Cameras and Stereo

ECE/CSE 576
Linda Shapiro

Müller-Lyer Illusion

http://www.michaelbach.de/ot/sze muelue/index.html

- What do you know about perspective projection?
- Vertical lines?
- Other lines?

Image formation

Let's design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

Pinhole camera

Add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture
- How does this transform the image?

Adding a lens

A lens focuses light onto the film

- There is a specific distance at which objects are "in focus"
- other points project to a "circle of confusion" in the image
- Changing the shape of the lens changes this distance

Lenses

A lens focuses parallel rays onto a single focal point

- focal point at a distance f beyond the plane of the lens
- f is a function of the shape and index of refraction of the lens
- Aperture of diameter D restricts the range of rays
- aperture may be on either side of the lens
- Lenses are typically spherical (easier to produce)
- Real cameras use many lenses together (to correct for abeffrations)

Thin lenses

Thin lens equation:

$$
\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f}
$$

- Any object point satisfying this equation is in focus

Digital camera

A digital camera replaces film with a sensor array

- Each cell in the array is a Charge Coupled Device (CCD)
- light-sensitive diode that converts photons to electrons
- CMOS is becoming more popular (esp. in cell phones)
- http://electronics.howstuffworks.com/digital-camera.htm

Issues with digital cameras

Noise

- big difference between consumer vs. SLR-style cameras
- low light is where you most notice noise

Compression

- creates artifacts except in uncompressed formats (tiff, raw)

Color

- color fringing_artifacts from Bayer patterns

Blooming

- charge overflowing into neighboring pixels

In-camera processing

- oversharpening can produce halos

Interlaced vs. progressive scan video

- even/odd rows from different exposures

Are more megapixels better?

- requires higher quality lens
- noise issues

Stabilization

- compensate for camera shake (mechanical vs. electronic)

More info online, e.g.,

- http://electronics.howstuffworks.com/digital-camera.htm
- http://www.dpreview.com/

Projection

Mapping from the world (3d) to an image (2d)

- Can we have a 1-to-1 mapping?
- How many possible mappings are there?

An optical system defines a particular projection. We'll talk about 2:

1. Perspective projection (how we see "normally")
2. Orthographic projection (e.g., telephoto lenses)

Modeling projection

The coordinate system

- We will use the pin-hole model as an approximation
- Put the optical center (Center Of Projection) at the origin
- Put the image plane (Projection Plane) in front of the COP
- The camera looks down the negative z axis
- we need this if we want right-handed-coordinates

Modeling projection

Projection equations

- Compute intersection with PP of ray from (x, y, z) to COP
- Derived using similar triangles

$$
(x, y, z) \rightarrow\left(-d \frac{x}{z},-d \frac{y}{z},-d\right)
$$

- We get the projection by throwing out the last coordinate:

$$
\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right) \rightarrow\left(-d \frac{x}{z},-d \frac{y}{z}\right)
$$

Homogeneous coordinates

Is this a linear transformation?

- no-division by z is nonlinear

Trick: add one more coordinate:

$$
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

homogeneous image coordinates

homogeneous scene coordinates

Converting from homogeneous coordinates

$$
\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w) \quad\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right] \Rightarrow(x / w, y / w, z / w)
$$

Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

This is known as perspective projection

- The matrix is the projection matrix

Perspective Projection Example

1. Object point at (10, 6, 4), $d=2$

$$
\left.\begin{array}{cc}
1 & 0 \\
0 & 0 \\
0 & x \\
0 & 1 \\
0 & 0
\end{array}\right) 0 \begin{array}{ccccc}
1 & 0 \\
1 / d & 0 & z \\
1 & =\begin{array}{ccccc}
0 & 1 & 0 & 0 & 10 \\
0 & 0 & 1 / 2 & 0 & 6 \\
1
\end{array} \\
& x^{\prime}=5, y^{\prime}=3
\end{array}
$$

