Reconstruction

EE/CSE 576 Linda Shapiro

3D model

- "Digital copy" of real object
- Allows us to
 - Inspect details of object
 - Measure properties
 - Reproduce in different material
- Many applications
 - Cultural heritage preservation
 - Computer games and movies
 - City modelling
 - E-commerce

Applications: cultural heritage

SCULPTEUR European project

Applications: art

Block Works Precipitate III 2004 *Mild steel blocks* 80 x 46 x 66 cm

Domain Series Domain VIII Crouching 1999 *Mild steel bar* 81 x 59 x 63 cm

Applications: structure engineering

BODY / SPACE / FRAME, Antony Gormley, Lelystad, Holland

Applications: 3D indexation

Applications: archaeology

• "forma urbis romae" project

Fragments of the City: Stanford's Digital Forma Urbis Romae Project David Koller, Jennifer Trimble, Tina Najbjerg, Natasha Gelfand, Marc Levoy

Proc. Third Williams Symposium on Classical Architecture, Journal of Roman Archaeology supplement, 2006.

1186 fragments

Applications: large scale modelling

[Furukawa10]

[Pollefeys08]

[Goesele07]

Applications: Medicine

(a) Radius difference

(c) Curvature difference

(b) Angle difference

(d) Edge difference

expert's order	1	2	3	4	5	6	7	8	9	10
images	SE	5	T	2		R	R	6	R	6
learning	1	3	2	4	5	6	8	9	7	10
a-lmk	1	2	3	5	6	4	8	7	9	10
mirror	1	2	4	8	5	6	9	3	7	10
m-lmk	1	2	3	4	5	6	9	7	10	8
plane	1	2	3	5	4	6	7	9	10	8

Scanning technologies

- Laser scanner, coordinate measuring machine
 - Very accurate
 - Very Expensive
 - Complicated to use

Minolta

Contura CMM

Medical Scanning System

The "Us" Data Set (subset)

3d shape from photographs

"Estimate a 3d shape that would generate the input photographs given the same material, viewpoints and illumination"

Photometric Stereo

- Estimate the surface normals of a given scene given multiple 2D images taken from the *same* viewpoint, but under *different lighting* conditions.
- Basic photometric stereo required a Lambertian reflectance model:

 $I = \rho \mathbf{n} \cdot \mathbf{v}$

where I is pixel intensity, **n** is the normal, **v** is the lighting direction, and ρ is diffuse albedo constant, which is a reflection coefficient.

Basic Photometric Stereo

Basic Photometric Stereo

Basic Photometric Stereo

- K light sources
- Lead to K images R₁(p,q), ..., R_K(p,q) each from just one of the light sources being on
- For any (p,q), we get K intensities I₁,...I_K
- Leads to a set of linear equations of the form

 $I_k = \rho \mathbf{n} \bullet \mathbf{v}_k$

• Solving leads to a surface normal map.

Photometric Stereo

Inputs

3d shape from photographs

Photograph based 3d reconstruction is:

- ✓ practical
- ✓ fast
- ✓ non-intrusive
- ✓ low cost
- Easily deployable outdoors
- × "low" accuracy
- × Results depend on material properties

Reconstruction

 Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape

Reconstruction

- Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape
- "Images of the same object or scene"
 - Arbitrary number of images (from two to thousands)
 - Arbitrary camera positions (camera network or video sequence)
 - Calibration may be initially unknown
- "Representation of 3D shape"
 - Depth maps
 - Meshes
 - Point clouds
 - Patch clouds
 - Volumetric models
 - Layered models

Multiple-baseline stereo

M. Okutomi and T. Kanade, <u>"A Multiple-Baseline Stereo System,"</u> IEEE Trans. on Pattern Analysis and Machine Intelligence, 15(4):353-363 (1993).

Reconstruction from silhouettes

Can be computed robustly Can be computed efficiently

foreground

Reconstruction from Silhouettes

 The case of binary images: a voxel is photoconsistent if it lies inside the object's silhouette in all views

Binary Images —

Reconstruction from Silhouettes

 The case of binary images: a voxel is photoconsistent if it lies inside the object's silhouette in all views

Finding the silhouette-consistent shape (visual hull):

- Backproject each silhouette
- Intersect backprojected volumes

Calibrated Image Acquisition

Calibrated Turntable

Selected Dinosaur Images

Selected Flower Images

Space Carving in General

Space Carving Algorithm

- Initialize to a volume V containing the true scene
- Choose a voxel on the outside of the volume
- Project to visible input images
- Carve if not photo-consistent (inside object's silhouette)
- Repeat until convergence

K. N. Kutulakos and S. M. Seitz, <u>A Theory of Shape by Space Carving</u>, *ICCV* 1999

Our 4-camera light-striping stereo system

(now deceased)

The idea is to snap images at different depths and get a lot of 2D-3D point correspondences.

Surface Modeling and Display from Range and Color Data

7	Karî	Pulli	UW
	Michael	Cohen	MSR
	Tom	Duchamp	UW
	Hugues	Hoppe	MSR
	John	McDonald	UW
	Lìnda	Shapiro	UW
	Werner	Stuetzle	UW

UW =	University of Washington
	Seattle, WA USA
MSR =	Microsoft Research
	Redmond, WA USA

Introduction

Goal

- develop robust algorithms for constructing
 3D models from range & color data
- use those models to produce realistic renderings of the scanned objects

Surface Reconstuction

Step 1: Data acquisition

Obtain range data that covers the object. Filter, remove background.

Step 2: Registration

Register the range maps into a common coordinate system.

Step 3: Integration

Integrate the registered range data into a single surface representation.

Step 4: Optimization

Fit the surface more accurately to the data, simplify the representation.

Carve space in cubes

Volume under consideration

Label cubes

- Project cube to image plane (hexagon)
- Test against data in the hexagon

3D space is made up of many cubes.

OUTSIDE

one of many cubes in virtual 3D cube space

Several views

Hierarchical space carving

- Big cubes => fast, poor results
- Small cubes => slow, more accurate results.
- Combination = octrees
- RULES: cube's out => done • cube's in => done • else => recurse

Hierarchical space carving

- Big cubes => fast, poor results
- Small cubes => slow, more accurate results
- Combination = octrees

RULES: • cube's out => done • cube's in => done • else => recurse

The rest of the chair

Same for a husky pup

Optimizing the dag mesh

View dependent texturing

More: Space Carving Results: African Violet

Input Image (1 of 45)

Reconstruction

Reconstruction

Reconstruction

Source: S. Seitz

More: Space Carving Results: Hand

Input Image (1 of 100)

Views of Reconstruction

Stereo from community photo collections

- Up to now, we've always assumed that camera calibration is known
- For photos taken from the Internet, we need structure from motion techniques to reconstruct both camera positions and 3D points. (SEE POSTED VIDEO)

From Moiumbo?

From laurenbou...

From StephiGra

Head Reconstruction from Uncalibrated Internet Photos

Input: Internet photos in different poses and expressions

Output: 3D model of the head

work of Shu Liang