Cameras and Stereo

ECE/CSE 576 Linda Shapiro

Müller-Lyer Illusion

http://www.michaelbach.de/ot/sze_muelue/index.html

- What do you know about perspective projection?
- Vertical lines?
- Other lines?

Image formation

Let's design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

Pinhole camera

Add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture
- How does this transform the image?

Adding a lens

A lens focuses light onto the film

- There is a specific distance at which objects are "in focus"
 - other points project to a "circle of confusion" in the image
- Changing the shape of the lens changes this distance

Lenses

A lens focuses parallel rays onto a single focal point

- focal point at a distance f beyond the plane of the lens
 - f is a function of the shape and index of refraction of the lens
- Aperture of diameter D restricts the range of rays
 - aperture may be on either side of the lens
- Lenses are typically spherical (easier to produce)
- Real cameras use many lenses together (to correct for aberrations)

Thin lenses

Thin lens equation:
$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$$

Any object point satisfying this equation is in focus

Digital camera

A digital camera replaces film with a sensor array

- Each cell in the array is a Charge Coupled Device (CCD)
 - light-sensitive diode that converts photons to electrons
- CMOS is becoming more popular (esp. in cell phones)
 - http://electronics.howstuffworks.com/digital-camera.htm

Issues with digital cameras

Noise

- big difference between consumer vs. SLR-style cameras
- low light is where you most notice <u>noise</u>

Compression

creates <u>artifacts</u> except in uncompressed formats (tiff, raw)

Color

<u>color fringing</u> artifacts from <u>Bayer patterns</u>

Blooming

charge <u>overflowing</u> into neighboring pixels

In-camera processing

oversharpening can produce <u>halos</u>

Interlaced vs. progressive scan video

even/odd rows from different exposures

Are more megapixels better?

- requires higher quality lens
- noise issues

Stabilization

compensate for camera shake (mechanical vs. electronic)
 More info online, e.g.,

- http://electronics.howstuffworks.com/digital-camera.htm
- http://www.dpreview.com/

Projection

Mapping from the world (3d) to an image (2d)

- Can we have a 1-to-1 mapping?
- How many possible mappings are there?

An optical system defines a particular projection. We'll talk about 2:

- 1. Perspective projection (how we see "normally")
- 2. Orthographic projection (e.g., telephoto lenses)

Modeling projection

The coordinate system

- We will use the pin-hole model as an approximation
- Put the optical center (Center Of Projection) at the origin
- Put the image plane (Projection Plane) in front of the COP
- The camera looks down the negative z axis
 - we need this if we want right-handed-coordinates

Modeling projection

Projection equations

- Compute intersection with PP of ray from (x,y,z) to COP
- Derived using similar triangles

$$(x,y,z) \rightarrow (-d\frac{x}{z}, -d\frac{y}{z}, -d)$$

We get the projection by throwing out the last coordinate:

$$(\mathbf{x'},\mathbf{y'}) \to (-d\frac{x}{z}, -d\frac{y}{z})$$

Homogeneous coordinates

Is this a linear transformation?

no—division by z is nonlinear

Trick: add one more coordinate:

$$(x,y) \Rightarrow \left[egin{array}{c} x \\ y \\ 1 \end{array} \right]$$

homogeneous image coordinates

$$(x, y, z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

homogeneous scene coordinates

Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Projection is a matrix multiply using homogeneous coordinates:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

projection matrix 3D point

divide by third coordinate

2D point

This is known as perspective projection

The matrix is the projection matrix

Perspective Projection Example

1. Object point at (10, 6, 4), d=2

2. Object point at (25, 15, 10)

Perspective projection is not 1-to-1!

How does scaling the projection matrix change the transformation?

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

$$\begin{bmatrix} -d & 0 & 0 & 0 \\ 0 & -d & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = \begin{bmatrix} -dx \\ -dy \\ z \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

SAME

- What happens to parallel lines?
- What happens to angles?
- What happens to distances?

What happens when $d \rightarrow \infty$?

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

Orthographic projection

Special case of perspective projection

Distance from the COP to the PP is infinite

- Good approximation for telephoto optics
- Also called "parallel projection": $(x, y, z) \rightarrow (x, y)$
- What's the projection matrix?

