Image Stitching II

Linda Shapiro

EE/CSE 576

RANSAC for Homography

RANSAC for Homography

RANSAC for Homography

Image Blending

Feathering

Effect of window (ramp-width) size

Effect of window size

Good window size

What can we do instead?
"Optimal" window: smooth but not ghosted

- Doesn't always work...

Pyramid blending

Create a Laplacian pyramid, blend each level

- Burt, P. J. and Adelson, E. H., A Multiresolution Spline with Application to Image Mosaics, ACM Transactions on Graphics, 42(4), October 1983, 217-236. http://persci.mit.edu/pub_pdfs/spline83.pdf

Forming a Gaussian Pyramid

- Start with the original image G_{0}
- Perform a local Gaussian weighted averaging function in a neighborhood about each pixel, sampling so that the result is a reduced image of half the size in each dimension.
- Do this all the way up the pyramid $\mathrm{G}_{\mid}=\operatorname{REDUCE}\left(\mathrm{G}_{\mid-1}\right)$
- Each level I node will represent a weighted average of a subarray of level I.

Making the Laplacians

- We want to subtract each level of the pyramid from the next lower one.
- But they are different sizes!
- In order to do the subtraction, we perform an interpolation process.
- We interpolate new samples between those of a given image to make it big enough to subtract.
- The operation is called EXPAND.

The Laplacian Pyramid

$$
L_{i}=G_{i}-\operatorname{expand}\left(G_{i+1}\right)
$$

Gaussian Pyramid
Laplacian Pyramid

To blend two images,
 We'll combine two Laplacian pyramids

Laplacian Pyramid LA
Laplacian Pyramid LS Laplacian Pyramid LB to be filled in

Forming the New Pyramid

- Laplacian pyramids LB and LB are constructed for images A and B, respectively.
- A third Laplacian pyramid LS is constructed by copying nodes from the left half of LA to the corresponding nodes of LS and nodes from the right half of LB to the right half of LS.
- Nodes along the center line are set equal to the average of corresponding LA and LB nodes

Using the new Laplacian Pyramid

- Use the new Laplacian pyramid with the reverse of how it was created to create a Gaussian pyramid.

$$
G_{i}=L_{i}+\operatorname{expand}\left(G_{i+1}\right)
$$

- The lowest level of the new Gaussian pyramid gives the final result.

Pyramid blending

Create a Laplacian pyramid, blend each level

- Burt, P. J. and Adelson, E. H., A Multiresolution Spline with Application to Image Mosaics, ACM Transactions on Graphics, 42(4), October 1983, 217-236. http://persci.mit.edu/pub_pdfs/spline83.pdf

Multiband blending (IJCV 2007)

Laplacian pyramids

1. Compute Laplacian pyramid of images and mask
2. Create blended image at each level of pyramid
3. Reconstruct complete image

(a) Original ingages and blecded rexult

(b) Basd 1 (scale 0 to σ)

(c) Badd 2 (scale σ to 2σ)

Blending comparison (IJCV 2007)

(a) Linear blending

(b) Multi-band blending

Alpha Blending

Optional: see Blinn (CGA, 1994) for details:
http://ieeexplore.ieee.org/iel1/38/7531/00310740.pdf?isNumber =7531\&prod=JNL\&arnumber=310740\&arSt=83\&ared=87\&arAu hor=Blinn\%2C+J.F.

Encoding blend weights: $\mathrm{I}(\mathrm{x}, \mathrm{y})=(\alpha \mathrm{R}, \alpha \mathrm{G}, \alpha \mathrm{B}, \alpha)$
color at $\mathrm{p}=\frac{\left(\alpha_{1} R_{1}, \alpha_{1} G_{1}, \alpha_{1} B_{1}\right)+\left(\alpha_{2} R_{2}, \alpha_{2} G_{2}, \alpha_{2} B_{2}\right)+\left(\alpha_{3} R_{3}, \alpha_{3} G_{3}, \alpha_{3} B_{3}\right)}{\alpha_{1}+\alpha_{2}+\alpha_{3}}$
Implement this in two steps:

1. accumulate: add up the (a premultiplied) RGB values at each pixel
2. normalize: divide each pixel's accumulated RGB by its α value

Gain Compensation: Getting rid of artifacts

- Simple gain adjustment
- Compute average RGB intensity of each image in overlapping region
- Normalize intensities by ratio of averages

Blending Comparison

(b) Without gain compensation

(c) With gain compensation

(d) With gain compensation and multi-band blending

Recognizing Panoramas

Recognizing Panoramas

Input: N images

1. Extract SIFT points, descriptors from all images
2. Find K-nearest neighbors for each point ($K=4$)
3. For each image
a) Select M candidate matching images by counting matched keypoints ($\mathrm{m}=6$)
b) Solve homography \mathbf{H}_{ij} for each matched image

Recognizing Panoramas

Input: N images

1. Extract SIFT points, descriptors from all images
2. Find K-nearest neighbors for each point ($K=4$)
3. For each image
a) Select M candidate matching images by counting matched keypoints ($m=6$)
b) Solve homography \mathbf{H}_{ij} for each matched image
c) Decide if match is valid $\left(\mathrm{n}_{\mathrm{i}}>8+0.3 \mathrm{n}_{\mathrm{f}}\right)$

Recognizing Panoramas (cont.)

(now we have matched pairs of images)
4. Make a graph of matched pairs

Find connected components of the graph

Finding the panoramas

Finding the panoramas

Recognizing Panoramas (cont.)

(now we have matched pairs of images)
4. Find connected components
5. For each connected component
a) Solve for rotation and f
b) Project to a surface (plane, cylinder, or sphere)
c) Render with multiband blending

Finding the panoramas

