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Problem Statement

* Limited computational resources

* Only 256 CUDA cores in comparison to
standard GPU cards such as TitanX
which has 3500+ cuda cores

e CPU and GPU shares the RAM

 Limited Power (TX2 can run in two
modes that has TDP requirement of
7.5V [Max-Q] and 15 V [Max-P])

 Max-Q’s performance is identical to
TX1. GPU Clock @ 828 MHz

* Max-P boosts the clock rates to the
max. value. GPU clock @1300 MHz
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Figure: Hardware-level resource comparison on a
desktop and embedded device
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e Accurate segmentation
networks are deep and learns
more parameters. As a

consequence, they are slow and
power hungry.
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Problem Statement

e Accurate segmentation
networks are deep and learns
more parameters. As a
consequence, they are slow and
power hungry.

* Deep networks cannot be used
in embedded devices because of
hardware constraints

* Limited computational resources
* Limited energy overhead

Applications

Limited energy Restrictive memor y Limited compute
overhead constraints power

Resource Constraints

* Restrictive memory constraints
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e Results



What is Semantic Segmentation?

Input: RGB Image Output: A segmentation Mask



Overview

A standard CNN architecture stacks
° I Input
Convolutional layers 02 1ox3
* Pooling layers

e Activation and Batch normalization layers
(see [rl])

 Linear (Fully connected) layers

Source:

~ Pooling
~ Llayer

Output
ﬁ 128x64x20

Convolution
Layer

Figure: Example of Stacking layers in
CNN network

[r1] Xu, Bing, et al. "Empirical evaluation of rectified activations in convolutional network." arXiv preprint

arXiv:1505.00853 (2015).



Overview: Convolution

e A convolution layer compute the output
of neurons that are connected to local
regions in the input.

* For a CNN processing RGB images, a
convolutional kernel is usually a 3-
dimensional (M X n X n) that is
applied over M channels to produce
the output feature map.

Figure: An example of 3x3 convolutional
kernel processing an input of size 5x5

Source:
http://deeplearning.net/software/theano/tutorial/conv_
arithmetic.html
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Figure: A convolutional kernel visualization



Pooling

* Pooling operations help the CNN network to learn scale-invariant
representations.

* Common pooling operations are:
* Max. Pooling
* Average Pooling
 Strided convolution



Pooling: Max Pooling

Single depth slice
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max pool with 2x2 filters
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Figure: Max pooling example

Note: Average pooling layer is the same as Max pooling layer except that the kernel is performing a averaging
function instead of maximum.

Source: http://cs231n.stanford.edu/



Pooling: Strided Convolution

Figure: 3x3 convolution with Figure: 3x3 convolution with a
a stride of 1 stride of 2

Source: http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html



Efficient Networks



MobileNet

* Uses depth-wise separable convolution

* First compute kernel per input channel
* Apply point-wise convolution to increase the number of channels.
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MobileNet

* Uses depth-wise separable convolution
* First compute kernel per input channel

* Apply point-wise convolution to increase the number of channels.
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Figure: Depth-wise separable
convolution kernel

Source:

Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." arXiv preprint arXiv:1704.04861 (2017).
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Figure: Block-wise representation




ShuftleNet

e ShuffleNet uses the similar block structure as
ResNet, but with following modifications:

* 1x1 point-wise convolutions are replaced with grouped
convolution

* 3x3 standard convolutions are replaced with the depth-

wise convolution

Source:
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Figure: ShuffleNet block

Zhang, Xiangyu, et al. "Shufflenet: An extremely efficient convolutional neural network for mobile devices." arXiv preprint arXiv:1707.01083 (2017).



ShuftleNet

e ShuffleNet uses the similar block structure as
ResNet, but with following modifications:

* 1x1 point-wise convolutions are replaced with grouped

convolution

* 3x3 standard convolutions are replaced with the depth-

wise convolution
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Figure: Standard convolution
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Figure: Grouped convolution
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Figure: ShuffleNet block

Source: https://blog.yani.io/filter-group-tutorial/




ESPNet



ESP Block

e ESP is the basic building block of ESPNet

e Standard convolution is replaced by
* Point-wise convolution
* Spatial pyramid of dilated convolution

Step 1: Reduce '_Step 2: Split and Transform
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Dilated/Atrous Convolution

* Dilated convolutions are special form of
standard convolution in which the
effective receptive field is increased by
inserting zeros (or holes) between each
pixel in the convolutional kernel.