2. Object point at $(25,15,10)$

$$
\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & x \\
0 & 1 & 0 & 0 & y \\
0 & 0 & 1 / d & 0 & z \\
1 & =\begin{array}{ccccc}
1 & 0 & 0 & 0 & 25 \\
0 & 1 & 0 & 0 & 15 \\
0 & 0 & 1 / 2 & 0 & 10 \\
1
\end{array}=25 & 15 & 5 \\
& x^{\prime}=5, y^{\prime}=3
\end{array}
$$

Perspective Projection

How does scaling the projection matrix change the transformation?

$$
\left.\left.\begin{array}{l}
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},-d \frac{y}{z}\right)} \\
{\left[\begin{array}{cccc}
-d & 0 & 0 & 0 \\
0 & -d & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
-d x \\
-d y \\
z
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},\right.}
\end{array}\right]-d \frac{y}{z}\right) .
$$

SAME

Perspective Projection

- What happens to parallel lines?
- What happens to angles?
- What happens to distances?

Perspective Projection

What happens when $\mathrm{d} \rightarrow \infty$?

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z}, \quad-d \frac{y}{z}\right)
$$

Orthographic projection

Special case of perspective projection

- Distance from the COP to the PP is infinite

- Good approximation for telephoto optics
- Also called "parallel projection": (x,y,z) $\rightarrow(x, y)$
- What's the projection matrix?

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \Rightarrow(x, y)
$$

3D

Orthographic Projection

Camera parameters

How many numbers do we need to describe a camera?

- We need to describe its pose in the world
- We need to describe its internal parameters

A Tale of Two Coordinate Systems

Two important coordinate systems:

1. World coordinate system
2. Camera coordinate system

Camera parameters

-To project a point (x, y, z) in world coordinates into a camera
-First transform (x, y, z) into camera coordinates
-Need to know

- Camera position (in world coordinates)
- Camera orientation (in world coordinates)
-Then project into the image plane
- Need to know camera intrinsics
-These can all be described with matrices

3D Translation

- 3D translation is just like 2D with one more coordinate

$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right]$	$=\left[\begin{array}{llll}1 & 0 & 0 & t x \\ 0 & 1 & 0 & t y \\ 0 & 0 & 1 & t z \\ 0 & 0 & 0 & 1\end{array}\right] \quad\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$
	$=[x+t x, y+t y, z+t z, 1]^{T}$

3D Rotation (just the 3×3 part shown)
About X axis: $\left\lvert\, \begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 \sin \theta & \cos \theta\end{array}\right. \| \quad$ About $Y:\left[\begin{array}{ccc}\cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta\end{array} \|\right.$
About Z axis: $\left|\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right|$

General (orthonormal) rotation matrix used in practice:

$$
\left[\begin{array}{lll}
r 11 & r 12 & r 13 \\
\text { r21 } & \text { r22 } & \text { r23 } \\
\text { r31 } & \text { r32 } & r 33
\end{array} \|\right.
$$

Camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principal point ($x^{\prime}{ }_{c}, y^{\prime}{ }_{c}$), pixel size (s_{x}, s_{y})
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

$$
\mathbf{x}=\left[\begin{array}{c}
w x \\
w y \\
w
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\boldsymbol{\Pi} \mathbf{X}
$$

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations
- The definitions of these parameters are not completely staņqardized
- especially intrinsics-varies from one book to another

Extrinsics

- How do we get the camera to "canonical form"?
- (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Extrinsics

- How do we get the camera to "canonical form"?
- (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Extrinsics

- How do we get the camera to "canonical form"?
- (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by -c Step 2: Rotate by R

$$
\left.\begin{array}{l}
\mathbf{u}^{T} \\
\mathbf{v}^{T} \\
\mathbf{w}^{T}
\end{array}\right]
$$

Extrinsics

- How do we get the camera to "canonical form"?
- (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by -c
Step 2: Rotate by \mathbf{R}

$$
\mathbf{R}=\left[\begin{array}{c}
\mathbf{u}^{T} \\
\mathbf{v}^{T} \\
\mathbf{w}^{T}
\end{array}\right]
$$

