Reconstruction

EE/CSE 576 Linda Shapiro

3D model

- "Digital copy" of real object
- Allows us to
 - Inspect details of object
 - Measure properties
 - Reproduce in different material
- Many applications
 - Cultural heritage preservation
 - Computer games and movies
 - City modelling
 - E-commerce

Applications: cultural heritage

SCULPTEUR European project

Applications: art

Block Works Precipitate III 2004 *Mild steel blocks* 80 x 46 x 66 cm

Domain Series Domain VIII Crouching 1999 *Mild steel bar* 81 x 59 x 63 cm

Applications: structure engineering

BODY / SPACE / FRAME, Antony Gormley, Lelystad, Holland

Applications: 3D indexation

Applications: archaeology

• "forma urbis romae" project

Fragments of the City: Stanford's Digital Forma Urbis Romae Project David Koller, Jennifer Trimble, Tina Najbjerg, Natasha Gelfand, Marc Levoy

Proc. Third Williams Symposium on Classical Architecture, Journal of Roman Archaeology supplement, 2006.

1186 fragments

Applications: large scale modelling

[Furukawa10]

[Pollefeys08]

[Goesele07]

Applications: Medicine

(a) Radius difference

(c) Curvature difference

(b) Angle difference

(d) Edge difference

expert's order	1	2	3	4	5	6	7	8	9	10
images	SE	5	F	S.		R	R	0	R	1.0
learning	1	3	2	4	5	6	8	9	7	10
a-lmk	1	2	3	5	6	4	8	7	9	10
mirror	1	2	4	8	5	6	9	3	7	10
m-lmk	1	2	3	4	5	6	9	7	10	8
plane	1	2	3	5	4	6	7	9	10	8

Scanning technologies

- Laser scanner, coordinate measuring machine
 - Very accurate
 - Very Expensive
 - Complicated to use

Minolta

Contura CMM

Medical Scanning System

The "Us" Data Set (subset)

3d shape from photographs

"Estimate a 3d shape that would generate the input photographs given the same material, viewpoints and illumination"

Photometric Stereo

- Estimate the surface normals of a given scene given multiple 2D images taken from the *same* viewpoint, but under *different lighting* conditions.
- Basic photometric stereo required a Lambertian reflectance model:

 $I = \rho \mathbf{n} \cdot \mathbf{v}$

where I is pixel intensity, **n** is the normal, **v** is the lighting direction, and ρ is diffuse albedo constant, which is a reflection coefficient.

Basic Photometric Stereo

Basic Photometric Stereo

Basic Photometric Stereo

- K light sources
- Lead to K images R₁(p,q), ..., R_K(p,q) each from just one of the light sources being on
- For any (p,q), we get K intensities I₁,...I_K
- Leads to a set of linear equations of the form

 $I_k = \rho \mathbf{n} \bullet \mathbf{v}_k$

• Solving leads to a surface normal map.

Photometric Stereo

Inputs

3d shape from photographs

Photograph based 3d reconstruction is:

- ✓ practical
- ✓ fast
- ✓ non-intrusive
- ✓ low cost
- Easily deployable outdoors
- × "low" accuracy
- × Results depend on material properties

Reconstruction

 Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape

Reconstruction

- Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape
- "Images of the same object or scene"
 - Arbitrary number of images (from two to thousands)
 - Arbitrary camera positions (camera network or video sequence)
 - Calibration may be initially unknown
- "Representation of 3D shape"
 - Depth maps
 - Meshes
 - Point clouds
 - Patch clouds
 - Volumetric models
 - Layered models

Multiple-baseline stereo

M. Okutomi and T. Kanade, <u>"A Multiple-Baseline Stereo System,"</u> IEEE Trans. on Pattern Analysis and Machine Intelligence, 15(4):353-363 (1993).