Figure: Dilated convoltuion

Source: http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html



Gridding problem with Dilated Convolutions

ke =

3 X 3 convolution kernel
Input with a dilation rate of 2

Output

Figure: Gridding artifact in dilated convolution



Gridding problem with Dilated Convolutions

[] b S p—

3 X 3 convolution kernel
with a dilation rate of 2

Input Output

e Solution

* Add convolution layers with lower dilation rate at the end of the network (see
below links for more details)

* Cons: Network parameter increases

Source:
* VYu, Fisher, Vladlen Koltun, and Thomas Funkhouser. "Dilated residual networks." CVPR, 2017.
* Wang, Panqu, et al. "Understanding convolution for semantic segmentation." WACV, 2018.



Hierarchical feature fusion for de-gridding

ESP Strategy

A4
Reduce | M, 1x1,d |
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Figure: ESP Block with Hierarchical Feature Fusion (HFF)



Hierarchical feature fusion (HFF) for de-
oridding

ESP Strategy
Reduce

Split

Transform [ d,ny Xny,d ][ d,ny X ny,d ][ d,ny x n3,d ]-'-[d,nKan,d]
(

\

Figure: ESP Block with HFF

Figure: Feature map visualization with and without HFF



Input-reinforcement: An efficient way of
improving the performance

* Information is lost due to filtering or
convolution operations.

* Reinforce the input inside the
network to learn better
representations Coneat

] (128,128
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* Results on the cityscape urban visual scene understanding oy wg
dataset Segmentation Mask Segmentation Mask

* mIOU is mean intersection over union

RGB Image
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R

Figure: ESPNet without and with input reinforcement



ESPNet with a light-weight decoder

RGB Image

* Adding 20,000 more parameters
improved the accuracy by 6%.

ESPNet-C (Fig. 4¢) ESPNet (Fig. 4d)
o3 mloU #Para.ms Net.work mIOU T#Paf'a.ms Netyvork
(in million)| size (in million)| size

31 49.0 0.187 [0.7SMB|| 56.3 0.202 |0.82 MB
51512 0.252 |[1.01 MB|| 57.9 0.267 |1.07MB
8| 53.3 0.349 |1.40MB|| 614 0.364 |1.46 MB

Figure: Comparison between ESPNet without and with
light weight decoder on the Cityscape validation dataset
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Figure: ESPNet without and with light weight decoder



Comparison with efficient
networks



Network size vs Accuracy

ResNet ©
ESP

© © ResNext

© © Inception
MobileNet
© ShuffleNet

Network size is the amount
of space required to store
the network parameters

9

S)

Under similar constraints,
ESPNet outperform MobileNet
and ShuffleNet by about 6%.
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Inference Speed vs Accuracy

Inference speed is measured

in terms of frames processed

56 @ ResNet ESP per second.
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Comparison with state-of-the-art
networks



Accuracy vs Network size
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Accuracy vs Network parameters

Category-wise miOU [%]
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ESPNet learns fewer
parameters while
delivering competitive
accuracy.
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Power Consumption vs Inference Speed
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Figure: Standard GPU (NVIDIA-TitanX: 3,500+ CUDA
Cores)

ESPNet is fast and consumes less power while
having a good segmentation accuracy.
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Figure: Mobile GPU (NVIDIA-Titan 960M: 640 CUDA
Cores)



Inference Speed and Power Consumption on
EmbEdded DeVice (NV'D'A TXZ) | ESPNet processes a RGB image
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Figure: Inference speed at different GPU frequencies
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Figure: Power consumption vs samples



Visual Results on the Cityscape validation set

e NGB Ground Truth ENet ERFNet ESPNet




Visual Results on unseen set

RGB Ground Truth ENet ERFNet ESPNet




Results on Breast Biopsy Whole
Slide Image Dataset



Results on Breast Biopsy dataset

* The average size of breast biopsy
images is 10,000 x 12,000 pixels

* 58 images marked by expert

. . / . Model Module mIOU # Params
pathologlsts into 8 @fferent tissue ESPNet (Ours)y” | ESP 14403 2.75
categories were spl!t into equal SegNet [39] vaG | 376 12.80
training and validation sets. Mehta et al. [36]| ResNet | 44.20  26.03

* ESPNet delivered the same
segmentation performance while
learning 9.46x lesser parameters
than state-of-the-art networks.
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