Object Detection

Ali Farhadi Mohammad Rastegari CSE 576

So Far

Support Vector Machines (SVM)

Pedestrian Detection by HOG

Implicit Shape Models

Detector Evaluation

PASCAL VOC Challenge

Person Detection in Pascal

Deformable Part Models

Learn a part-based model:

Coarse root filter

Higher resolution part filters

Deformation models

Assumption: Number of parts → 5

Example detection result

Detection

i-th part filter Response to the i-th part filter at location (x,y) $R_i(x,y)$

Χ

Is there a person at location (x,y)?

Is there a person at location (x,y)?
$$D_i(x,y) = \max_{dx,dy} R_i(x+dx,y+dy) - d_i.\phi_d(dx,dy)$$

- Naïve search \rightarrow O(N²)
- Generalized Distance Transform \rightarrow O(N) [Felzenszwalb et al, 2004]

 $d_i = (0, 0, 1, 1)$ $\phi_d(dx, dy) = (dx, dy, dx^2, dy^2)$

Detection Score

 $f_1, f_2, ..., f_k$ = parts filters

$$p_i = (x_i, y_i)$$
 $\mathbf{p_1, p_2, ..., p_k}$ = location of the parts

 p_0 = location of the root

$$\Delta_i = (dx_i, dy_i) = p_i - p_0$$

 $d_1,d_2,...,d_k$ = deformation parameters

$$\phi_h(p_i)$$
 = HOG feature at part p $_i$ $\phi_d(\Delta_i) = (dx_i, dy_i, dx_i^2, dy_i^2)$

$$z = (p_0, p_1, \dots, p_k)$$

$$\operatorname{score}(z) = f_0 \cdot \phi_h(p_0) + f_1 \cdot \phi_h(p_1) + \dots + f_k \cdot \phi_h(p_k) - d_1 \phi_d(\Delta_1) - d_2 \phi_d(\Delta_2) - \dots - d_k \phi_d(\Delta_k)$$

Data Term

Spatial Term

Training

$$score(z) = \underbrace{f_0} \cdot \phi_h(p_0) + \underbrace{f_1} \cdot \phi_h(p_1) + \dots + \underbrace{f_k} \cdot \phi_h(p_k) - \underbrace{d_1} \phi_d(\Delta_1) - \underbrace{d_2} \phi_d(\Delta_2) - \dots - \underbrace{d_k} \phi_d(\Delta_k)$$

Model Parameters

Need to be trained

$$w = [f_0, f_1, \dots, f_k, d_1, d_2, \dots, d_k]$$

$$x = [\phi_h(p_0), \phi_h(p_1), \dots, \phi_h(p_k), -\phi_d(\Delta_1), -\phi_d(\Delta_2) - \dots - \phi_d(\Delta_k)]$$

$$score(z) = w.x$$

W is a classifier in the space of x

Can we train w by SVM?

$$\min_{w} \frac{1}{2} ||w||^{2}
\forall j \ y_{j}(w.x) > 1 \ \ y_{j} \in \{-1+1\}$$

Training

$$z = (p_0, p_1, \dots, p_k)$$

We do not have any information about the location of the parts in train data

Z is latent

Latent-SVM:
$$\min_{w,z} \frac{1}{2} \|w\|^2$$

$$\forall j \ \operatorname{score}(z) y_j > 1 \quad y_j \in \{-1+1\}$$

$$\min_{w,z} \frac{1}{2} \|w\|^2$$

$$\forall j \text{ score}(z) y_j > 1 \quad y_j \in \{-1+1\}$$

- Loop until no change in z,w
 - Fix **z** , find **w**
 - Fix \boldsymbol{w} , find \boldsymbol{z}

$$\min_{w,z} \frac{1}{2} \|w\|^2$$

$$\forall j \text{ score}(z)y_j > 1 \quad y_j \in \{-1+1\}$$

- Loop until no change in z,w
 - Fix z, find w
 - Fix w , find z

Standard SVM

$$\min_{w} \frac{1}{2} ||w||^{2}
\forall j \ y_{j}(w.x) > 1 \ y_{j} \in \{-1+1\}$$

