Edge Detection

CSE 576 Ali Farhadi

Many slides from Steve Seitz and Larry Zitnick

Attneave's Cat (1954)

Origin of edges

Edges are caused by a variety of factors

Characterizing edges An edge is a place of rapid change in the image intensity function

Image gradient

• The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

• The gradient points in the direction of most rapid change in intensity

The discrete gradient

- How can we differentiate a *digital* image F[x,y]?
 - Option 1: reconstruct a continuous image, then take gradient
 - Option 2: take discrete derivative ("finite difference")

$$\frac{\partial f}{\partial x}[x,y] \approx F[x+1,y] - F[x,y]$$

Image gradient

$$\frac{\partial f}{\partial x} = f(x+1,y) - f(x,y)$$

How would you implement this as a filter?

The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

How does this relate to the direction of the edge?

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Sobel operator

In practice, it is common to use:

Magnitude: $g = \sqrt{g_x^2 + g_y^2}$

Orientation:

$$\Theta = \tan^{-1} \left(\frac{g_y}{g_x} \right)$$

Sobel operator

Original

Magnitude

Orientation

Effects of noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

Where is the edge?

Effects of noise

- Difference filters respond strongly to noise
 - Image noise results in pixels that look very different from their neighbors
 - Generally, the larger the noise the stronger the response
- What can we do about it?

Solution: smooth first

Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative: $\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$
- This saves us one operation:

How can we find (local) maxima of a function?

Source: S. Seitz

Remember: Derivative of Gaussian filter

Laplacian of Gaussian

Where is the edge?

Zero-crossings of bottom graph

2D edge detection filters

 ∇^2 is the Laplacian operator:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Edge detection by subtraction

original

Edge detection by subtraction

smoothed (5x5 Gaussian)

Edge detection by subtraction

Why does this work?

smoothed – original (scaled by 4, offset +128)

• This is probably the most widely used edge detector in computer vision

J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

original image (Lena)

norm of the gradient

thresholding

Get Orientation at Each Pixel

theta = atan2(-gy, gx)

thinning (non-maximum suppression)

Non-maximum suppression

Check if pixel is local maximum along gradient direction

Compute Gradients (DoG)

X-Derivative of Gaussian

Y-Derivative of Gaussian

Gradient Magnitude

Canny Edges

Effect of σ (Gaussian kernel spread/size)

The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

An edge is not a line...

How can we detect *lines*?

Finding lines in an image

- Option 1:
 - Search for the line at every possible position/ orientation
 - What is the cost of this operation?
- Option 2:

- Use a voting scheme: Hough transform

- Connection between image (x,y) and Hough (m,b) spaces
 - A line in the image corresponds to a point in Hough space
 - To go from image space to Hough space:
 - given a set of points (x,y), find all (m,b) such that y = mx
 b

- Connection between image (x,y) and Hough (m,b) spaces
 - A line in the image corresponds to a point in Hough space
 - To go from image space to Hough space:
 - given a set of points (x,y), find all (m,b) such that y = mx + b
 - What does a point (x_0, y_0) in the image space map to?
 - A: the solutions of $b = -x_0m + y_0$
 - this is a line in Hough space

- Typically use a different parar $d \equiv x \cos\theta + y \sin\theta$
 - d is the perpendicular distance from the line to the origin
 - θ is the angle

- Basic Hough transform algorithm
 - 1. Initialize H[d, θ]=0
 - 2. for each edge point I[x,y] in the image

for $\theta = 0$ to 180 $d = x \cos \theta + y \sin \theta$ H[d, θ] += 1

- 3. Find the value(s) of (d, θ) where H[d, θ] is maximum $d = x\cos\theta + y\sin\theta$
- 4. The detected line in the image is given by
- What's the running time (measured in # votes)?

http://www.cs.utah.edu/~vpegorar/courses/ cs7966/

http://www.cs.utah.edu/~vpegorar/courses/ cs7966/

Extensions

- Extension 1: Use the image gradient
 - 1. same
 - 2. for each edge point I[x,y] in the image

compute unique (d, θ) based on image gradient at (x,y) H[d, θ] += 1

- 3. same
- 4. same
- What's the running time measured in votes?
- Extension 2
 - give more votes for stronger edges
- Extension 3
 - change the sampling of (d, θ) to give more/less resolution
- Extension 4
 - The same procedure can be used with circles, squares, or any other shape, How?