Perspective projection

in general, $\mathbf{K}=\left[\begin{array}{ccc}-f & s & c_{x} \\ 0 & -\alpha f & c_{y} \\ 0 & 0 & 1\end{array}\right] \begin{gathered}\text { fis the focal } \\ \text { lamera }\end{gathered}$
α : aspect ratio (1 unless pixels are not square)
S : skew (0 unless pixels are shaped like rhombi/parallelograms)
$\left(c_{x}, c_{y}\right)$: principal point ((0,0) unless optical axis doesn't intersect projection plane at oryigin)

Focal length

- Can think of as "zoom"

24 mm

50 mm

200mm

- Related to field of view

Projection matrix

Projection matrix

Distortion

No distortion

Pin cushion

Barrel

Radial distortion of the image

- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens

Correcting radial distortion

from Helmut Dersch

Where does all this lead?

- We need it to understand stereo
- And 3D reconstruction
- It also leads into camera calibration, which is usually done in factory settings to solve for the camera parameters before performing an industrial task.
- The extrinsic parameters must be determined.
- Some of the intrinsic are given, some are solved for, some are improved.

Camera Calibration

The idea is to snap images at different depths and get a lot of 2D-3D point correspondences.

x1, y1, z1, u1, v1
$\mathrm{x} 2, \mathrm{y} 2, \mathrm{z} 1, \mathrm{u} 2$, v2

xn, yn, zn, un, vn
Then solve a system of equations to get camera parameters.

Stereo

Amount of horizontal movement is

...inversely proportional to the distance from the camera

Depth from Stereo

- Goal: recover depth by finding image coordinate x^{\prime} that corresponds to x

Depth from disparity

$$
\text { disparity }=x-x^{\prime}=\frac{B \cdot f}{z}
$$

Disparity is inversely proportional to depth.

Depth from Stereo

- Goal: recover depth by finding image coordinate x^{\prime} that corresponds to x
- Sub-Problems

1. Calibration: How do we recover the relation of the cameras (if not already known)?
2. Correspondence: How do we search for the matching point x^{\prime} ?

Correspondence Problem

- We have two images taken from cameras with different intrinsic and extrinsic parameters
- How do we match a point in the first image to a point in the second? How can we constrain our search?

Key idea: Epipolar constraint

Potential matches for x have to lie on the corresponding line l '.

Potential matches for x ' have to lie on the corresponding line l.

Epipolar geometry: notation

- Baseline - line connecting the two camera centers
- Epipoles
= intersections of baseline with image planes
$=$ projections of the other camera center
- Epipolar Plane - plane containing baseline (1D family)

Epipolar geometry: notation

- Baseline - line connecting the two camera centers
- Epipoles
= intersections of baseline with image planes
$=$ projections of the other camera center
- Epipolar Plane - plane containing baseline (1D family)
- Epipolar Lines - intersections of epipolar plane with image planes (always come in corresponding pairs)

Example: Converging cameras

Example: Motion parallel to image plane

Epipolar constraint

- If we observe a point \boldsymbol{x} in one image, where can the corresponding point \boldsymbol{x}^{\prime} be in the other image?

Epipolar constraint

- Potential matches for \boldsymbol{x} have to lie on the corresponding epipolar line l '.
- Potential matches for \boldsymbol{x} ' have to lie on the corresponding epipolar line \boldsymbol{l}.

Epipolar constraint example

Epipolar constraint: Calibrated case

- Assume that the intrinsic and extrinsic parameters of the cameras are known
- We can multiply the projection matrix of each camera (and the image points) by the inverse of the calibration matrix to get normalized image coordinates
- We can also set the global coordinate system to the coordinate system of the first camera. Then the projection matrices of the two cameras can be written as $[\mathbf{I} \mid \mathbf{0}]$ and $[\mathbf{R} \mid \mathbf{t}]$

Simplified Matrices for the 2 Cameras

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)=(\mathbf{I} \mid \mathbf{0}) \\
& \left(\begin{array}{l|l}
\mathbf{R} & \mathbf{t} \\
\hline \mathbf{0} & 1
\end{array}\right)=(\mathrm{R} \mid \mathrm{T})
\end{aligned}
$$

