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What is an image?
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P = f (x, y)

f :R2 Þ R
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P = f (x, y)

f :R2 Þ R
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1. We sample the
image to get a
discrete set of
pixels with 
quantized values.

2.   For a gray tone 
image there is one
band F(r,c), with
values usually
between 0 and 
255.

3.   For a color image
there are 3 bands
R(r,c), G(r,c), B(r,c)



F( ) = 

Image Operations
(functions of functions)
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F( ) = 

Image Operations
(functions of functions)
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F( ) = 

Image Operations
(functions of functions)
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F( , ) =  

Image Operations
(functions of functions)
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Local image functions

F( ) = 
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What does it do?

• Replaces each pixel with an 
average of its neighborhood

• Achieve smoothing effect 
(remove sharp features)

111

111

111

Slide credit: David Lowe (UBC)
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Box Filter
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Smoothing with box filter
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Practice with linear filters
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Source: D. Lowe
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Practice with linear filters
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Source: D. Lowe
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Practice with linear filters
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Practice with linear filters
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Practice with linear filters
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Practice with linear filters
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Sharpening filter
- Accentuates differences with local 
average

Source: D. Lowe
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Sharpening

Source: D. Lowe
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Other filters
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Other filters
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Basic gradient filters
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Gaussian filter

* =

Input image f
Filter h

Output image g



Gaussian vs. mean filters

What does real blur look like?



• Spatially-weighted average

0.003   0.013   0.022   0.013   0.003
0.013   0.059   0.097   0.059   0.013
0.022   0.097   0.159   0.097   0.022
0.013   0.059   0.097   0.059   0.013
0.003   0.013   0.022   0.013   0.003

5 x 5,  = 1

Slide credit: Christopher Rasmussen

Important filter: Gaussian
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Smoothing with Gaussian filter
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Smoothing with box filter

34



Gaussian filters
• What parameters matter here?

• Variance of Gaussian: determines extent of 
smoothing

Source: K. Grauman
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Smoothing with a Gaussian

…

Parameter σ is the “scale” / “width” / “spread” of the Gaussian 
kernel, and controls the amount of smoothing.

Source: K. Grauman
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2D edge detection filters

is the Laplacian operator (sum of 2nd derivatives):

Laplacian of Gaussian

or LoG filter

Gaussian x derivative of Gaussian
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Often approximated by



First and second derivatives

Original First Derivative x Second Derivative x, y

What are these good for?



Subtracting filters

Original Second Derivative Sharpened



for some

Combining filters

*

*
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=

=
It’s also true:



Combining Gaussian filters

More blur than either individually (but less than                     )      

* = ?



Separable filters

* =

Compute Gaussian in horizontal 
direction, followed by the 
vertical direction.

Not all filters are separable.  
Freeman and Adelson, 1991

Much faster!



Linear vs. Non-Linear Filters

a. original image with Gaussian noise, b. Gaussian filtered, c. median filtered, d. bilateral filtered
e. original image with shot noise, f. Gaussian filtered, g. median filtered, h. bilateral filtered



Spatially varying filters

• Some filters vary spatially.  

• The bilateral filter is the product of a domain kernel (Gaussian) 
and a data dependent range kernel.

• d(i,j,k,l) = exp[(-(i-k)2+(j-l)2)/2d
2] is the domain kernel

• r(i,j,k,l)  = exp[-||f(i,j)-f(k,l)||2/2r
2] is the range kernel

• w(i,j,k,l) = d(i,j,k,l) * r(i,j,k,l) is their product

• g(i,j) = Σk,l f(k,l) w(i,j,k,l) / Σk,l w(i,j,k,l) is the bilateral filter

from Szeliski text



*

*

*

input output

Same Gaussian kernel everywhere.

Slides courtesy of Sylvian Paris

Constant blur: same kernel everywhere
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*

*

*

input output

The kernel shape depends on the image content.

Slides courtesy of Sylvian Paris

Bilateral filter: kernel depends on intensity 

Maintains edges when blurring!
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Borders

What to do about image borders:

black fixed periodic reflected
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Image Sampling

F( ) = 

F( ) = 



Image Scaling

This image is too big to

fit on the screen.  How

can we reduce it?

How to generate a half-

sized version?



Image sub-sampling

Throw away every other row and 

column to create a 1/2 size image

- called image sub-sampling

1/4

1/8



Image sub-sampling

1/4  (2x zoom) 1/8  (4x zoom)

Why does this look so bad?

1/2



Down-sampling

• Aliasing can arise when you sample a continuous signal or image

– occurs when your sampling rate is not high enough to capture the 
amount of detail in your image

– Can give you the wrong signal/image—an alias

– formally, the image contains structure at different scales

• called “frequencies” in the Fourier domain

– the sampling rate must be high enough to capture the highest frequency 
in the image



Subsampling with Gaussian 
pre-filtering

G 1/4

G 1/8

Gaussian 1/2

Solution:  filter the image, then subsample

• Filter size should double for each ½ size reduction. 



Finale

• Filtering is just applying a mask to an image.

• Computer vision people call the linear form of 
these operations “convolutions”. They are 
actually “correlations,” since the true convolution 
inverts the mask.

• There are many nonlinear filters, too, such as 
median filters and morphological filters.

• Filtering is the lowest level of image analysis and 
is taught heavily in image processing courses. 
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