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Problem Statement

• Limited computational resources
• Only 256 CUDA cores in comparison to 

standard GPU cards such as TitanX
which has 3500+ cuda cores

• CPU and GPU shares the RAM

• Limited Power (TX2 can run in two 
modes that has TDP requirement of 
7.5V [Max-Q] and 15 V [Max-P])
• Max-Q’s performance is identical to 

TX1. GPU Clock @ 828 MHz
• Max-P boosts the clock rates to the 

max. value. GPU clock @1300 MHz
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Figure: Hardware-level resource comparison on a 
desktop and embedded device
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• Deep networks cannot be used 
in embedded devices because of 
hardware constraints
• Limited computational resources
• Limited energy overhead
• Restrictive memory constraints
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What is Semantic Segmentation?

Input: RGB Image Output: A segmentation Mask



Overview

• A standard CNN architecture stacks 
• Convolutional layers

• Pooling layers

• Activation and Batch normalization layers 
(see [r1])

• Linear (Fully connected) layers

Figure: Example of Stacking layers in 
CNN network

Source:
[r1] Xu, Bing, et al. "Empirical evaluation of rectified activations in convolutional network." arXiv preprint 
arXiv:1505.00853 (2015).



Overview: Convolution

• A convolution layer compute the output 
of neurons that are connected to local 
regions in the input.

• For a CNN processing RGB images, a 
convolutional kernel is usually a 3-
dimensional (𝑀 × 𝑛 × 𝑛) that is 
applied over  𝑀 channels to produce 
the output feature map. 𝑛

𝑛
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𝑁

Figure: An example of 3x3 convolutional 
kernel  processing an input of size 5x5

Figure: A convolutional kernel visualization

Source: 
http://deeplearning.net/software/theano/tutorial/conv_
arithmetic.html



Pooling

• Pooling operations help the CNN network to learn scale-invariant 
representations.

• Common pooling operations are:
• Max. Pooling

• Average Pooling

• Strided convolution



Pooling: Max Pooling

Note: Average pooling layer is the same as Max pooling layer except that the kernel is performing a averaging 
function instead of maximum.

Source: http://cs231n.stanford.edu/

Figure: Max pooling example



Pooling: Strided Convolution

Figure: 3x3 convolution with 
a stride of 1

Figure: 3x3 convolution with a 
stride of 2

Source: http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html



Efficient Networks



MobileNet

• Uses depth-wise separable convolution
• First compute kernel per input channel

• Apply point-wise convolution to increase the number of channels.

Figure: A standard convolution 
kernel

Figure: Depth-wise separable 
convolution kernel

Depth-wise convolution

Point-wise convolution



MobileNet

• Uses depth-wise separable convolution
• First compute kernel per input channel

• Apply point-wise convolution to increase the number of channels.

Figure: A standard convolution 
kernel

Figure: Depth-wise separable 
convolution kernel

Figure: Block-wise representation

Depth-wise convolution

Point-wise convolution

Source:
Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." arXiv preprint arXiv:1704.04861 (2017).



ShuffleNet

• ShuffleNet uses the similar block structure as 
ResNet, but with following modifications:
• 1x1 point-wise convolutions are replaced with grouped 

convolution

• 3x3 standard convolutions are replaced with the depth-
wise convolution

Figure: ShuffleNet block

Source:
Zhang, Xiangyu, et al. "Shufflenet: An extremely efficient convolutional neural network for mobile devices." arXiv preprint arXiv:1707.01083 (2017).



ShuffleNet

• ShuffleNet uses the similar block structure as 
ResNet, but with following modifications:
• 1x1 point-wise convolutions are replaced with grouped 

convolution

• 3x3 standard convolutions are replaced with the depth-
wise convolution

Figure: ShuffleNet block

Figure: Standard convolution Figure: Grouped convolution 

Source: https://blog.yani.io/filter-group-tutorial/



ESPNet



ESP Block

• ESP is the basic building block of ESPNet

• Standard convolution is replaced by
• Point-wise convolution
• Spatial pyramid of dilated convolution

Figure: ESP Kernel-level 
visualization Figure: ESP block-level  visualization



Dilated/Atrous Convolution

• Dilated convolutions are special form of 
standard convolution in which the 
effective receptive field is increased by 
inserting zeros (or holes) between each 
pixel in the convolutional kernel.