Epipolar constraint: Calibrated case

The vectors $R x, t$, and x ' are coplanar

Epipolar constraint: Calibrated case

Essential Matrix E
(Longuet-Higgins, 1981)

The vectors $\boldsymbol{R} \boldsymbol{x}, \mathrm{t}$, and \boldsymbol{x} ' are coplanar

Epipolar constraint: Calibrated case

- $\boldsymbol{E} \boldsymbol{x}$ is the epipolar line associated with $\boldsymbol{x}\left(I^{\prime}=\boldsymbol{E} \boldsymbol{x}\right)$
- $\boldsymbol{E}^{\top} \boldsymbol{x}^{\prime}$ is the epipolar line associated with $\boldsymbol{x}^{\prime}\left(\boldsymbol{I}=\boldsymbol{E}^{\top} \boldsymbol{x}^{\prime}\right)$
- $\boldsymbol{E} \boldsymbol{e}=0$ and $\boldsymbol{E}^{\top} \boldsymbol{e}^{\prime}=0$
- \boldsymbol{E} is singular (rank two)
- E has five degrees of freedom

Epipolar constraint: Uncalibrated

case

- The calibration matrices \boldsymbol{K} and \boldsymbol{K}^{\prime} of the two cameras are unknown
- We can write the epipolar constraint in terms of unknown normalized coordinates: $\hat{\boldsymbol{x}}^{\prime T} \boldsymbol{E} \hat{\boldsymbol{x}}=0$

$$
\hat{\boldsymbol{x}}=\boldsymbol{K}^{-1} \boldsymbol{x}, \quad \hat{\boldsymbol{x}}^{\prime}=\boldsymbol{K}^{\prime-1} \hat{\boldsymbol{x}}^{\prime}
$$

Epipolar constraint: Uncalibrated

case

Epipolar constraint: Uncalibrated

- $\boldsymbol{F} \boldsymbol{x}$ is the epipolar line associated with $\boldsymbol{x}\left(\boldsymbol{l}^{\prime}=\boldsymbol{F} \boldsymbol{x}\right)$
- $\boldsymbol{F}^{T} \boldsymbol{x}^{\prime}$ is the epipolar line associated with $\boldsymbol{x}^{\prime}\left(\boldsymbol{l}^{\prime}=\boldsymbol{F}^{T} \boldsymbol{x}^{\prime}\right)$
- $\boldsymbol{F} \boldsymbol{e}=0$ and $\boldsymbol{F}^{T} \boldsymbol{e}^{\prime}=0$

The eight-point algorithm

$$
\begin{gathered}
\boldsymbol{x}=(u, v, 1)^{T}, \boldsymbol{x}^{\prime}=\left(u^{\prime}, v^{\prime}, 1\right) \\
{\left[\begin{array}{lll}
u^{\prime} & v^{\prime} & 1
\end{array}\right]\left[\begin{array}{ccc}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
v \\
1
\end{array}\right]=0 \longrightarrow\left[\begin{array}{llllll}
u^{\prime} u & u^{\prime} v & u^{\prime} & v^{\prime} u & v^{\prime} v & v^{\prime} \\
u^{\prime} & v & 1
\end{array}\right]\left[\begin{array}{l}
f_{11} \\
f_{12} \\
f_{13} \\
f_{21} \\
f_{22} \\
f_{23} \\
f_{31} \\
f_{32} \\
f_{33}
\end{array}\right]=0} \\
\text { Minimize: }
\end{gathered}
$$

$$
\sum_{i=1}^{n}\left(x_{i}^{\prime T} F x_{j}\right)^{2}
$$

under the constraint

$$
\|\boldsymbol{F}\|^{2}=1
$$

Comparison of estimation

	8-point	Normalized 8-point	Nonlinear least squares
Av. Dist. 1	2.33 pixels	0.92 pixel	0.86 pixel
Av. Dist. 2	2.18 pixels	0.85 pixel	0.80 pixel

Moving on to stereo...

