e.g. 3 x 640 x 480) Image features

(e.g. 512 x 20 x 15)

Run backbone CNN to get 
features aligned to input image
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Region Proposal Network (RPN)

Lecture 15 - 173

CNN

Input Image
(e.g. 3 x 640 x 480) Image features

(e.g. 512 x 20 x 15)

Imagine an anchor box of 
fixed size at each point in 

the feature mapRun backbone CNN to get 
features aligned to input image
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Region Proposal Network (RPN)

Lecture 15 - 174

CNN

Input Image
(e.g. 3 x 640 x 480) Image features

(e.g. 512 x 20 x 15)

Imagine an anchor box of 
fixed size at each point in 

the feature mapRun backbone CNN to get 
features aligned to input image

At each point, predict whether 
the corresponding anchor 

contains an object (per-cell 
logistic regression, predict 

scores with conv layer)

Conv

Anchor is an 
object?

1 x 20 x 15
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Region Proposal Network (RPN)

Lecture 15 - 175

CNN

Input Image
(e.g. 3 x 640 x 480) Image features

(e.g. 512 x 20 x 15)

Imagine an anchor box of 
fixed size at each point in 

the feature mapRun backbone CNN to get 
features aligned to input image

Anchor is an 
object?

1 x 20 x 15

For positive boxes, also predict 
a box transform to regress 

from anchor box to object box

Conv
Box transforms

4 x 20 x 15
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Region Proposal Network (RPN)

Lecture 15 - 176

CNN

Input Image
(e.g. 3 x 640 x 480) Image features

(e.g. 512 x 20 x 15)

Problem: Anchor box may 
have the wrong size / shape

Solution: Use K different 
anchor boxes at each point!Run backbone CNN to get 

features aligned to input image

Anchor is an 
object?

K x 20 x 15

At test time: sort all 
K*20*15 boxes by their 

score, and take the top ~300 
as our region proposals

Conv
Box transforms

4K x 20 x 15



Justin Johnson Fall 2019Lecture 15 - 177

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
Figure copyright 2015, Ross Girshick; reproduced with permission

Jointly train with 4 losses:

1. RPN classification: anchor box is 
object / not an object

2. RPN regression: predict transform 
from anchor box to proposal box

3. Object classification: classify 
proposals as background / object 
class

4. Object regression: predict transform 
from proposal box to object box

Faster R-CNN: Learnable Region Proposals
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Faster R-CNN: Learnable Region Proposals
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Faster R-CNN: Learnable Region Proposals

Faster R-CNN is a 
Two-stage object detector

First stage: Run once per image
- Backbone network
- Region proposal network

Second stage: Run once per region
- Crop features: RoI pool / align
- Predict object class
- Prediction bbox offset
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Faster R-CNN: Learnable Region Proposals

Faster R-CNN is a 
Two-stage object detector

First stage: Run once per image
- Backbone network
- Region proposal network

Second stage: Run once per region
- Crop features: RoI pool / align
- Predict object class
- Prediction bbox offset

Question: Do we really 
need the second stage?
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Single-Stage Object Detection

Lecture 15 - 181

CNN

Input Image
(e.g. 3 x 640 x 480) Image features

(e.g. 512 x 20 x 15)

RPN: Classify each anchor as 
object / not object

Single-Stage Detector: Classify 
each object as one of C 

categories (or background)
Run backbone CNN to get 
features aligned to input image

Anchor category
(C+1) x K x 20 x 15

Conv
Box transforms

4K x 20 x 15

Remember: K anchors 
at each position in 
image feature map
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Single-Stage Object Detection

Lecture 15 - 182

CNN

Input Image
(e.g. 3 x 640 x 480) Image features

(e.g. 512 x 20 x 15)

RPN: Classify each anchor as 
object / not object

Single-Stage Detector: Classify 
each object as one of C 

categories (or background)
Run backbone CNN to get 
features aligned to input image

Anchor category
(C+1) x K x 20 x 15

Conv
Box transforms
C x 4K x 20 x 15

Sometimes use category-
specific regression: Predict 
different box transforms for 
each categoryRedmon et al, “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016

Liu et al, “SSD: Single-Shot MultiBox Detector”, ECCV 2016
Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017
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Object Detection: Lots of variables!

Lecture 15 - 183

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017
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Object Detection: Lots of variables!

Lecture 15 - 184

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017

Takeaways:
- Two stage method (Faster 

R-CNN) get the best 
accuracy, but are slower
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Object Detection: Lots of variables!

Lecture 15 - 185

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017

Takeaways:
- Two stage method (Faster 

R-CNN) get the best 
accuracy, but are slower

- Single-stage methods 
(SSD) are much faster, but 
don’t perform as well
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Object Detection: Lots of variables!

Lecture 15 - 186

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017

Takeaways:
- Two stage method (Faster 

R-CNN) get the best 
accuracy, but are slower

- Single-stage methods 
(SSD) are much faster, but 
don’t perform as well

- Bigger backbones improve 
performance, but are 
slower
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Object Detection: Lots of variables!

