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So Far

Support Vector Machines (SVM)

Pedestrian Detection by HOG

Implicit Shape Models

Detector Evaluation
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Person Detection in Pascal
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Deformable Part Models

e Learn a part-based model:

Coarse Higher resolution  Deformation
root filter part filters models

e Assumption: Number of parts 2> 5

[Felzenszwalb et al, 2008] Example detection result
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feature map

response of root filter



feature map at twice the resolution

response of part filters

response of root filter



i-th part filter

d; = (0,0,1,1)
¢a(dx, dy) = (dz, dy, dx?, dyQ)

Is there a person at location (x,y)?

Di(z,y)= max Ri(x + dz,y + dy)—d;.¢q(dz, dy)

* Naive search 2 O(N?)
* Generalized Distance Transform = O(N)
[Felzenszwalb et al, 2004]




feature map at twice the resolution
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feature map at twice the resolution

response of part filters

transformed responses
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D ete Cti O n SCO re fl,fz,...,fk= parts filters

f, = root filter
A 3

pi = (Ti, ¥i)
_ ,“ P1,P5,...,P, = location of the parts

71 Pg = location of the root

A; = (dSUz', dyz') =Pi — Do

d,,d,,...d, = deformation parameters

¢h (pz) = HOG feature at part p,
Pa(D;) = (dx;, dy;, da?, dy?)

AR (p07p17 <. 7pk)
score(z) = fo-on(po) + fr-on(p1) + - + fr-0n(Pr)—d1da(A1) — dodpa(Ag) — - - - — drpa(A)

Data Term Spatial Term



Training

score(z) =fo-on(po) + fi-¢n(pr) + - + fu-On(r)—dr¢a(A1) — dada(Ds) — - - - — dpda(Ar)

Tl
Model Parameters
Need to be trained

w = [anfla---7fk7d17d27---7dk:]
L = [¢h<p0>7 gbh(pl)a SR ¢h(pk>7 _¢d(A1)7 _gbd(A2> -t ¢d(A/€)]

score(z) = w.x
W is a classifier in the space of x

Can we train w by SVM?

1 9
min — ||w||
w2

Viyj(wax)>1 y; € {-1+1}



Training

& = (p07p17 c o 7pk)

We do not have any information
about the location of the parts in train data

Zis latent

.1 2
Latent-SVM: min — ||w]|

Y

Vj score(2)y; > 1 y; € {—1+1}




Latent SVM

1 9
min — [|w||
w,z D

Vj score(2)y; > 1 y; € {—1+1}

* Loop until no change in z,w
* Fixz,findw
* Fixw, findz
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e Standard SVM
! 9
min 3 ]
w2

Viyj(wa)>1 y; € {-1+1}




Latent SVM

1 9
min — [|w||
w,z D

Vj score(2)y; > 1 y; € {—1+1}

* Loop until no change in z,w 7
* Fixz,findw
* Fixw, findz




Latent SVM

1 9
min — [|w||
w,z D

Vj score(2)y; > 1 y; € {—1+1}

* Loop until no change in z,w 7
* Fixz,findw
* Fixw, findz

feature map J \ feature map at twice the resolution

response of part filters l

transformed responses

response of root filter|

|

color encoding of filter
response values

low value high value

combined score of
root locations




Latent SVM

1 9
min — [|w||
w,z D

Vj score(2)y; > 1 y; € {—1+1}

* Loop until no change in z,w 7

* Fixz, findw
* Fixw, findz

e Standard SVM

1 9
min = ||w||
w2

Viyj(wa)>1 y; € {-1+1}




Latent SVM

1 9
min — [|w||
w,z D

Vj score(2)y; > 1 y; € {—1+1}

* Loop until no change in z,w 7
* Fixz,findw
* Fixw, findz

feature map \ feature map at twice the resolution

response of part filters l

transformed responses

color encoding of filter
response values

low value high value

combined score of
root locations




Latent SVM

1 9
min — [|w||
w,z D

Vj score(2)y; > 1 y; € {—1+1}

* Loop until no change in z,w 7
* Fixz,findw
* Fixw, findz

feature map \ feature map at twice the resolution

response of part filters l

transformed responses

color encoding of filter
response values

low value high value

combined score of
root locations




Latent SVM

1 9
min — [|w||
w,z D

Vj score(2)y; > 1 y; € {—1+1}

* Loop until no change in z,w 7

* Fixz, findw
* Fixw, findz

e Standard SVM

1 9
min = ||w||
w2

Viyj(wa)>1 y; € {-1+1}




Negative Samples

* Infinite possibility for negative samples




Hard Negative Samples

ining

e Data M




Hard Negative Samples

e Data Mini Ng Add this as a negative sample for training




Mixture Model
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Bicycle



Bicycle
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Car detections

high scoring true positives high scoring false positives
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Cat detections

high scoring false positives
(not enough overlap)

high scoring true positives




Person riding horse




Person riding bicycle




mean Average Precision (mAP)

