

Content-Based Image Retrieval

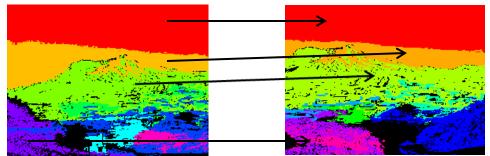
Steps

- Represent each image in the database we give you by a feature vector. (Preprocess)
- Design an image distance measure that can compare pairs of image.
- Retrieve, for each test image, the database images in ascending order of distance to the query. The query itself should have distance 0 and be first. Use the interface provided for retrieval.

Initial Processing

- First apply color clustering to the image to get a labeled image of multiple different cluster labels: 1, 2, 3, ...K.
- Then apply connected components (provided) to the labeled image to produce a second labeled image that labels each connected component of cluster labels: 1, 2, ... N. A single color cluster may break into more than one component.
- Possibly perform some noise cleaning to remove small regions. Don't vary parameters between images. You can get noise cleaning ideas or code from anywhere.

Features


- For each major region (use a size threshold), compute at least the following features:
 - size (number of pixels) given
 - mean color, in RGB, or whatever space you like given
 - at least the following co-occurrence texture features using spatial relationship d=(1,1): energy, entropy, contrast.
 - centroid (row, column)
 - bounding box (or if you prefer, could be an ellipse)
- Store the features in the feature vector defined in the code.

Extra Credit Features

- Other region features you want to add
- RAG (region adjacency graph) including for each pair of adjacent regions:
 - above adjacency
 - below adjacency
 - left adjacency
 - right adjacency
 - other
- A fancier distance function to handle RAGs.

Distance Measure

- Dist (I_1,I_2) determines the distance from image I_1 to image I_2 .
- Compute Dist from a correspondence you find from the regions of I₁ to those of I₂.
- Start with a greedy method: for each region of I₁, find the most similar region of I₂

Do not ask me HOW to do this. That's for you.

More on Distance Measure

- You should try at least two difference distance measures. They can differ in:
 - attributes used, weights on attributes
 - the actual distance, ie. Euclidean vs. others

 If you do the graph structure, you need some kind of graph distance. See S&S Section 11.6 or make up your own.

Report

- Turn in a brief report in Word or PDF that describes:
- 1. the attributes you implemented
- 2. the distance measures you tried
- 3. the results of your tests including both the 16 screenshots (1 for each of the 2 distance measures for each of the 8 query images) and your comments.

MainWindow

File

Load database

Done

Open Query Image

Query Image:

cherry_2

Check for Distance 2

Query database

Progress:

Distance to image 37 = 0.021549 Distance to image 38 = 0.019669 Distance to image 39 = 0.009538 Distance to image 40 = 0.041132

Reset

cherry 2 d = 0.00030

cherry_1 d = 0.00048

cherry 4 d = 0.00065

cherry_3 d = 0.00090

cherry 5 d = 0.00094

stHelens 3 d = 0.00258

stHelens_4 d = 0.00259

boat 1 d = 0.00269

stHelens_2 d = 0.00285

beach_4 d = 0.00337

stHelens_5 d = 0.00337

beach_3 d = 0.00359

crater_1 d = 0.00364

stHelens_1 d = 0.00398

beach_2

d = 0.00515

crater_3 d = 0.00525

d = 0.00568

crater_2

crater 4 d = 0.00585

boat_5 d = 0.00598

boat 3 d = 0.00651

boat 4 d = 0.00720

crater_5 d = 0.00739

d = 0.00753

beach_5 d = 0.00758

sunset1 4 d = 0.00871

pond_2 d = 0.00895

sunset2_4 d = 0.00954

sunset1 5 d = 0.01111

beach_1 d = 0.01119

pond 5 d = 0.01181

pond 4 d = 0.01196

pond_1 d = 0.01292

boat 2 d = 0.01413

sunset2_1 d = 0.01730

sunset2_3 d = 0.01967

sunset2_2 d = 0.02155

sunset1 3 d = 0.02297

sunset1 2 d = 0.02820

sunset2 5 d = 0.04113

sunset1 1 d = 0.04448