Fuse a calibrated binocular stereo pair to produce a depth image

Dense depth map

Many of these slides adapted from Steve Seitz and Lana Lazebnik

Depth from disparity

$\frac{x-x^{\prime}}{O-O^{\prime}}=\frac{f}{z}$

$$
\text { disparity }=x-x^{\prime}=\frac{B \cdot f}{z}
$$

Disparity is inversely proportional to depth.

Basic stereo matching algorithm

- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- For each pixel x in the first image
- Find corresponding epipolar scanline in the right image
- Search the scanline and pick the best match x^{\prime}
- Compute disparity $x-x^{\prime}$ and set depth $(x)=f B /\left(x-x^{\prime}\right)$

Simplest Case: Parallel images

Epipolar constraint:

$$
\begin{gathered}
x^{T} E x^{\prime}=0, \quad E=t \times R \\
R=I \quad t=(T, 0,0)
\end{gathered}
$$

$$
E=t \times R=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -T \\
0 & T & 0
\end{array}\right]
$$

$\left(\begin{array}{lll}u & v & 1\end{array}\right)\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0\end{array}\right]\left(\begin{array}{l}u^{\prime} \\ v^{\prime} \\ 1\end{array}\right)=0$
The y-coordinates of corresponding points are the same

Stereo image rectification

Stereo image rectification

- Reproject image planes onto a common plane parallel to the line between camera centers
- Pixel motion is horizontal after this transformation
- Two homographies (3×3 transform), one for each input image reprojection
> C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. IEEE Conf. Computer Vision and Pattern Recognition, 1999.

Example

Unrectified

Rectified

- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD, SAD, or normalized correlation

Correspondence search

Correspondence search

Norm. corr

Effect of window size

$\mathrm{W}=3$

$W=20$

- Smaller window
+ More detail
- More noise
- Larger window
+ Smoother disparity maps
- Less detail
- Fails near boundaries

Failures of correspondence search

Textureless surfaces

Occlusions, repetition

Non-Lambertian surfaces, specularities

Results with window search
 Data

Window-based matching
Ground truth

How can we improve window-based matching?

- So far, matches are independent for each point
- What constraints or priors can we add?

Stereo constraints/priors

- Uniqueness
- For any point in one image, there should be at most one matching point in the other image

Stereo constraints/priors

- Uniqueness
- For any point in one image, there should be at most one matching point in the other image
- Ordering
- Corresponding points should be in the same order in both views

Stereo constraints/priors

- Uniqueness
- For any point in one image, there should be at most one matching point in the other image
- Ordering
- Corresponding points should be in the same order in both views

Ordering constraint doesn't hold

Priors and constraints

- Uniqueness
- For any point in one image, there should be at most one matching point in the other image
- Ordering
- Corresponding points should be in the same order in both views
- Smoothness
- We expect disparity values to change slowly (for the most part)

Stereo as energy minimization

- What defines a good stereo correspondence?

1. Match quality

- Want each pixel to find a good match in the other image

2. Smoothness

Matching windows:

Similarity Measure

Formula

Sum of Absolute Differences (SAD)

Sum of Squared Differences (SSD)

Zero-mean SAD

Locally scaled SAD

Normalized Cross Correlation (NCC)

SAD

SSD

NCC

Real-time stereo

Nomad robot searches for meteorites in Antartica http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

- Used for robot navigation (and other tasks)
- Several software-based real-time stereo

Stereo reconstruction pipeline
 - Steps

- Calibrate cameras
- Rectify images
- Compute disparity
- Estimate depth

What will cause errors?

- Camera calibration errors
- Poor image resolution
- Occlusions
- Violations of brightness constancy (specular reflections)
- Large motions
- Low-contrast image regions

Using more than two images

Multi-View Stereo for Community Photo Collections M. Goesele, N. Snavely, B. Curless, H. Hoppe, S. Seitz
 Proceedings of ICCV 2007,

