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Müller-Lyer Illusion

http://www.michaelbach.de/ot/sze_muelue/index.html

• What do you know about perspective projection?

• Vertical lines?

• Other lines?
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Image formation

Let’s design a camera

• Idea 1:  put a piece of film in front of an object

• Do we get a reasonable image?

FilmObject
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Pinhole camera

Add a barrier to block off most of the rays

• This reduces blurring

• The opening known as the aperture

• How does this transform the image?

FilmObject Barrier
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Adding a lens

A lens focuses light onto the film

• There is a specific distance at which objects are “in focus”

– other points project to a “circle of confusion” in the image

• Changing the shape of the lens changes this distance

“circle of 

confusion”
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Lenses

A lens focuses parallel rays onto a single focal point

• focal point at a distance f beyond the plane of the lens

– f is a function of the shape and index of refraction of the lens

• Aperture of diameter D restricts the range of rays

– aperture may be on either side of the lens

• Lenses are typically spherical (easier to produce)

• Real cameras use many lenses together (to correct for aberrations)

focal point

F

optical center

(Center Of Projection)
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Thin lenses

Thin lens equation:

• Any object point satisfying this equation is in focus

7



Digital camera

A digital camera replaces film with a sensor array

• Each cell in the array is a Charge Coupled Device (CCD)

– light-sensitive diode that converts photons to electrons

• CMOS is becoming more popular (esp. in cell phones)

– http://electronics.howstuffworks.com/digital-camera.htm
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Issues with digital cameras
Noise

– big difference between consumer vs. SLR-style cameras

– low light is where you most notice noise

Compression
– creates artifacts except in uncompressed formats (tiff, raw) 

Color
– color fringing artifacts from Bayer patterns

Blooming
– charge overflowing into neighboring pixels

In-camera processing
– oversharpening can produce halos

Interlaced vs. progressive scan video
– even/odd rows from different exposures

Are more megapixels better?
– requires higher quality lens

– noise issues

Stabilization
– compensate for camera shake (mechanical vs. electronic)

More info online, e.g.,
• http://electronics.howstuffworks.com/digital-camera.htm

• http://www.dpreview.com/
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http://www.dpreview.com/learn/?/key=noise
http://www.dpreview.com/learn/?/key=jpeg
http://www.dpreview.com/learn/?/Glossary/Optical/chromatic_aberration_01.htm
http://electronics.howstuffworks.com/digital-camera4.htm
http://www.dpreview.com/learn/?/key=blooming
http://www.dpreview.com/learn/?/key=sharpening
http://www.axis.com/products/video/camera/progressive_scan.htm
http://electronics.howstuffworks.com/digital-camera.htm


Projection

Mapping from the world (3d) to an image (2d)
• Can we have a 1-to-1 mapping?

• How many possible mappings are there?

An optical system defines a particular 
projection. We’ll talk about 2:

1. Perspective projection (how we see “normally”)

2. Orthographic projection (e.g., telephoto lenses)
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Modeling projection

The coordinate system
• We will use the pin-hole model as an approximation

• Put the optical center (Center Of Projection) at the origin

• Put the image plane (Projection Plane) in front of the COP

• The camera looks down the negative z axis

– we need this if we want right-handed-coordinates

3D point
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negative z axis
C



Modeling projection

Projection equations
• Compute intersection with PP of ray from (x,y,z) to COP

• Derived using similar triangles 

• We get the projection by throwing out the last coordinate:
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y/z = y´/-d
y´ = -d(y/z)

(x´,y´)



Homogeneous coordinates

Is this a linear transformation?

Trick:  add one more coordinate:

homogeneous image 

coordinates

homogeneous scene 

coordinates

Converting from homogeneous coordinates

• no—division by z is nonlinear

13



Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

divide by third coordinate

This is known as perspective projection

• The matrix is the projection matrix
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projection matrix   3D point                                  2D point



Perspective Projection Example

1. Object point at (10, 6, 4), d=2
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2. Object point at (25, 15, 10)
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Perspective projection is not 1-to-1!
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Perspective Projection

How does scaling the projection matrix change the transformation?
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SAME



Perspective Projection

• What happens to parallel lines?

• What happens to angles?

• What happens to distances?
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Perspective Projection

What happens when d?
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Orthographic projection

Special case of perspective projection

• Distance from the COP to the PP is infinite

• Good approximation for telephoto optics

• Also called “parallel projection”:  (x, y, z) → (x, y)

• What’s the projection matrix?