Reconstruction from silhouettes

Can be computed robustly Can be computed efficiently

foreground

Reconstruction from Silhouettes

 The case of binary images: a voxel is photoconsistent if it lies inside the object's silhouette in all views

Binary Images —

Reconstruction from Silhouettes

 The case of binary images: a voxel is photoconsistent if it lies inside the object's silhouette in all views

Finding the silhouette-consistent shape (visual hull):

- Backproject each silhouette
- Intersect backprojected volumes

Calibrated Image Acquisition

Calibrated Turntable

Selected Dinosaur Images

Selected Flower Images

Space Carving in General

Space Carving Algorithm

- Initialize to a volume V containing the true scene
- Choose a voxel on the outside of the volume
- Project to visible input images
- Carve if not photo-consistent (inside object's silhouette)
- Repeat until convergence

K. N. Kutulakos and S. M. Seitz, <u>A Theory of Shape by Space Carving</u>, *ICCV* 1999

Our 4-camera light-striping stereo system

(now deceased)

The idea is to snap images at different depths and get a lot of 2D-3D point correspondences.

Surface Modeling and Display from Range and Color Data

71	Kari	Pulli	UW
	Michael	Cohen	MSR
	Tom	Duchamp	UW
ļ	Huques	Hoppe	MSR
	Јоћп	McDonald	UW
	Lìnda	Shapiro	UW
)	Werner	Stuetzle	UW

UW =	University of Washington
	Seattle, WA USA
MSR =	Microsoft Research
	Redmond, WA USA

Introduction

Goal

- develop robust algorithms for constructing
 3D models from range & color data
- use those models to produce realistic renderings of the scanned objects

Surface Reconstruction

Step 1: Data acquisition

Obtain range data that covers the object. Filter, remove background.

Step 2: Registration

Register the range maps into a common coordinate system.

Step 3: Integration

Integrate the registered range data into a single surface representation.

Step 4: Optimization

Fit the surface more accurately to the data, simplify the representation.

Carve space in cubes

Volume under consideration

Label cubes

- Project cube to image plane (hexagon)
- Test against data in the hexagon

3D space is made up of many cubes.

OUTSIDE

one of many cubes in virtual 3D cube space

Several views

Hierarchical space carving

- Big cubes => fast, poor results
- Small cubes => slow, more accurate results.
- Combination = octrees
- RULES: cube's out => done • cube's in => done • else => recurse

Hierarchical space carving

- Big cubes => fast, poor results
- Small cubes => slow, more accurate results.
- Combination = octrees
- RULES: cube's out => done • cube's in => done • else => recurse

The rest of the chair

Same for a husky pup

Optimizing the dag mesh

View dependent texturing

More: Space Carving Results: African Violet

Input Image (1 of 45)

Reconstruction

Reconstruction

Reconstruction

Source: S. Seitz

More: Space Carving Results: Hand

Input Image (1 of 100)

Views of Reconstruction

Stereo from community photo collections

- Up to now, we've always assumed that camera calibration is known
- For photos taken from the Internet, we need structure from motion techniques to reconstruct both camera positions and 3D points. (SEE POSTED VIDEO)

From Moiumbo?

From laurenbou...

From StephiGra...

Head Reconstruction from Uncalibrated Internet Photos

Input: Internet photos in different poses and expressions

Output: 3D model of the head

work of Shu Liang

Recognizing Deformable Shapes

Salvador Ruiz Correa (CSE/EE576 Computer Vision I) We are interested in developing algorithms for recognizing and classifying deformable object shapes from range data.

This is a difficult problem that is relevant in several application fields.

What Kind Of Deformations?

Component-Based Methodology

Assumptions

All shapes are represented as oriented surface meshes of fixed resolution.

The vertices of the meshes in the training set are in full correspondence.

Finding full correspondences : hard problem yes ... but it is approachable (use morphable models technique: Blantz and Vetter, SIGGRAPH 99; C. R. Shelton, IJCV, 2000; Allen et al., SIGGRAPH 2003).

Four Key Elements To Our Approach

Numeric Signatures

The Spin Image Signature

P is the selected vertex.

 α is the perpendicular distance from X to P's surface normal.

 β is the signed perpendicular distance from X to P's tangent plane.

