Computer Vision

ECE/CSE 576

Linda Shapiro
Professor of Computer Science & Engineering
Professor of Electrical & Computer Engineering
Course Information

• Time:
 – Mondays and Wednesdays, 1:30 -2:50pm
• Location:
 – More 234
• Contact:
 – shapiro@cs.uw.edu , CSE 634
• TAs:
 – Bindita Chaudhuri
 – bindita@cs.washington.edu
 – Deepali Aneja
 – deepalia@cs.washington.edu
• Website:
 – https://courses.cs.washington.edu/courses/cse576/19sp/
One Look Is Worth A Thousand Words--

One look at our line of Republic, Firestone, Miller and United States tires can tell you more than a hundred personal letters or advertisements.

WE WILL PROVE THEIR VALUE BEFORE YOU INVEST ONE DOLLAR IN THEM.

Ever consider buying Supplies from a catalog?

What's the use! Call and see what you are buying. One look at our display of automobile and motorcycle accessories will convince you of the fact.

THAT WE HAVE EVERYTHING FOR THE AUTO

Piqua Auto Supply House

133 N. Main St.—Piqua, O.
Computer Vision

- **Low Level Vision**
 - Measurements
 - Enhancements
 - Region segmentation
 - Features

- **Mid Level Vision**
 - Reconstruction
 - Depth
 - Motion Estimation

- **High Level Vision**
 - Category detection
 - Activity recognition
 - Deep understandings
Computer Vision

• **Low Level Vision**
 – Measurements
 – Enhancements
 – Region segmentation
 – Features

• **Mid Level Vision**
 – Reconstruction
 – Depth
 – Motion Estimation

• **High Level Vision**
 – Category detection
 – Activity recognition
 – Deep understandings
Measurement

Brightness
Measurement

Length

Müller-Lyer Illusion

http://www.michaelbach.de/ot/sze_muelue/index.html
Image Enhancement

Image Inpainting, M. Bertalmío et al.
http://www.iua.upf.es/~mbertalmio//restoration.html
Image Enhancement

Image Inpainting, M. Bertalmío et al.

http://www.iua.upf.es/~mbertalmio//restoration.html
Image Enhancement

Image Inpainting, M. Bertalmío et al.
http://www.iua.upf.es/~mbertalmio//restoration.html
Seam Carving

[Shai & Avidan, SIGGRAPH 2007]
Traditional resizing uses and stretches the whole image.

Content-aware resizing uses important areas. Extends in horizontal direction and reduces in vertical.

[Shai & Avidan, SIGGRAPH 2007]
Computer Vision

• Low Level Vision
 – Measurements
 – Enhancements
 – Region segmentation
 – Features
• Mid Level Vision
 – Reconstruction
 – Depth
 – Motion Estimation
• High Level Vision
 – Category detection
 – Activity recognition
 – Deep understandings

The car is in front of the pole
Applications: 3D Scanning

Scanning Michelangelo’s “The David”
- [The Digital Michelangelo Project](http://graphics.stanford.edu/projects/mich/)
- UW Prof. [Brian Curless](http://graphics.stanford.edu/projects/mich/), collaborator
- 2 BILLION polygons, accuracy to .29mm
The Digital Michelangelo Project, Levoy et al.
Google’s 3D Maps
Structure estimation from tourist photos
Apple’s 3D maps

https://www.youtube.com/watch?v=lnlVv-LsgZE
Computer Vision

• Low Level Vision
 – Measurements
 – Enhancements
 – Region segmentation
 – Features

• Mid Level Vision
 – Reconstruction
 – Depth
 – Motion Estimation

• High Level Vision
 – Category detection
 – Activity recognition
 – Deep understandings
 – Pose estimation
Face detection

• Many new digital cameras now detect faces
 – Canon, Sony, Fuji, ...

Source: S. Seitz
Vision-based interaction: Xbox Kinect
How hard is computer vision?
“In 1966, Minsky hired a first-year undergraduate student and assigned him a problem to solve over the summer: connect a television camera to a computer and get the machine to describe what it sees.”

Crevier 1993, pg. 88
The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition".
“You’ll notice that Sussman never worked in vision again!” – Berthold Horn
Why vision is so hard?
Why is vision so hard?

- Ill-posed problem

[Sinha and Adelson 1993]
Challenges 1: view point variation
Challenges 2: illumination

slide credit: S. Ullman
Challenges 3: occlusion

Magritte, 1957

slide by Fei Fei, Fergus & Torralba
Challenges 4: scale
Challenges 5: deformation

Xu, Beihong 1943
Challenges 6: background clutter

Klimt, 1913

slide by Fei Fei, Fergus & Torralba
Challenges 7: object intra-class variation
Challenges 8: local ambiguity

slide by Fei-Fei, Fergus & Torralba
Challenges 9: the world behind the image
What Works Today?
• Reading license plates, zip codes, checks
Biometrics

Fingerprint scanners on many new laptops, other devices

Face recognition systems now beginning to appear more widely
http://www.sensiblevision.com/

Source: S. Seitz
Mobile visual search: **Google Goggles**

Google Goggles in Action

Click the icons below to see the different ways Google Goggles can be used.