Image World
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20

3D

2D Parallel

Projection



Orthographic Projection

• What happens to parallel lines?

• What happens to angles?

• What happens to distances?
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Camera parameters

How many numbers do we need to describe a camera?

• We need to describe its pose in the world

• We need to describe its internal parameters
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A Tale of Two Coordinate Systems

“The World”

Camera

x

y

z

v

w

u

o

COP

Two important coordinate systems:

1. World coordinate system

2. Camera coordinate system
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Camera parameters

•To project a point (x,y,z) in world coordinates into a 

camera

•First transform (x,y,z) into camera coordinates

•Need to know

– Camera position (in world coordinates)

– Camera orientation (in world coordinates)

•Then project into the image plane

– Need to know camera intrinsics

•These can all be described with matrices
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3D Translation

• 3D translation is just like 2D with one more 
coordinate
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x′                                   1  0  0  tx x

y′              =                   0  1  0  ty y

z′                                   0  0  1  tz z

1                                    0  0  0  1                  1

=     [x+tx, y+ty, z+tz, 1]T



3D Rotation (just the 3 x 3 part shown)

About X axis:    1    0       0          About Y:  cosθ 0  sinθ

0 cosθ –sinθ 0       1    0

0 sinθ cosθ -sinθ 0  cosθ

About Z axis:  cosθ –sinθ 0

sinθ cosθ 0

0         0      1

General (orthonormal) rotation matrix used in practice:

r11   r12   r13

r21   r22   r23

r31   r32   r33
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Camera parameters
A camera is described by several parameters

• Translation T of the optical center from the origin of world coords

• Rotation R of the image plane

• focal length f, principal point (x’c, y’c), pixel size (sx, sy)

• blue parameters are called “extrinsics,” red are “intrinsics”

• The definitions of these parameters are not completely standardized

– especially intrinsics—varies from one book to another

Projection equation

• The projection matrix models the cumulative effect of all parameters

• Useful to decompose into a series of operations

projectionintrinsics rotation translation

identity matrix
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[tx, ty, tz]T



Extrinsics

• How do we get the camera to “canonical form”?

– (Center of projection at the origin, x-axis points 
right, y-axis points up, z-axis points backwards)

0

Step 1: Translate by -c

28

image

plane

camera



Extrinsics

• How do we get the camera to “canonical form”?

– (Center of projection at the origin, x-axis points 
right, y-axis points up, z-axis points backwards)

0

Step 1: Translate by -c

How do we represent 
translation as a matrix 
multiplication?
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Extrinsics

• How do we get the camera to “canonical form”?

– (Center of projection at the origin, x-axis points 
right, y-axis points up, z-axis points backwards)

0

Step 1: Translate by -c
Step 2: Rotate by R

3x3 rotation matrix
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Extrinsics

• How do we get the camera to “canonical form”?

– (Center of projection at the origin, x-axis points 
right, y-axis points up, z-axis points backwards)

0

Step 1: Translate by -c
Step 2: Rotate by R
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Perspective projection

(intrinsics)

in general, 

: aspect ratio (1 unless pixels are not square)

: skew (0 unless pixels are shaped like rhombi/parallelograms)

: principal point ((0,0) unless optical axis doesn’t intersect projection plane at origin)

f is the focal 
length of the 

camera

(converts from 3D rays in camera 
coordinate system to pixel coordinates)
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Focal length

• Can think of as “zoom”

• Related to field of view

24mm 50mm

200mm 800mm
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Projection matrix

translationrotationprojection

intrinsics
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Projection matrix

0

=

(in homogeneous image coordinates)

35

arbitrary 3D point

image plane



Distortion

Radial distortion of the image

• Caused by imperfect lenses

• Deviations are most noticeable for rays that pass through 

the edge of the lens

No distortion Pin cushion Barrel

36



Correcting radial distortion

from Helmut Dersch 37

http://www.path.unimelb.edu.au/~dersch/architect/arch.html


Where does all this lead?

• We need it to understand stereo

• And 3D reconstruction

• It also leads into camera calibration, which is 
usually done in factory settings to solve for 
the camera parameters before performing an 
industrial task.

• The extrinsic parameters must be determined.

• Some of the intrinsic are given, some are 
solved for, some are improved.
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Camera Calibration

39

The idea is to snap

images at different

depths and get a

lot of  2D-3D  point

correspondences.

x1, y1, z1, u1, v1

x2, y2, z1, u2, v2

.