PASCAL VOC detection history

70%

60%

50%

40%

30%

20%

10%

0%

2006

17%

DPM

2007

28%
23% A
A DPM,
DPM, MKL
HOG+
BOW
2008 2009

41%  41%
37% A A

A DPM++, Selective

DPMH++ ik, search,
Selective DPM++,
Search MKL

2010 2011 2012 2013
year

2014

2015



mean Average Precision (mAP)

Part-based models & multiple
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mean Average Precision (mAP)
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mean Average Precision (mAP)
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Region-based Convolutional
Networks (R-CNNs)

mean Average Precision (mAP)
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Deep Neural Networks and Torch



Neural Networks A Brief History

e The 1940s: The Beginning of Neural Networks
— Warren McCulloch and Walter Pitts (1943)

— Threshold Logic

Bulletin of Mathematical Biology Vol. 52, No. 1/2, pp. 99-115, 1990. 0092-8240/90§3.00+ 0.00
Printed in Great Britain. Pergamon Press plc
Society for Mathematical Biology

A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN
NERVOUS ACTIVITY*

B WARREN S. MCCULLOCH AND WALTER PiTTs
University of Illinois, College of Medicine,
Department of Psychiatry at the Illinois Neuropsychiatric Institute,
University of Chicago, Chicago, U.S.A.

Because of the “all-or-none” character of nervous activity, neural events and the relations among
them can be treated by means of propositional logic. It is found that the behavior of every net can
be described in these terms, with the addition of more complicated logical means for nets
containing circles; and that for any logical expression satisfying certain conditions, one can find a
net behaving in the fashion it describes. It is shown that many particular choices among possible
neurophysiological assumptions are equivalent, in the sense that for every net behaving under
one assumption, there exists another net which behaves under the other and gives the same
results, although perhaps not in the same time. Various applications of the calculus are
discussed.
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Neural Networks A Brief History

 The 1950s and 1960s: The First Golden Age of
Neural Networks

— Frank Rosenblatt (1958) created the perceptron

Review
1958

THE PERCEPTRON: A PROBABILISTIC MODEL FOR
INFORMATION STORAGE AND ORGANIZATION

IN THE BRAIN!

F. ROSENBLATT
Cornell Aeronautical Laboratory




Neural Networks A Brief History

e The 1970s: The Quiet Years

— Perceptron could not solve simple XOR problem

— Overestimating the success of Al in research
papers

Multi-Layer Perceptron : How to train?!!!

Inputs Outputs
1@ ¥ (LD




Neural Networks A Brief History

e After 1975 up to 1990: Renewed Enthusiasm

— The Backpropagation algorithm was created by
Paul Werbos (1975)
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Neural Networks A Brief History

* 1990-2012 : Long Quiet Years !!!

— Learning large network was
computationally expensive

— Support Vector Machine took over
* Convex Optimization
* Nonlinear Models by Kernel Tricks
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Feature Engineering

Converting everything to a vector representation
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Feature Learning

e Convolutional Neural Networks

A Biological Ue
Biol. Cybernetics 36, 193-202 (1980) .
Cybernetics

© by Springer-Verlag 1980

Neocognitron: A Self-organizing Neural Network Model
for a Mechanism of Pattern Recognition
Unaffected by Shift in Position

Kunihiko Fukushima

NHK Broadcasting Science Research Laboratories, Kinuta, Setagaya, Tokyo, Japan

C3: 1. maps 16@10x10
C1: feature maps S4:1. maps 16@5x5

PROC. OF THE IEEE, NOVEMBER 1998 1 |3'£ng

6@26x28

S2:f. maps
B6@14x1

Gradient-Based Learning Applied to Document
Recognition

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner

|
| FuIIconAection | Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

https://www.youtube.com/watch?v=Qildkmvm2Sw
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GPU and BigData

ImageNet Classification with Deep Convolutional
¢ AlEXNet (2012) Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca ilya@cs.utoronto.ca hinton@cs.utoronte.ca
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