Motion and Optical Flow

ECE/CSE 576
Linda Shapiro
We live in a moving world

• Perceiving, understanding and predicting motion is an important part of our daily lives
Motion and perceptual organization

• Even “impoverished” motion data can evoke a strong percept

Motion and perceptual organization

• Even “impoverished” motion data can evoke a strong percept

Seeing motion from a static picture?

http://www.ritsumei.ac.jp/~akitaoka/index-e.html
How is this possible?

• The true mechanism is yet to be revealed

• FMRI data suggest that illusion is related to some component of eye movements

• We don’t expect computer vision to “see” motion from these stimuli, yet
The cause of motion

• Three factors in imaging process
  – Light
  – Object
  – Camera

• Varying either of them causes motion
  – Static camera, moving objects (surveillance)
  – Moving camera, static scene (3D capture)
  – Moving camera, moving scene (sports, movie)
  – Static camera, moving objects, moving light (time lapse)
Motion scenarios (priors)

Static camera, moving scene

Moving camera, static scene

Moving camera, moving scene

Static camera, moving scene, moving light
We still don’t touch these areas
How can we recover motion?
Recovering motion

• Feature-tracking
  – Extract visual features (corners, textured areas) and “track” them over multiple frames

• Optical flow
  – Recover image motion at each pixel from spatio-temporal image brightness variations (optical flow)

Two problems, one registration method

Feature tracking

• Challenges
  – Figure out which features can be tracked
  – Efficiently track across frames
  – Some points may change appearance over time (e.g., due to rotation, moving into shadows, etc.)
  – Drift: small errors can accumulate as appearance model is updated
  – Points may appear or disappear: need to be able to add/delete tracked points
Feature tracking

• Given two subsequent frames, estimate the point translation

• Key assumptions of Lucas-Kanade Tracker
  • **Brightness constancy:** projection of the same point looks the same in every frame
  • **Small motion:** points do not move very far
  • **Spatial coherence:** points move like their neighbors
The brightness constancy constraint

\[(x, y) \overset{\text{displacement}}{\rightarrow} (u, v)\]

\[I(x, y, t) = I(x+u, y+v, t+1)\]

- **Brightness Constancy Equation:**

\[I(x, y, t) = I(x+u, y+v, t+1)\]

Take Taylor expansion of \(I(x+u, y+v, t+1)\) at \((x, y, t)\) to linearize the right side:

\[I(x+u, y+v, t+1) \approx I(x, y, t) + I_x \cdot u + I_y \cdot v + I_t\]

So:

\[I_x \cdot u + I_y \cdot v + I_t \approx 0 \quad \rightarrow \nabla I \cdot [u \ v]^T + I_t = 0\]
The brightness constancy constraint

Can we use this equation to recover image motion \((u,v)\) at each pixel?

\[
\nabla I \cdot \begin{bmatrix} u & v \end{bmatrix}^T + I_t = 0
\]

• How many equations and unknowns per pixel?
  • One equation (this is a scalar equation!), two unknowns \((u,v)\)

The component of the motion perpendicular to the gradient (i.e., parallel to the edge) cannot be measured

If \((u, v)\) satisfies the equation, so does \((u' + u', v' + v')\) if

\[
\nabla I \cdot \begin{bmatrix} u' & v' \end{bmatrix}^T = 0
\]
The aperture problem

Actual motion
The aperture problem

Perceived motion
The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion
The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion
Solving the ambiguity...


- How to get more equations for a pixel?
- **Spatial coherence constraint**
  - Assume the pixel’s neighbors have the same \((u,v)\)
  - If we use a 5x5 window, that gives us 25 equations per pixel

\[
\begin{bmatrix}
I_x(p_1) & I_y(p_1) \\
I_x(p_2) & I_y(p_2) \\
\vdots & \vdots \\
I_x(p_{25}) & I_y(p_{25})
\end{bmatrix} \begin{bmatrix}
u \\
v
\end{bmatrix} = - \begin{bmatrix}
I_t(p_1) \\
I_t(p_2) \\
\vdots \\
I_t(p_{25})
\end{bmatrix}
\]
Solving the ambiguity...