.

xn, yn, zn, un, vn

Then solve a system

of equations to get

camera parameters.



Stereo
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Amount of horizontal movement is 
…

…inversely proportional to the distance from the camera
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Depth from Stereo

• Goal: recover depth by finding image coordinate x’ 
that corresponds to x

f

x x’

Baseline

B

z

C C’

X

f

X

x

x'
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Depth from disparity

f

x’

Baseline

B

z

O O’

X

f

z

fB
xxdisparity




Disparity is inversely proportional to depth.

xz

f
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xx
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Depth from Stereo
• Goal: recover depth by finding image coordinate x’ that 

corresponds to x

• Sub-Problems

1. Calibration: How do we recover the relation of the cameras (if 
not already known)?

2. Correspondence: How do we search for the matching point x’?

X

x

x'
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Correspondence Problem

• We have two images taken from cameras with different 
intrinsic and extrinsic parameters

• How do we match a point in the first image to a point in the 
second?  How can we constrain our search?

x ?
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Potential matches for x have to lie on the corresponding line l’.

Potential matches for x’ have to lie on the corresponding line l.

Key idea: Epipolar constraint

x x’

X

x’

X

x’

X
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• Epipolar Plane – plane containing baseline (1D family)

• Epipoles

= intersections of baseline with image planes 

= projections of the other camera center

• Baseline – line connecting the two camera centers

Epipolar geometry: notation
X

x x’
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• Epipolar Lines - intersections of epipolar plane with image

planes (always come in corresponding pairs)

Epipolar geometry: notation
X

x x’

• Epipolar Plane – plane containing baseline (1D family)

• Epipoles

= intersections of baseline with image planes 

= projections of the other camera center

• Baseline – line connecting the two camera centers
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Example: Converging cameras
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Example: Motion parallel to 
image plane
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Epipolar constraint

• If we observe a point x in one image, where 
can the corresponding point x’ be in the 
other image?

x x’

X
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• Potential matches for x have to lie on the corresponding 

epipolar line l’.

• Potential matches for x’ have to lie on the corresponding 

epipolar line l.

Epipolar constraint

x x’

X

x’

X

x’

X
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Epipolar constraint example
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X

x x’

Epipolar constraint: Calibrated case

• Assume that the intrinsic and extrinsic parameters of the cameras are 
known

• We can multiply the projection matrix of each camera (and the image 
points) by the inverse of the calibration matrix to get normalized
image coordinates

• We can also set the global coordinate system to the coordinate 
system of the first camera. Then the projection matrices of the two 
cameras can be written as [I | 0] and [R | t]
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Simplified Matrices for the 2 
Cameras

56

= (R | T)



X

x x’ = Rx+t

Epipolar constraint: Calibrated case

R

t

The vectors Rx, t, and x’ are coplanar 

= (x,1)T
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Essential Matrix E

(Longuet-Higgins, 1981)

Epipolar constraint: Calibrated case

0])([  xRtx RtExEx
T ][with0 

X

x x’

The vectors Rx, t, and x’ are coplanar 58



X

x x’

Epipolar constraint: Calibrated case

• E x is the epipolar line associated with x (l' = E x)
• ETx' is the epipolar line associated with x' (l = ETx')
• E e = 0   and   ETe' = 0
• E is singular (rank two)
• E has five degrees of freedom 

0])([  xRtx RtExEx
T ][with0 
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Epipolar constraint: Uncalibrated 
case

• The calibration matrices K and K’ of the two 
cameras are unknown

• We can write the epipolar constraint in 
terms of unknown normalized coordinates:

X

x x’

0ˆˆ  xEx
T xKxxKx   ˆˆ,ˆ 11
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Epipolar constraint: Uncalibrated 
case

X

x x’

Fundamental Matrix
(Faugeras and Luong, 1992)

0ˆˆ  xEx
T

xKx

xKx









1

1

ˆ

ˆ

1with0  KEKFxFx
TT
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Epipolar constraint: Uncalibrated 
case

• F x is the epipolar line associated with x (l' = F x)

• FTx' is the epipolar line associated with x' (l' = FTx')
• F e = 0   and   FTe' = 0

X

x x’

0ˆˆ  xEx
T 1with0  KEKFxFx

TT
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The eight-point algorithm

Minimize:

under the constraint

||F||2=1
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Comparison of estimation 
algorithms