Source: http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html

Figure: Dilated convoltuion



Gridding problem with Dilated Convolutions

Figure: Gridding artifact in dilated convolution



Gridding problem with Dilated Convolutions

• Solution
• Add convolution layers with lower dilation rate at the end of the network (see 

below links for more details)

• Cons: Network parameter increases 
Source:
• Yu, Fisher, Vladlen Koltun, and Thomas Funkhouser. "Dilated residual networks." CVPR, 2017.
• Wang, Panqu, et al. "Understanding convolution for semantic segmentation." WACV, 2018.



Hierarchical feature fusion for de-gridding

Figure: ESP Block with Hierarchical Feature Fusion (HFF)



Hierarchical feature fusion (HFF) for de-
gridding

Figure: Feature map visualization with and without HFF

Figure: ESP Block with HFF



Input-reinforcement: An efficient way of 
improving the performance
• Information is lost due to filtering or 

convolution operations.

• Reinforce the input inside the 
network to learn better 
representations

mIOU Parameters

Without input reinforcement 0.40 0.186 M

With input reinforcement 0.42 0.187 M

* Results on the cityscape urban visual scene understanding 
dataset
* mIOU is mean intersection over union Figure: ESPNet without and with input reinforcement



ESPNet with a light-weight decoder

• Adding 20,000 more parameters 
improved the accuracy by 6%.

Figure: ESPNet without and with light weight decoder

Figure: Comparison between ESPNet without and with 
light weight decoder on the Cityscape validation dataset



Comparison with efficient 
networks



Network size vs Accuracy

Network size is the amount 
of space required to store 
the network parameters

Under similar constraints, 
ESPNet outperform MobileNet
and ShuffleNet by about 6%.



Inference Speed vs Accuracy

Inference speed is measured 
in terms of frames processed 
per second.

Device - Laptop
CUDA Cores – 640

Under similar constraints, 
ESPNet outperform 

MobileNet and ShuffleNet by 
about 6%.



Comparison with state-of-the-art 
networks



Accuracy vs Network size

Network size is the amount of 
space required to store the 
network parameters

ESPNet is small in size and 
well suited for edge devices.



Accuracy vs Network parameters

ESPNet learns fewer 
parameters while 

delivering competitive 
accuracy. 



Power Consumption vs Inference Speed

Figure: Standard GPU (NVIDIA-TitanX: 3,500+ CUDA 
Cores)

Figure: Mobile GPU (NVIDIA-Titan 960M: 640 CUDA 
Cores)

ESPNet is fast and consumes less power while 
having a good segmentation accuracy. 



Inference Speed and Power Consumption on 
Embedded Device (NVIDIA TX2)

Figure: Inference speed at different GPU frequencies Figure: Power consumption vs samples

ESPNet processes a RGB image 
of size 1024x512 at a frame 

rate of 9 FPS. 



Visual Results on the Cityscape validation set



Visual Results on unseen set



Results on Breast Biopsy Whole 
Slide Image Dataset



Results on Breast Biopsy dataset

• The average size of breast biopsy 
images is 10,000 x 12,000 pixels

• 58 images marked by expert 
pathologists into 8 different tissue 
categories were split into equal 
training and validation sets.

• ESPNet delivered the same 
segmentation performance while 
learning 9.46x lesser parameters 
than state-of-the-art networks.



Visual results

RGB Image Ground Truth Predicted Semantic Mask



Visual results

RGB Image Ground Truth
Predicted Semantic 

Mask
RGB Image Ground Truth

Predicted Semantic 
Mask
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