• Least squares problem:

\[
\begin{bmatrix}
I_x(p_1) & I_y(p_1) \\
I_x(p_2) & I_y(p_2) \\
\vdots & \vdots \\
I_x(p_{25}) & I_y(p_{25})
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= -
\begin{bmatrix}
I_t(p_1) \\
I_t(p_2) \\
\vdots \\
I_t(p_{25})
\end{bmatrix}
\]
Matching patches across images

- Overconstrained linear system

\[
\begin{bmatrix}
I_x(p_1) & I_y(p_1) \\
I_x(p_2) & I_y(p_2) \\
\vdots & \vdots \\
I_x(p_{25}) & I_y(p_{25})
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= -
\begin{bmatrix}
I_t(p_1) \\
I_t(p_2) \\
\vdots \\
I_t(p_{25})
\end{bmatrix}
\]

Least squares solution for \( d \) given by

\[
\begin{bmatrix}
\sum I_x I_x & \sum I_x I_y \\
\sum I_x I_y & \sum I_y I_y
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= -
\begin{bmatrix}
\sum I_x I_t \\
\sum I_y I_t
\end{bmatrix}
\]

\[
(A^T A) \ d = A^T \ b
\]

The summations are over all pixels in the K x K window
Conditions for solvability

Optimal \((u, v)\) satisfies Lucas-Kanade equation

\[
\begin{bmatrix}
\sum I_x I_x & \sum I_x I_y \\
\sum I_x I_y & \sum I_y I_y
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= -
\begin{bmatrix}
\sum I_x I_t \\
\sum I_y I_t
\end{bmatrix}
\]

\(A^T A\)

When is this solvable? I.e., what are good points to track?

- \(A^T A\) should be invertible
- \(A^T A\) should not be too small due to noise
  - eigenvalues \(\lambda_1\) and \(\lambda_2\) of \(A^T A\) should not be too small
- \(A^T A\) should be well-conditioned
  - \(\lambda_1 / \lambda_2\) should not be too large (\(\lambda_1 =\) larger eigenvalue)

Does this remind you of anything?

Criteria for Harris corner detector
Aperture problem

Corners

Lines

Flat regions
\[ \sum \nabla I(\nabla I)^T \]
- large gradients, all the same
- large \( \lambda_1 \), small \( \lambda_2 \)
Low Texture Region

\[ \sum \nabla I (\nabla I)^T \]

- gradients have small magnitude
- small \( \lambda_1 \), small \( \lambda_2 \)
High Texture Region

\[ \sum \nabla I (\nabla I)^T \]
- gradients are different, large magnitudes
- large \( \lambda_1 \), large \( \lambda_2 \)
Errors in Lukas-Kanade

• What are the potential causes of errors in this procedure?
  – Suppose $A^TA$ is easily invertible
  – Suppose there is not much noise in the image

When our assumptions are violated
• Brightness constancy is **not** satisfied
• The motion is **not** small
• A point does **not** move like its neighbors
  – window size is too large
  – what is the ideal window size?
Revisiting the small motion assumption

• Is this motion small enough?
  – Probably not—it’s much larger than one pixel (2\textsuperscript{nd} order terms dominate)
  – How might we solve this problem?
Reduce the resolution!
Coarse-to-fine optical flow estimation

- Gaussian pyramid of image 1 (t)
- Gaussian pyramid of image 2 (t+1)

Run iterative L-K
- Warp & upsample
- Run iterative L-K
A Few Details

• **Top Level**
  – Apply L-K to get a flow field representing the flow from the first frame to the second frame.
  – Apply this flow field to warp the first frame toward the second frame.
  – Rerun L-K on the new warped image to get a flow field from it to the second frame.
  – Repeat till convergence.

• **Next Level**
  – Upsample the flow field to the next level as the first guess of the flow at that level.
  – Apply this flow field to warp the first frame toward the second frame.
  – Rerun L-K and warping till convergence as above.