8-point Normalized 8-point Nonlinear least squares

Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel

Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel 64



Moving on to stereo…
Fuse a calibrated binocular stereo pair to 
produce a depth image

image 1 image 2

Dense depth map

Many of these slides adapted from 

Steve Seitz and Lana Lazebnik
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Depth from disparity
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Disparity is inversely proportional to depth.
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Basic stereo matching algorithm

• If necessary, rectify the two stereo images to transform 
epipolar lines into scanlines

• For each pixel x in the first image
– Find corresponding epipolar scanline in the right image
– Search the scanline and pick the best match x’
– Compute disparity x-x’ and set depth(x) = fB/(x-x’)
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Simplest Case: Parallel images

RtExExT  ,0
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Stereo image rectification
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Stereo image rectification

• Reproject image planes 
onto a common plane 
parallel to the line 
between camera centers

• Pixel motion is horizontal 
after this transformation

• Two homographies (3x3 
transform), one for each 
input image reprojection

 C. Loop and Z. Zhang. Computing 
Rectifying Homographies for Stereo 
Vision. IEEE Conf. Computer Vision 
and Pattern Recognition, 1999.
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http://research.microsoft.com/~zhang/Papers/TR99-21.pdf


Example
Unrectified

Rectified

72



Matching cost

disparity

Left Right

scanline

• Slide a window along the right scanline and 
compare contents of that window with the 
reference window in the left image

• Matching cost: SSD, SAD, or normalized correlation

73



Left Right

scanline

Correspondence search

SSD 74



Left Right

scanline

Correspondence search

Norm. corr 75



Effect of window size

W = 3 W = 20
• Smaller window

+ More detail

– More noise

• Larger window
+ Smoother disparity maps

– Less detail

– Fails near boundaries 76



Failures of correspondence search

Textureless surfaces Occlusions, repetition

Non-Lambertian surfaces, specularities 77



Results with window search

Window-based matching Ground truth

Data
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How can we improve window-based matching?

• So far, matches are independent for each 
point

• What constraints or priors can we add?

79



Stereo constraints/priors
• Uniqueness 

– For any point in one image, there should be at 
most one matching point in the other image
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Stereo constraints/priors
• Uniqueness 

– For any point in one image, there should be at most 
one matching point in the other image

• Ordering
– Corresponding points should be in the same order in 

both views
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Stereo constraints/priors
• Uniqueness 

– For any point in one image, there should be at most 
one matching point in the other image

• Ordering
– Corresponding points should be in the same order in 

both views

Ordering constraint doesn’t hold
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Priors and constraints
• Uniqueness 

– For any point in one image, there should be at most one 
matching point in the other image

• Ordering
– Corresponding points should be in the same order in both 

views

• Smoothness
– We expect disparity values to change slowly (for the most 

part)
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Stereo as energy minimization

• What defines a good stereo 

correspondence?

1. Match quality

• Want each pixel to find a good match in the 

other image

2. Smoothness
84



Matching windows:
Similarity Measure Formula

Sum of Absolute Differences (SAD)

Sum of Squared Differences (SSD)

Zero-mean SAD

Locally scaled SAD

Normalized Cross Correlation (NCC)

http://siddhantahuja.wordpress.com/category/stereo-vision/

SAD SSD NCC Ground truth
85
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Real-time stereo

• Used for robot navigation (and other 
tasks)

– Several software-based real-time stereo 
techniques have been developed (most 

Nomad robot searches for meteorites in Antartica
http://www.frc.ri.cmu.edu/projects/meteorobot/index.html
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http://www.frc.ri.cmu.edu/projects/meteorobot/index.html
http://www.frc.ri.cmu.edu/projects/meteorobot/index.html


• Camera calibration errors

• Poor image resolution

• Occlusions

• Violations of brightness constancy (specular reflections)

• Large motions

• Low-contrast image regions

Stereo reconstruction pipeline
• Steps

– Calibrate cameras

– Rectify images

– Compute disparity

– Estimate depth

What will cause errors?
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Multi-view stereo ?
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Using more than two images

Multi-View Stereo for Community Photo Collections

M. Goesele, N. Snavely, B. Curless, H. Hoppe, S. Seitz

Proceedings of ICCV 2007, 
89

http://grail.cs.washington.edu/projects/mvscpc/download/Goesele-2007-MVS.pdf
http://iccv2007.rutgers.edu/