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \Rightarrow (x, y)$$

3D

Orthographic Projection

- What happens to parallel lines?
- What happens to angles?
- What happens to distances?

Camera parameters

How many numbers do we need to describe a camera?

- We need to describe its pose in the world
- We need to describe its internal parameters

A Tale of Two Coordinate Systems

Two important coordinate systems:

- 1. World coordinate system
- 2. Camera coordinate system

Camera parameters

- •To project a point (x,y,z) in world coordinates into a camera
- •First transform (x,y,z) into camera coordinates
- Need to know
 - Camera position (in world coordinates)
 - Camera orientation (in world coordinates)
- Then project into the image plane
 - Need to know camera intrinsics
- These can all be described with matrices

3D Translation

3D translation is just like 2D with one more coordinate

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & tx \\ 0 & 1 & 0 & ty \\ 0 & 0 & 1 & tz \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$= [x+tx, y+ty, z+tz, 1]^T$$

3D Rotation (just the 3 x 3 part shown)

About Z axis:
$$\cos\theta - \sin\theta = 0$$

 $\sin\theta = \cos\theta = 0$
 $0 = 0$

General (orthonormal) rotation matrix used in practice:

r11 r12 r13 r21 r22 r23 r31 r32 r33

Camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principal point (x'_c, y'_c), pixel size (s_x, s_y)
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations

$$\mathbf{\Pi} = \begin{bmatrix} -fs_x & 0 & x'_c \\ 0 & -fs_y & y'_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{3x3} & \mathbf{0}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I}_{3x3} & \mathbf{T}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix} \leftarrow [tx, ty, tz]^T$$
intrinsics
projection
rotation
translation

- The definitions of these parameters are **not** completely standardized
- especially intrinsics—varies from one book to another

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points) right, y-axis points up, z-axis points backwards)

$$\begin{bmatrix} -f & 0 & 0 \\ 0 & -f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

 \mathbf{K} (intrinsics)

(converts from 3D rays in camera coordinate system to pixel coordinates)

in general,
$$\mathbf{K}=\left[egin{array}{cccc} -f & s & c_x \\ 0 & -\alpha f & c_y \\ 0 & 0 & 1 \end{array}
ight]$$
 f is the focal length of the camera

 \mathcal{O} : aspect ratio (1 unless pixels are not square)

 $oldsymbol{S}$: skew (0 unless pixels are shaped like rhombi/parallelograms)

 (c_x,c_y) : principal point ((0,0) unless optical axis doesn't intersect projection plane at origin)

Focal length

Can think of as "zoom"

24mm

50mm

200mm

Related to field of view

Projection matrix

$$\mathbf{\Pi} = \mathbf{K} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I}_{3 \times 3} & -\mathbf{c} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
projection
rotation

Projection matrix

Distortion

Radial distortion of the image

- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens

Correcting radial distortion

Where does all this lead?

- We need it to understand stereo
- And 3D reconstruction
- It also leads into camera calibration, which is usually done in factory settings to solve for the camera parameters before performing an industrial task.
- The extrinsic parameters must be determined.
- Some of the intrinsic are given, some are solved for, some are improved.

Camera Calibration

The idea is to snap images at different depths and get a lot of 2D-3D point correspondences.

x1, y1, z1, u1, v1 x2, y2, z1, u2, v2

•

•

xn, yn, zn, un, vn

Then solve a system of equations to get camera parameters.

Stereo

Amount of horizontal movement is

• • •

...inversely proportional to the distance from the camera

Depth from Stereo

 Goal: recover depth by finding image coordinate x' that corresponds to x

Depth from disparity

$$disparity = x - x' = \frac{B \cdot f}{z}$$

Disparity is inversely proportional to depth.

Depth from Stereo

- Goal: recover depth by finding image coordinate x' that corresponds to x
- Sub-Problems
 - 1. Calibration: How do we recover the relation of the cameras (if not already known)?
 - 2. Correspondence: How do we search for the matching point x'?

Correspondence Problem

- We have two images taken from cameras with different intrinsic and extrinsic parameters
- How do we match a point in the first image to a point in the second? How can we constrain our search?

Key idea: Epipolar constraint

Potential matches for x have to lie on the corresponding line l'.

Potential matches for x' have to lie on the corresponding line l.