• **Etc.**
Coarse-to-fine optical flow estimation

Gaussian pyramid of image 1

Gaussian pyramid of image 2

$u=1.25$ pixels

$u=2.5$ pixels

$u=5$ pixels

$u=10$ pixels
The Flower Garden Video

What should the optical flow be?
Optical Flow Results

Lucas-Kanade without pyramids
Fails in areas of large motion

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
Optical Flow Results

Lucas-Kanade with Pyramids

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
Flow quality evaluation
Flow quality evaluation
Flow quality evaluation

- Middlebury flow page
  - [http://vision.middlebury.edu/flow/](http://vision.middlebury.edu/flow/)
Flow quality evaluation

- Middlebury flow page
  - [http://vision.middlebury.edu/flow/]
Flow quality evaluation

• Middlebury flow page
  – http://vision.middlebury.edu/flow/
Video stabilization
Video denoising
Video super resolution
Robust Visual Motion Analysis: Piecewise-Smooth Optical Flow

Ming Ye
Electrical Engineering
University of Washington
Problem Statement:

Assuming only brightness conservation and piecewise-smooth motion, find the optical flow to best describe the intensity change in three frames.
Approach: Matching-Based Global Optimization

• Step 1. Robust local gradient-based method for high-quality initial flow estimate.
  Uses least median of squares instead of regular least squares.

• Step 2. Global gradient-based method to improve the flow-field coherence.
  Minimizes a global energy function $E = \Sigma (E_B(V_i) + E_S(V_i))$ where
  $E_B$ is the brightness difference and $E_S$ is the smoothness at flow vector $V_i$

• Step 3. Global matching that minimizes energy by a greedy approach.
  Visits each pixel and updates it to be consistent with neighbors, iteratively.
TT: Translating Tree

150x150 (Barron 94)

|     | $e_\angle$ ($^\circ$) | $e_{||}$ (pix) | $\bar{e}$ (pix) |
|-----|----------------------|---------------|-----------------|
| BA  | 2.60                 | 0.128         | 0.0724          |
| S3  | 0.248                | 0.0167        | 0.00984         |

$e$: error in pixels, cdf: cumulative distribution function for all pixels
DT: Diverging Tree

150x150 (Barron 94)

|   | $e_\perp$ ($^\circ$) | $e_{||}$ (pix) | $\bar{e}$ (pix) |
|---|------------------|--------------|-------------|
| BA | 6.36             | 0.182        | 0.114       |
| S3 | 2.60             | 0.0813       | 0.0507      |

![Graph showing CDF of BA and S3](image-url)
YOS: Yosemite Fly-Through

316x252 (Barron, cloud excluded)

|     | $e_\angle$ (°) | $e_{||}$ (pix) | $\bar{e}$ (pix) |
|-----|---------------|----------------|----------------|
| BA  | 2.71          | 0.185          | 0.118          |
| S3  | 1.92          | 0.120          | 0.0776         |
TAXI: Hamburg Taxi

256x190, (Barron 94)
max speed 3.0 pix/frame

Ours

Error map

BA

Smoothness error
Traffic

512x512 (Nagel)
max speed: 6.0 pix/frame

BA

Ours

Error map

Smoothness error
FG: Flower Garden

360x240 (Black)
Max speed: 7pix/frame

Ours

Error map

Smoothness error

BA

LMS
Representing Moving Images with Layers

J. Y. Wang and E. H. Adelson
MIT Media Lab
Goal

- Represent moving images with sets of overlapping layers
- Layers are ordered in depth and occlude each other
- Velocity maps indicate how the layers are to be warped over time
Simple Domain: Gesture Recognition

(a) Moving Hand

(b) Background

(c) Frame 1, Frame 2, Frame 3
More Complex:
What are the layers?
Even More Complex:
How many layers are there?
Definition of Layer Maps

• Each layer contains three maps
  1. intensity map (or texture map)
  2. alpha map (opacity at each point)
  3. velocity map (warping over time)

• Layers are ordered by depth

• This can be for vision or graphics or both
Layers for the Hand Gestures

Background Layer
- Intensity map
- Alpha map
- Velocity map

Hand Layer
- Intensity map
- Alpha map
- Velocity map

Re-synthesized Sequence
Optical Flow Doesn’t Work

- Optical flow techniques typically model the world as a 2-D rubber sheet that is distorted over time.
- When one object moves in front of another, the rubber sheet model fails.
- Image information appears and disappears; optical flow can’t represent this.
- Motion estimates near boundaries are bad.
Block Matching Can’t Do It

• Block motion only handles translation well.

