Face Recognition

CSE 576

Face recognition: once you've detected and cropped a face, try to recognize it

Face recognition: overview

- Typical scenario: few examples per face, identify or verify test example
- What's hard: changes in expression, lighting, age, occlusion, viewpoint
- Basic approaches (all nearest neighbor)
 - 1. Project into a new subspace
 - 2. Measure face features

Typical face recognition scenarios

- Verification: a person is claiming a particular identity; verify whether that is true
 - E.g., security
- Closed-world identification: assign a face to one person from among a known set
- General identification: assign a face to a known person or to "unknown"

Expression

Lighting

Occlusion

Viewpoint

Simple idea for face recognition

1. Treat face image as a vector of intensities

Recognize face by nearest neighbor in database

$$\mathbf{y}_1...\mathbf{y}_n$$

$$k = \underset{k}{\operatorname{argmin}} \|\mathbf{y}_k - \mathbf{x}\|$$

The space of all face images

- When viewed as vectors of pixel values, face images are extremely high-dimensional
 - 100x100 image = 10,000 dimensions
 - Slow and lots of storage
- But very few 10,000-dimensional vectors are valid face images
- We want to effectively model the subspace of face images

The space of all face images

 Idea: construct a low-dimensional linear subspace that best explains the variation in the set of face images

- A face image
- A (non-face) image

Linear subspaces

 \overline{x} is the mean of the orange points v_2 v_1

Consider the variation along direction v among all of the orange points:

$$var(\mathbf{v}) = \sum_{\text{orange point } \mathbf{x}} \|(\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}} \cdot \mathbf{v}\|^{2}$$

What unit vector v minimizes var?

$$\mathbf{v}_2 = min_{\mathbf{v}} \{var(\mathbf{v})\}$$

What unit vector v maximizes var?

$$\mathbf{v}_1 = max_{\mathbf{v}} \{var(\mathbf{v})\}$$

$$\begin{split} \mathit{var}(v) &= \sum_{x} \| (x - \overline{x})^T \cdot v \| \\ &= \sum_{x} v^T (x - \overline{x}) (x - \overline{x})^T v \\ &= v^T \left[\sum_{x} (x - \overline{x}) (x - \overline{x})^T \right] v \\ &= v^T A v \quad \text{where } A = \sum_{x} (x - \overline{x}) (x - \overline{x})^T \end{split}$$

Solution: v₁ is eigenvector of A with largest eigenvalue v₂ is eigenvector of A with smallest eigenvalue

Principal component analysis (PCA)

- Suppose each data point is N-dimensional
 - Same procedure applies:

$$var(\mathbf{v}) = \sum_{\mathbf{x}} \|(\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}} \cdot \mathbf{v}\|$$
$$= \mathbf{v}^{\mathrm{T}} \mathbf{A} \mathbf{v} \text{ where } \mathbf{A} = \sum_{\mathbf{x}} (\mathbf{x} - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}}$$

- The eigenvectors of A define a new coordinate system
 - eigenvector with largest eigenvalue captures the most variation among training vectors X
 - eigenvector with smallest eigenvalue has least variation
- We can compress the data by only using the top few eigenvectors
 - corresponds to choosing a "linear subspace"
 - represent points on a line, plane, or "hyper-plane"
 - these eigenvectors are known as the principal components

The space of faces

- An image is a point in a high dimensional space
 - An N x M image is a point in R^{NM}
 - We can define vectors in this space as we did in the 2D case

Dimensionality reduction

- The set of faces is a "subspace" of the set of images
 - Suppose it is K dimensional
 - We can find the best subspace using PCA
 - This is like fitting a "hyper-plane" to the set of faces
 - spanned by vectors v₁, v₂, ..., v_K
 - any face $\mathbf{x} \approx \overline{\mathbf{x}} + a_1 \mathbf{v_1} + a_2 \mathbf{v_2} + \ldots + a_k \mathbf{v_k}$

Eigenfaces

- PCA extracts the eigenvectors of A
 - Gives a set of vectors V_1 , V_2 , V_3 , ...
 - Each one of these vectors is a direction in face space
 - what do these look like?

Visualization of eigenfaces

Principal component (eigenvector) uk

$$\mu + 3\sigma_k u_k$$

$$\mu - 3\sigma_k u_k$$

Projecting onto the eigenfaces

- The eigenfaces $V_1, ..., V_K$ span the space of faces
 - A face is converted to eigenface coordinates by

$$\mathbf{x} \to (\underbrace{(\mathbf{x} - \overline{\mathbf{x}}) \cdot \mathbf{v_1}}_{a_1}, \underbrace{(\mathbf{x} - \overline{\mathbf{x}}) \cdot \mathbf{v_2}}_{a_2}, \dots, \underbrace{(\mathbf{x} - \overline{\mathbf{x}}) \cdot \mathbf{v_K}}_{a_K})$$

$$\mathbf{x} \approx \overline{\mathbf{x}} + a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \ldots + a_K \mathbf{v}_K$$

Recognition with eigenfaces

- Algorithm
 - 1. Process the image database (set of images with labels)
 - Run PCA—compute eigenfaces
 - Calculate the K coefficients for each image
 - 2. Given a new image (to be recognized) x, calculate K coefficients

$$\mathbf{x} \to (a_1, a_2, \dots, a_K)$$

3. Detect if x is a face $\|\mathbf{x} - (\overline{\mathbf{x}} + a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \ldots + a_K\mathbf{v}_K)\| < \text{threshold}$

- 4. If it is a face, who is it?
 - Find closest labeled face in database
 - nearest-neighbor in K-dimensional space

Choosing the dimension K

- How many eigenfaces to use?
- Look at the decay of the eigenvalues
 - the eigenvalue tells you the amount of variance "in the direction" of that eigenface
 - ignore eigenfaces with low variance

PCA

General dimensionality reduction technique

- Preserves most of variance with a much more compact representation
 - Lower storage requirements (eigenvectors + a few numbers per face)
 - Faster matching

Enhancing gender

D. Rowland and D. Perrett,

"Manipulating Facial Appearance through Shape and Color," IEEE CG&A,

September 1995

Slide credit: A. Efros

Changing age

•Face becomes "rounder" and "more textured" and "grayer"

•original

color

D. Rowland and D. Perrett,

"Manipulating Facial Appearance through Shape and Color," IEEE CG&A,

September 1995

Slide credit: A. Efros

http://www.beautycheck.de

0.5(attractive + average)

attractive

http://www.beautycheck.de

0.5(adult+child)

adult