Epipolar geometry: notation

- Baseline line connecting the two camera centers
- Epipoles
- = intersections of baseline with image planes
- = projections of the other camera center
- **Epipolar Plane** plane containing baseline (1D family)

Epipolar geometry: notation

- **Baseline** line connecting the two camera centers
- Epipoles
- = intersections of baseline with image planes
- = projections of the other camera center
- **Epipolar Plane** plane containing baseline (1D family)
- **Epipolar Lines** intersections of epipolar plane with image planes (always come in corresponding pairs)

Example: Converging cameras

Example: Motion parallel to image plane

Epipolar constraint

 If we observe a point x in one image, where can the corresponding point x' be in the other image?

Epipolar constraint

- Potential matches for x have to lie on the corresponding epipolar line l.
- Potential matches for x 'have to lie on the corresponding epipolar line l.

Epipolar constraint example

- Assume that the intrinsic and extrinsic parameters of the cameras are known
- We can multiply the projection matrix of each camera (and the image points) by the inverse of the calibration matrix to get normalized image coordinates
- We can also set the global coordinate system to the coordinate system of the first camera. Then the projection matrices of the two cameras can be written as [I | 0] and [R | t]

Simplified Matrices for the 2 Cameras

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} = (\mathbf{I} \mid \mathbf{0})$$

$$\begin{pmatrix} \mathbf{R} & \mathbf{t} \\ \hline \mathbf{0} & 1 \end{pmatrix} = (\mathbf{R} \mid \mathbf{T})$$

The vectors Rx, t, and x' are coplanar

Essential Matrix E

(Longuet-Higgins, 1981)

- E x is the epipolar line associated with x (I' = E x)
- E^Tx' is the epipolar line associated with x' ($I = E^Tx'$)
- Ee = 0 and $E^Te' = 0$
- E is singular (rank two)
- E has five degrees of freedom

Epipolar constraint: Uncalibrated

- The calibration matrices K and K' of the two cameras are unknown
- We can write the epipolar constraint in terms of unknown normalized coordinates:

$$\hat{x}'^T E \hat{x} = 0$$
 $\hat{x} = K^{-1} x, \quad \hat{x}' = K'^{-1} \hat{x}'$

Epipolar constraint: Uncalibrated

case

$$\hat{\boldsymbol{x}}^{\prime T} \boldsymbol{E} \, \hat{\boldsymbol{x}} = 0$$

$$\mathbf{x}'^T \mathbf{F} \mathbf{x} = 0$$

$$\hat{\boldsymbol{x}}^{\prime T} \boldsymbol{E} \, \hat{\boldsymbol{x}} = 0$$
 $\longrightarrow \boldsymbol{x}^{\prime T} \boldsymbol{F} \, \boldsymbol{x} = 0$ with $\boldsymbol{F} = \boldsymbol{K}^{\prime - T} \boldsymbol{E} \, \boldsymbol{K}^{-1}$

$$\hat{\boldsymbol{x}} = \boldsymbol{K}^{-1} \boldsymbol{x}$$

$$\hat{\boldsymbol{x}}' = \boldsymbol{K}'^{-1} \boldsymbol{x}'$$

Fundamental Matrix

(Faugeras and Luong, 1992)

Epipolar constraint: Uncalibrated

- Fx is the epipolar line associated with x (l' = Fx)
- F^Tx' is the epipolar line associated with x' ($l' = F^Tx'$)
- Fe = 0 and $F^Te' = 0$

The eight-point algorithm

$$\mathbf{x} = (u, v, 1)^T, \quad \mathbf{x}' = (u', v', 1)$$

$$\begin{bmatrix} u' & v' & 1 \end{bmatrix} \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = 0 \qquad \qquad \begin{bmatrix} u'u & u'v & u' & v'u & v'v & v' & u & v & 1 \end{bmatrix} \begin{bmatrix} f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f \end{bmatrix} = 0$$

$$\sum_{i=1}^{N} (\mathbf{x}_{i}^{\prime T} \mathbf{F} \, \mathbf{x}_{i})^{2}$$
under the constraint

Smallest eigenvalue of $A^{T}A$

Comparison of estimation

	8-point	Normalized 8-point	Nonlinear least squares
Av. Dist. 1	2.33 pixels	0.92 pixel	0.86 pixel
Av. Dist. 2	2.18 pixels	0.85 pixel	0.80 pixel ₆₄

Moving on to stereo...