• Like optical flow, block matching doesn’t deal with occlusion or objects that suddenly appear or disappear off the edge of the frame.
Layered Representation: Compositing

\[ I_1(x, y) = E_0(x, y)(1 - \alpha_1(x, y)) + E_1(x, y)\alpha_1(x, y). \]  \hspace{1cm} (1)

- \( E_0 \) is the background layer.
- \( E_1 \) is the next layer (and there can be more).
- \( \alpha_1 \) is the alpha channel of \( E_1 \), with values between 0 and 1 (for graphics).
- The velocity map tells us how to warp the frames over time.
- The intensity map and alpha map are warped together, so they stay registered.
Analysis: Flower Garden Sequence

Frame 1           Frame 15         Frame 30
(a) warped         (b) warped         (c) warped

Figure 6: Frames 0, 15 and 30, of MPEG flower garden sequence are shown in figures (a-c), respectively.

Camera is panning to the right.

What’s going on here?
Accumulation of the Flowerbed Layer
Motion Analysis

1. Robust motion segmentation using a parametric (affine) model.

\[ V_x(x,y) = a_{x0} + a_{xx}x + a_{xy}y \]

\[ V_y(x,y) = a_{y0} + a_{yx}x + a_{yy}y \]

2. Synthesis of the layered representation.
Motion Analysis Example

(a) velocity estimates

(b) velocity smoothing

(c) regularization

(d) robust estimation

2 separate layers shown as 2 affine models (lines);
The gaps show the occlusion.
Motion Estimation Steps


2. From the optical flow representation, determine a set of affine motions. Segment into regions with an affine motion within each region.
Motion Segmentation

1. Use an array of non-overlapping square regions to derive an initial set of motion models.

2. Estimate the affine parameters within these regions by linear regression, applied separately on each velocity component (dx, dy).

3. Compute the reliability of each hypothesis according to its residual error.

4. Use an adaptive k-means clustering that merges two clusters when the distance between their centers is smaller than a threshold to produce a set of likely affine models.
Region Assignment by Hypothesis Testing

• Use the motion models derived from the motion segmentation step to identify the coherent regions.

• Do this by minimizing an error (distortion) function:

\[ G(i(x,y)) = \sum_{x,y} (V(x,y) - V_{ai}(x,y))^2 \]

where \( i(x,y) \) is the model assigned to pixel \((x,y)\) and \( V_{ai}(x,y) \) is the affine motion for that model.

• The error is minimized at each pixel to give the best model for that pixel position.

• Pixels with too high error are not assigned to models.
Iterative Algorithm

• The initial segmentation step uses an array of square regions.
• At each iteration, the segmentation becomes more accurate, because the parameter estimation is within a single coherent motion region.
• A region splitter separates disjoint regions.
• A filter eliminates small regions.
• At the end, intensity is used to match unassigned pixels to the best adjacent region.
Layer Synthesis

• The information from a longer sequence must be combined over time, to accumulate each layer.
• The transforms for each layer are used to warp its pixels to align a set of frames.
• The median value of a pixel over the set is used for the layer.
• Occlusion relationships are determined.
Results

Figure 11: (a) The optic flow from multi-scale gradient method. (b) Segmentation obtained by clustering optic flow into affine motion regions. (c) Segmentation from consistency checking by image warping. Representing moving images with layers.

Figure 12: The layers corresponding to the tree, the flower bed, and the house shown in figures (a-c), respectively. The affine flow field for each layer is superimposed.
Results

Figure 13: Frames 0, 15, and 30 as reconstructed from the layered representation shown in figures (a-c), respectively.

Figure 14: The sequence reconstructed without the tree layer shown in figures (a-c), respectively.
Results

Figure 15: Frames 0, 15 and 30, of MPEG Calendar sequence shown in figures (a-c), respectively.

Figure 16: The layers corresponding to the ball, the train, and the background shown in figures (a-c), respectively.
Summary

• Major contributions from Lucas, Tomasi, Kanade
  – Tracking feature points
  – Optical flow
  – Stereo
  – Structure from motion

• Key ideas
  – By assuming brightness constancy, truncated Taylor expansion leads to simple and fast patch matching across frames
  – Coarse-to-fine registration
  – Global approach by former EE student Ming Ye
  – Motion layers methodology by Wang and Adelson