Lecture 15 - 187

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017

Takeaways:
- Two stage method (Faster 

R-CNN) get the best 
accuracy, but are slower

- Single-stage methods 
(SSD) are much faster, but 
don’t perform as well

- Bigger backbones improve 
performance, but are 
slower

- Diminishing returns for 
slower methods
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Object Detection: Lots of variables!

Lecture 15 - 188

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017

These results are a few years old … since 
then GPUs have gotten faster, and we’ve 
improved performance with many tricks:

Wu et al, Detectron2, GitHub 2019
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Object Detection: Lots of variables!

Lecture 15 - 189

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017

Faster R-CNN 
w/ResNet-101-FPN, 
longer training
(63ms, 42.0 mAP)

These results are a few years old … since 
then GPUs have gotten faster, and we’ve 
improved performance with many tricks:
- Train longer!
- Multiscale backbone: Feature Pyramid 

Networks

Wu et al, Detectron2, GitHub 2019
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Object Detection: Lots of variables!

Lecture 15 - 190

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017

Faster R-CNN 
w/ResNet-101-FPN, 
longer training
(63ms, 42.0 mAP)

Faster R-CNN 
w/ResNeXt-101-
FPN, longer training
(120ms, 43.0 mAP)

These results are a few years old … since 
then GPUs have gotten faster, and we’ve 
improved performance with many tricks:
- Train longer!
- Multiscale backbone: Feature Pyramid 

Networks
- Better backbone: ResNeXt

Wu et al, Detectron2, GitHub 2019
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Object Detection: Lots of variables!

Lecture 15 - 191

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017

RetinaNet (SSD-like) 
w/ResNet-101
(80ms, 39.9 mAP)

These results are a few years old … since 
then GPUs have gotten faster, and we’ve 
improved performance with many tricks:
- Train longer!
- Multiscale backbone: Feature Pyramid 

Networks
- Better backbone: ResNeXt
- Single-Stage methods have improved

Wu et al, Detectron2, GitHub 2019
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Object Detection: Lots of variables!

Lecture 15 - 192

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017

Mask R-CNN 
w/ResNeXt-152
(281 ms, 49.3 mAP)

These results are a few years old … since 
then GPUs have gotten faster, and we’ve 
improved performance with many tricks:
- Train longer!
- Multiscale backbone: Feature Pyramid 

Networks
- Better backbone: ResNeXt
- Single-Stage methods have improved
- Very big models work better

Wu et al, Detectron2, GitHub 2019
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Object Detection: Lots of variables!

Lecture 15 - 193

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017

These results are a few years old … since 
then GPUs have gotten faster, and we’ve 
improved performance with many tricks:
- Train longer!
- Multiscale backbone: Feature Pyramid 

Networks
- Better backbone: ResNeXt
- Single-Stage methods have improved
- Very big models work better
- Test-time augmentation pushes 

numbers up

Mask R-CNN 
w/ResNeXt-152
(281 ms, 49.3 mAP)

Mask R-CNN w/RexNeXt-152
+Test-time augmentation
(? ms, 51.4 mAP)

Wu et al, Detectron2, GitHub 2019
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Object Detection: Lots of variables!

Lecture 15 - 194

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017

These results are a few years old … since 
then GPUs have gotten faster, and we’ve 
improved performance with many tricks:
- Train longer!
- Multiscale backbone: Feature Pyramid 

Networks
- Better backbone: ResNeXt
- Single-Stage methods have improved
- Very big models work better
- Test-time augmentation pushes 

numbers up
- Big ensembles, more data, etc

Mask R-CNN 
w/ResNeXt-152
(281 ms, 49.3 mAP)

Current leaderboard 
winner: 55 mAP
Method ???
Runtime ???

https://competitions.codalab.org/competitions/20794#results

https://competitions.codalab.org/competitions/20794
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Object Detection: Open-Source Code

Lecture 15 - 195

Object detection is hard! Don’t implement it yourself

TensorFlow Detection API: 
https://github.com/tensorflow/models/tree/master/research/object_detection
Faster R-CNN, SSD, RFCN, Mask R-CNN

Detectron2 (PyTorch):
https://github.com/facebookresearch/detectron2
Fast / Faster / Mask R-CNN, RetinaNet

https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/facebookresearch/detectron2
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Summary

Lecture 15 - 196

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class
Class

Class

Warped	image	
regions	(224x224)

Regions	of	
Interest	(RoI)	
from	a	proposal	
method (~2k)

Forward	each	
region	through	
ConvNet

Bbox
Bbox

Bbox

Fast R-CNN: Apply 
differentiable 
cropping to shared 
image features

“Slow” R-CNN: Run 
CNN independently 
for each region

Faster R-CNN: 
Compute proposals 
with CNN

ConvNet

Input	image

Run	whole	image
through	ConvNet

Image features
Crop	+	Resize	features

Per-Region Network

“Backbone”	
network:	
AlexNet,	VGG,	
ResNet,	etc

Regions	of
Interest	(RoIs)
from	a	proposal
method

CN
N

CN
N

CN
N

Bbox

Class

Bbox

Class

Bbox

Class
Category	and	box	
transform	per	region

Single-Stage:
Fully convolutional 
detector
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15
19