- Landmark
- Book
- Contact Info
- Artwork
- Places
- Wine
- Logo
Face detection

- Many new digital cameras now detect faces
 - Canon, Sony, Fuji, ...
Smile detection

The Smile Shutter flow

Imagine a camera smart enough to catch every smile! In Smile Shutter Mode, your Cyber-shot® camera can automatically trip the shutter at just the right instant to catch the perfect expression.

Source: S. Seitz
Face recognition: Apple iPhoto, Facebook, Google, etc
Object recognition (in supermarkets)

LaneHawk by EvolutionRobotics
“A smart camera is flush-mounted in the checkout lane, continuously watching for items. When an item is detected and recognized, the cashier verifies the quantity of items that were found under the basket, and continues to close the transaction. The item can remain under the basket, and with LaneHawk, you are assured to get paid for it... “
Computer alert for drowning girl

A 10-year-old girl has been saved from drowning by a computer system designed to raise the alarm when swimmers get into difficulties.

The girl, from Rochdale, was at the deep end of the pool in Bangor, north Wales, when she sank to the bottom.

The £65,000 system, called Poseidon, detected her on the pool floor and sounded the alarm. A lifeguard pulled her out and she recovered in hospital.
December 4, 2009 (CHICAGO) (WLS) -- Chicago police have closed the case in the death of Chicago School Board President Michael Scott.

Police Supt. Jody Weis says investigators used police cameras in the city to trace Scott's last steps in the hours before his body was found in November.

Scott's death has been ruled a suicide. The medical examiner's office concluded --not long after Scott's body was found -- that he had committed suicide. Police did not dispute the finding but wanted to pursue all the investigative leads they could. They say they have done that and have now reached the same conclusion.
Automotive safety

- Mobileye: Vision systems in high-end BMW, GM, Volvo models
 - Pedestrian collision warning
 - Forward collision warning
 - Lane departure warning
 - Headway monitoring and warning

Source: A. Shashua, S. Seitz
Google cars

Christine Dobby
Aug 9, 2011, "Human error blamed after Google's driverless car sparks five-vehicle crash". The Star (Toronto)
Vision-based interaction: Xbox Kinect
Augmented reality, consumer products
Special effects: shape and motion capture

Source: S. Seitz
Vision for robotics, space exploration

Vision systems (JPL) used for several tasks

- Panorama stitching
- 3D terrain modeling
- Obstacle detection, position tracking
- For more, read “Computer Vision on Mars” by Matthies et al.

NASA'S Mars Exploration Rover Spirit captured this westward view from atop a low plateau where Spirit spent the closing months of 2007.
Medical imaging

3D imaging
MRI, CT

Image guided surgery
Grimson et al., MIT
Classification of 22q11.2DS

- Treat 2D azimuth-elevation angle histogram as feature vector

<table>
<thead>
<tr>
<th></th>
<th>8×8</th>
<th>16×16</th>
<th>24×24</th>
<th>32 × 32</th>
<th>Experts’ median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole 2D hist</td>
<td>0.651</td>
<td>0.569</td>
<td>0.79</td>
<td>0.684</td>
<td>0.68</td>
</tr>
</tbody>
</table>
Computer vision in other scientific fields
Computer vision research in biology

http://leafsnap.com/

http://www.vision.caltech.edu/visipedia/
Computer vision in cosmology

http://astrometry.net/
Computer vision research in healthcare

assisted living, patient monitoring
[Lan et al, PAMI 2012]

autism screening
http://www.gatech.edu/newsroom/release.html?nid=60509
Computer vision in the real-world

• Most examples are less than 5 years old
• Very active research area. Many new applications to come.
• A website of computer vision industries maintained by Prof. David Lowe (UBC):

http://www.cs.ubc.ca/~lowe/vision.html
Topics

• Filtering, Sampling, Edge Finding, Transformations
• Color, Texture, Segmentation
• Interest Points and Region Descriptors
• Image Stitching
• Machine Learning
• Object Detection and Recognition
• Content-Based Image Retrieval
• Cameras, Stereo, Reconstruction
• Motion, Optical Flow
• 3D Shape
• Applications
Grading (tentative)

• Three regular assignments (50%)
 – Using Qt (cross platform UI in c++) qt.nokia.com
 – Use of interactive UIs for exploring and gaining intuition
 1. Filters, edge detection, segmentation
 2. Creating panoramas
 3. Content-based image retrieval
• One Course Project (30%)
• One Exam (20%)
Project 1: Image Filtering
Project 2: Panorama Stitching
Project 3: Content-Based Image Retrieval
Final Course Project: Machine Learning for Some Kind of Recognition
Books

Older, but designed for undergrads and has the basics. Chapters available from our web page.

Newest and available as a pdf online.