Fuse a calibrated binocular stereo pair to produce a depth image

Dense depth map

Many of these slides adapted from Steve Seitz and Lana Lazebnik

Depth from disparity

$$disparity = x - x' = \frac{B \cdot f}{z}$$

Disparity is inversely proportional to depth.

Basic stereo matching algorithm

- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- For each pixel x in the first image
 - Find corresponding epipolar scanline in the right image
 - Search the scanline and pick the best match x'
 - Compute disparity x-x' and set depth(x) = fB/(x-x')

Simplest Case: Parallel images

Epipolar constraint:

$$x^T E x' = 0$$
, $E = t \times R$

$$R = I$$
 $t = (T, 0, 0)$

$$E = t \times R = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0 \end{bmatrix}$$

Stereo image rectification

Stereo image rectification

- Reproject image planes onto a common plane parallel to the line between camera centers
- Pixel motion is horizontal after this transformation

- Two homographies (3x3 transform), one for each input image reprojection
- C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. IEEE Conf. Computer Vision and Pattern Recognition, 1999.

Example

- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD, SAD, or normalized correlation

Correspondence search

Correspondence search

Effect of window size

W = 3

W = 20

- Smaller window
 - + More detail
 - More noise
- Larger window
 - + Smoother disparity maps
 - Less detail
 - Fails near boundaries

Failures of correspondence search

Textureless surfaces

Occlusions, repetition

Non-Lambertian surfaces, specularities

Results with window search

Window-based matching

Ground truth

How can we improve window-based matching?

So far, matches are independent for each point

What constraints or priors can we add?

Stereo constraints/priors

Uniqueness

 For any point in one image, there should be at most one matching point in the other image

Stereo constraints/priors

- Uniqueness
 - For any point in one image, there should be at most one matching point in the other image

Ordering

 Corresponding points should be in the same order in both views

Stereo constraints/priors

- Uniqueness
 - For any point in one image, there should be at most one matching point in the other image
- Ordering
 - Corresponding points should be in the same order in both views

Priors and constraints

Uniqueness

 For any point in one image, there should be at most one matching point in the other image

Ordering

Corresponding points should be in the same order in both views

Smoothness

We expect disparity values to change slowly (for the most part)

Stereo as energy minimization

- What defines a good stereo correspondence?
 - 1. Match quality
 - Want each pixel to find a good match in the other image
 - 2. Smoothness

Matching windows:

Similarity Measure

Sum of Absolute Differences (SAD)

Sum of Squared Differences (SSD)

Zero-mean SAD

Locally scaled SAD

Normalized Cross Correlation (NCC)

Formula

$$\sum_{(i,j) \in W} |I_1(i,j) - I_2(x+i,y+j)|$$

$$\sum_{(i,j)\in W} (I_1(i,j) - I_2(x+i,y+j))^2$$

$$\sum_{(i,j)\in W} |I_1(i,j) - \bar{I}_1(i,j) - I_2(x+i,y+j) + \bar{I}_2(x+i,y+j)|$$

$$\sum_{(i,j)\in W} |I_1(i,j) - \frac{\bar{I}_1(i,j)}{\bar{I}_2(x+i,y+j)} I_2(x+i,y+j)|$$

$$\frac{\sum_{(i,j)\in W} I_1(i,j).I_2(x+i,y+j)}{\sqrt[2]{\sum_{(i,j)\in W} I_1^2(i,j).\sum_{(i,j)\in W} I_2^2(x+i,y+j)}}$$

Real-time stereo

Nomad robot searches for meteorites in Antartica http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

- Used for robot navigation (and other tasks)
 - Several software-based real-time stereo

Stereo reconstruction pipeline

- Steps
 - Calibrate cameras
 - Rectify images
 - Compute disparity
 - Estimate depth

What will cause errors?

- Camera calibration errors
- Poor image resolution
- Occlusions
- Violations of brightness constancy (specular reflections)
- Large motions
- Low-contrast image regions

Multi-view stereo?

Using more than two images

Multi-View Stereo for Community Photo Collections
M. Goesele, N. Snavely, B. Curless, H. Hoppe, S. Seitz
Proceedings of ICCV 2007,