29
36 39

49

Faster R-CNN
(VGG-16)

Late
2018

Early
2015

DPM
(Pre DL)

Fast R-CNN
(AlexNet)

Fast R-CNN
(VGG-16)

Faster R-CNN
(ResNet-50)

Faster R-CNN
(R-101-FPN)

Mask R-CNN
(X-152-FPN)

COCO Object Detection Average Precision (%)

Past
(best circa

2012)

Progress within
DL methods:
> 3x!

~4 years
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15
19

29
36 39

46

Faster R-CNN
(VGG-16)

Late
2017

Early
2015

DPM
(Pre DL)

Fast R-CNN
(AlexNet)

Fast R-CNN
(VGG-16)

Faster R-CNN
(ResNet-50)

Faster R-CNN
(R-101-FPN)

Mask R-CNN
(X-152-FPN)

COCO Object Detection Average Precision (%)

Past
(best circa

2012)

Progress within
DL methods:
Also 3x!

2.5 years
Building

a better
hammerModern object detection

is a complex web of related
methods



5

15
19

29
36 39

46

Faster R-CNN
(VGG-16)

DPM
(Pre DL)

Fast R-CNN
(AlexNet)

Fast R-CNN
(VGG-16)

Faster R-CNN
(ResNet-50)

Faster R-CNN
(R-101-FPN)

Mask R-CNN
(X-152-FPN)

Steady Progress on Boxes and Masks

Ø R-CNN [Girshick et al. 2014]

Ø SPP-net [He et al. 2014]

Ø Fast R-CNN [Girshick. 2015]

Ø Faster R-CNN [Ren et al. 2015]

Ø R-FCN [Dai et al. 2016]

Ø Feature Pyramid Networks + Faster R-CNN [Lin et al. 2017]

Ø Mask R-CNN [He et al. 2017]

Ø Training with Large Minibatches (MegDet) [Peng, Xiao, Li, et al. 2017]

Ø Cascade R-CNN [Cai & Vasconcelos 2018]
Ø …



Faster R-CNN with a Feature Pyramid Network

aeroplane? no.

..
person? yes.

tvmonitor? no.

warped region
..

CNN
aeroplane? no.

..
person? yes.

tvmonitor? no.

warped region
..

CNN

MLP

Softmax clf.

Box regressor

𝑓" = FPN(𝐼)

...𝐼:

Per-image computation Per-region computation for each 𝑟! ∈ 𝑟(𝐼)

RoIPool

Lin et al. Feature Pyramid Networks for Object Detection. CVPR 2017.

The whole-image feature representation
can be improved by making it multi-scale

RPN(𝑓")



FPN: Improving Scale Invariance and Equivariance

Fast!
(≈ SSD, …)

Detectors need to
1. Classify (invariance) and
2. Localize (equivariance)

objects over a wide range of scales

FPN improves this ability



Strategy 1: Image Pyramid

Standard solution – slow!
(E.g., Viola & Jones, HOG, DPM, SPP-net, 

multi-scale Fast R-CNN, …)



Strategy 2: Multi-scale Features (Single-scale 
Map)

Leave it all to the features – fast, suboptimal
(E.g., Fast/er R-CNN, YOLO, …)



Strategy 3: Naïve In-network Pyramid

Use the internal pyramid – fast, suboptimal
(E.g., ≈ SSD, …)



Strategy 3: Naïve In-network Pyramid

Use the internal pyramid – fast, suboptimal
(E.g., ≈ SSD, …)

Low resolution,
Strong features

High resolution,
Weak features



Strategy 4: Feature Pyramid Network

Lin et al. Feature Pyramid Networks for Object Detection. CVPR 2017.

Top-down enrichment of high-res features –
fast, less suboptimal



No Compromise on Feature Quality, Still Fast

Low resolution,
Strong features

High resolution,
Strong features

Lin et al. Feature Pyramid Networks for Object Detection. CVPR 2017. See also: Shrivastava’s TDM.

FPN pyramid



RetinaNet: Classification and Regression Subnets



Handling Imbalance with Cascades

𝑤!

𝑤"

𝑤#

Stage 1 Stage 2 Final Stage

… balanced problemeliminate easy background step-by-step, leading to a …



Focal Loss: “Soft” Hard-Example Mining

(“easy”)



Generalized R-CNN: Adding More Heads

Mask R-CNN
[He, Gkioxari, Dollár, Girshick]

DensePose
[Güler, Neverova, Kokkinos]

Mesh R-CNN
[Gkioxari, Malik, Johnson. ICCV 2019]



Segmentation and detection

• Adversarial examples
• Bottlenecks and U-Nets
• Segmentation
• Face detection
• Object detection
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Cow`

Grass

Sky