Spin Image Construction

- A spin image is constructed
 - about a specified oriented point o of the object surface
 - with respect to a set of contributing points C, which is controlled by maximum distance and angle from o.
- It is stored as an array of accumulators $S(\alpha,\beta)$ computed via:
- For each point c in C(o)

1. compute α and β for c. 2. increment S (α , β)

Numeric Signatures: Spin Images

Rich set of surface shape descriptors.

Their spatial scale can be modified to include local and nonlocal surface features.

Representation is robust to scene clutter and occlusions.

Components

How To Extract Shape Class Components?

Training Set

Component Extraction Example

per component)

How To Combine Component Information?

Symbolic Signatures

Symbolic Signature

Labeled Surface Mesh

Encode Geometric Configuration

Symbolic Signature at P

Matrix storing component labels

Symbolic Signatures Are Robust To Deformations

Relative position of components is stable across deformations: experimental evidence

Architecture of Classifiers

Proposed Architecture

Mesh

Architecture Implementation

- ALL our classifiers are (off-the-shelf) v-Support Vector Machines (v-SVMs) (Schölkopf et al., 2000 and 2001).
- Component (and symbolic signature) detectors are oneclass classifiers.
- Component label assignment: performed with a multiway classifier that uses pairwise classification scheme.

Gaussian kernel.

Recognition Tasks: 4 (T1 - T4) Classification Tasks: 3 (T5 - T7) No. Experiments: 5470

Rotary Table

Recognition

Setup

Laser

Classification

Shape Classes

Electrical Engineering

University of Washington

Task 1: Recognizing Single Objects (1)

No. Shape classes: 9.

Training set size: 400 meshes.

- Testing set size: 200 meshes.
- No. Experiments: 1960.
- No. Component detectors: 3.
- No. Symbolic signature detectors: 1.

Numeric signature size: 40x40.

Symbolic signature size: 20x20.

No clutter and occlusion.

Task 1: Recognizing Single Objects (2) Snowman: 93%. Human head: 97.7%. Rabbit: 92% Human face: 76%. Dog: 89%. Cat: 85.5%. Cow: 92%. Bear: 94%. Horse: 92.7%.

Recognition rates (true positives) (No clutter, no occlusion, complete models)
Tasks 2-3: Recognition In Complex Scenes (1)

No. Shape classes: 3.

Training set size: 400 meshes.

- Testing set size: 200 meshes.
- No. Experiments: 1200.
- No. Component detectors: 3.
- No. Symbolic signature detectors: 1.

Numeric signature size: 40x40.

- Symbolic signature size: 20x20.
- T2 low clutter and occlusion.

Task 2-3: Recognition in Complex Scenes (2)

Shape	True	False	True	False
Class	Positives	Positives	Positives	Positives
Snowmen	91%	31%	87.5%	28%
Rabbit	90.2%	27.6%	84.3%	24%
Dog	89.6%	34.6%	88.12%	22.1%

Task 3

Task 2

Task 2-3: Recognition in Complex Scenes (3)

Task 4: Recognizing Human Heads (3)

Task 5: Classifying Normal vs. Abnormal Human Heads (1)

Shape Classes	Classification Accuracy %
Normal vs. Abnormal 1	98
Normal vs. Abnormal 2	100
Abnormal 1 vs. 3	98
Abnormal 1 vs. 4	97
Abnormal 1 vs. 5	92

Task 6: Classifying Normal vs. Abnormal Human Heads In Complex Scenes(1)

Shape	Classification
Classes	Accuracy %
Normal vs. Abnormal 1	88

Task 7: Cla	assifying N	ormal vs. Abnormal
Neurocran	ium (2)	
Shape Classes	Classificatio n Accuracy %	
Normal vs. Abnormal	89	

Main Contributions (1)

- A novel symbolic signature representation of deformable shapes that is robust to intraclass variability and missing information, as opposed to a numeric representation which is often tied to a specific shape.
- A novel kernel function for quantifying symbolic signature similarities.

Main Contributions (2)

- A region growing algorithm for learning shape class components.
- A novel architecture of classifiers for abstracting the geometry of a shape class.
- A validation of our methodology in a set of large scale recognition and classification experiments aimed at applications in scene analysis and medical diagnosis.