$$\min_{w,z} \frac{1}{2} \|w\|^2$$

$$\forall j \text{ score}(z) y_j > 1 \quad y_j \in \{-1+1\}$$

- Loop until no change in z,w
 - Fix **z** , find **w**
 - Fix **w**, find **z**

$$\min_{w,z} \frac{1}{2} \|w\|^2$$

$$\forall j \text{ score}(z)y_j > 1 \quad y_j \in \{-1+1\}$$

- Loop until no change in z,w
 - Fix **z** , find **w**
 - Fix w, find z

$$\min_{w,z} \frac{1}{2} \|w\|^2$$

$$\forall j \text{ score}(z)y_j > 1 \quad y_j \in \{-1+1\}$$

- Loop until no change in z,w
 - Fix z, find w
 - Fix w , find z

Standard SVM

$$\min_{w} \frac{1}{2} ||w||^{2}$$

$$\forall j \ y_{j}(w.x) > 1 \ y_{j} \in \{-1+1\}$$

w

$$\min_{w,z} \frac{1}{2} \|w\|^2$$

$$\forall j \text{ score}(z) y_j > 1 \quad y_j \in \{-1+1\}$$

- Loop until no change in z,w
 - Fix **z** , find **w**
 - Fix w, find z

w

$$\min_{w,z} \frac{1}{2} \|w\|^2$$

$$\forall j \text{ score}(z) y_j > 1 \quad y_j \in \{-1+1\}$$

- Loop until no change in z,w
 - Fix **z** , find **w**
 - Fix w, find z

w

$$\min_{w,z} \frac{1}{2} \|w\|^2$$

$$\forall j \text{ score}(z) y_j > 1 \quad y_j \in \{-1+1\}$$

- Loop until no change in z,w
 - Fix z, find w
 - Fix w , find z

Standard SVM

$$\min_{w} \frac{1}{2} ||w||^{2}
\forall j \ y_{j}(w.x) > 1 \ \ y_{j} \in \{-1+1\}$$

Negative Samples

Infinite possibility for negative samples

Hard Negative Samples

Data Mining

Hard Negative Samples

Data Mining

Add this as a negative sample for training

Mixture Model

Bicycle

Bicycle

Car

root filters coarse resolution

part filters finer resolution

deformation models

Car detections

high scoring true positives

high scoring false positives

Cat

Cat detections

high scoring true positives

high scoring false positives (not enough overlap)

Person riding horse

Person riding bicycle

PASCAL VOC detection history

Part-based models & multiple features (MKL)

Kitchen-sink approaches

Region-based Convolutional Networks (R-CNNs)

Region-based Convolutional Networks (R-CNNs)

Deep Neural Networks and Torch

- The 1940s: The Beginning of Neural Networks
 - Warren McCulloch and Walter Pitts (1943)
 - Threshold Logic

Bulletin of Mathematical Biology Vol. 52, No. 1/2, pp. 99-115, 1990. Printed in Great Britain.

0092-8240/90\$3.00+0.00 Pergamon Press plc Society for Mathematical Biology

A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN NERVOUS ACTIVITY*

WARREN S. MCCULLOCH AND WALTER PITTS
 University of Illinois, College of Medicine,
 Department of Psychiatry at the Illinois Neuropsychiatric Institute,
 University of Chicago, Chicago, U.S.A.

Because of the "all-or-none" character of nervous activity, neural events and the relations among them can be treated by means of propositional logic. It is found that the behavior of every net can be described in these terms, with the addition of more complicated logical means for nets containing circles; and that for any logical expression satisfying certain conditions, one can find a net behaving in the fashion it describes. It is shown that many particular choices among possible neurophysiological assumptions are equivalent, in the sense that for every net behaving under one assumption, there exists another net which behaves under the other and gives the same results, although perhaps not in the same time. Various applications of the calculus are discussed.

- The 1950s and 1960s: The First Golden Age of Neural Networks

 Psychological Review Vol. 65, No. 6, 1958
 - Frank Rosenblatt (1958) created the perceptron

THE PERCEPTRON: A PROBABILISTIC MODEL FOR

INFORMATION STORAGE AND ORGANIZATION IN THE BRAIN 1

F. ROSENBLATT

Cornell Aeronautical Laboratory

- The 1970s: The Quiet Years
 - Perceptron could not solve simple XOR problem
 - Overestimating the success of AI in research papers

Multi-Layer Perceptron: How to train?!!!

- After 1975 up to 1990: Renewed Enthusiasm
 - The Backpropagation algorithm was created by Paul Werbos (1975)

- 1990 -2012 : Long Quiet Years !!!
 - Learning large network was computationally expensive

- Convex Optimization
- Nonlinear Models by Kernel Tricks

Feature Engineering

Converting everything to a vector representation

Feature Learning

Convolutional Neural Networks

Biol. Cybernetics 36, 193-202 (1980)

Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position

Kunihiko Fukushima

NHK Broadcasting Science Research Laboratories, Kinuta, Setagaya, Tokyo, Japan

PROC. OF THE IEEE, NOVEMBER 1998

Gradient-Based Learning Applied to Document Recognition

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner

https://www.youtube.com/watch?v=Qil4kmvm2Sw

Feature Learning

Convolutional Neural Networks

Biol. Cybernetics 36, 193-202 (1980)

Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position

Kunihiko Fukushima

NHK Broadcasting Science Research Laboratories, Kinuta, Setagaya, Tokyo, Japan

PROC. OF THE IEEE, NOVEMBER 1998

Gradient-Based Learning Applied to Document Recognition

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner

https://www.youtube.com/watch?v=Qil4kmvm2Sw

GPU and **BigData**

AlexNet (2012)

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto
kriz@cs.utoronto.ca ilya@cs.utoronto.ca hinton@cs.utoronto.ca

0.75 0.05

ImageNet

