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What we have seen so far: 
Vision as Measurement Device 

Real-time stereo on Mars 

Structure from Motion 

Physics-based Vision 

Virtualized Reality 
Slide Credit: Alyosha 
Efros 



Visual Recognition 

 
•  What does it mean to “see”? 
 

•  “What” is “where”, Marr 1982  

•  Get computers to “see” 



Visual Recognition 

Verification 

Is this a car? 



Visual Recognition 

Classification: 

Is there a car in this picture? 



Visual Recognition 

Detection: 

Where is the car in this picture? 



Visual Recognition 

Pose Estimation: 



Visual Recognition 

Activity Recognition: 

What is he doing? What is he doing? 



Visual Recognition 

Object Categorization: 

Sky 

Tree 

Car 

Person 
Bicycle 

Horse 

Person 

Road 



Visual Recognition 

Person 

Segmentation 

Sky 

Tree 

Car 



Object recognition 
Is it really so hard? 

This is a chair 

Find the chair in this image  Output of normalized correlation 



Object recognition 
Is it really so hard? 

Find the chair in this image  

Pretty much garbage 
Simple template matching is not going to make it 



Challenges 1: view point variation 

Michelangelo 1475-1564 slide by Fei Fei, Fergus & Torralba  



Challenges 2: illumination 

slide credit: S. Ullman 



Challenges 3: occlusion 

Magritte, 1957  slide by Fei Fei, Fergus & Torralba  



Challenges 4: scale 

slide by Fei Fei, Fergus & Torralba  



Challenges 5: deformation 

Xu, Beihong 1943 slide by Fei Fei, Fergus & Torralba  



Challenges 6: background clutter 

Klimt, 1913 slide by Fei Fei, Fergus & Torralba  



Challenges 7: object intra-class variation 

slide by Fei-Fei, Fergus & Torralba  



Let’s start with finding Faces 

How to tell if a face is present? 



One simple method:  skin detection 

Skin pixels have a distinctive range of colors 
•  Corresponds to region(s) in RGB color space 

–  for visualization, only R and G components are shown above  

skin 

Skin classifier 
•  A pixel X = (R,G,B) is skin if it is in the skin region 
•  But how to find this region? 



Skin detection 

Learn the skin region from examples 
•  Manually label pixels in one or more “training images” as skin or not skin 
•  Plot the training data in RGB space 

–  skin pixels shown in orange, non-skin pixels shown in blue 
–  some skin pixels may be outside the region, non-skin pixels inside.  Why? 

Skin classifier 
•  Given X = (R,G,B):  how to determine if it is skin or not? 



Skin classification techniques 

Skin classifier 
•  Given X = (R,G,B):  how to determine if it is skin or not? 
•  Nearest neighbor 

•  find labeled pixel closest to X   
•  choose the label for that pixel 

•  Data modeling 
•  Model the distribution that generates the data (Generative) 
•  Model the boundary (Discriminative) 

Skin 

Skin 



Classification 

•  Probabilistic 
•  Supervised Learning 
•  Discriminative vs. Generative 
•  Ensemble methods 
•  Linear models 
•  Non-linear models 
 



Let’s play with probability for a bit 
 

Remembering simple stuff 



Probability 
Basic probability 

•  X is a random variable 
•  P(X) is the probability that X achieves a certain value 

•    
 
•                                      or  

•  Conditional probability:   P(X | Y) 
–  probability of X given that we already know Y 

continuous X discrete X 



P(Heads) = ϴ  P(Tails) = 1- ϴ
 
 

Flips are i.i.d.:  
•  Independent events 
•  Identically distributed according to Binomial distribution 

Sequence D of 𝝰H Heads and 𝝰 T Tails   

… 

D={xi | i=1…n},  P(D | θ ) = ΠiP(xi | θ ) 

Thumbtack & Probabilities 



Maximum Likelihood Estimation 

Data: Observed set D of 𝝰 H Heads and 𝝰 T Tails   
Hypothesis: Binomial distribution  
Learning: finding ϴis an optimization problem 

•  What’s the objective function? 

MLE: Choose ϴ to maximize probability of D 



Parameter learning 

Set derivative to zero, and solve! 
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But, how many flips do I need? 

3 heads and 2 tails. 
ϴ = 3/5, I can prove it! 
What if I flipped 30 heads and 20 tails? 
Same answer, I can prove it! 
What’s better? 
Umm… The more the merrier??? 



N 

   
  P

ro
b.

 o
f M

is
ta

ke
 

Exponential  
Decay! 

A bound   
(from Hoeffding’s inequality) 

For N = 𝝰 H+ 𝝰 T, and 
 
Let ϴ* be the true parameter, for any e>0: 



What if I have prior beliefs?  

Wait, I know that the thumbtack is “close” to 
50-50. What can you do for me now? 

 
Rather than estimating a single ϴ we obtain a 

distribution over possible values of ϴ
 

In the beginning After observations 
Observe flips 

e.g.: {tails, tails} 



How to use Prior 

Use Bayes rule: 

•  Or equivalently: 
•  Also, for uniform priors: 

Prior 

Normalization 

Data Likelihood 

Posterior 
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 à reduces to MLE objective 
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Likelihood function: 
Posterior: 
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MAP for Beta distribution 

 
 
MAP: use most likely parameter: 
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What about continuous variables? 



We like Gaussians because 

Affine transformation (multiplying by scalar 
and adding a constant) are Gaussian 

 
 
Sum of Gaussians is Gaussian 
 
 
Easy to differentiate 



Learning	
  a	
  Gaussian	
  
•  Collect	
  a	
  bunch	
  of	
  data	
  

– Hopefully,	
  i.i.d.	
  samples	
  
– e.g.,	
  exam	
  scores	
  

•  Learn	
  parameters	
  
– Mean:	
  µ 
– Variance:	
  σ 

xi 
i = 

Exam	
  
Score	
  

0	
   85	
  

1	
   95	
  

2	
   100	
  

3	
   12	
  

…	
   …	
  
99	
   89	
  



MLE for Gaussian: 

Prob. of i.i.d. samples D={x1,…,xN}: 

•  Log-likelihood of data: 

µMLE , �MLE = argmax
µ,�

P (D | µ,�)

2



MLE for mean of a Gaussian 

What’s MLE for mean? 
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MLE for variance 
Again, set derivative to zero: 
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Learning Gaussian parameters 

MLE: 
 
 
 
 



Fitting a Gaussian to Skin samples 



Skin detection results 



Supervised Learning: find f 

Given: Training set {(xi, yi)  | i = 1 … n} 
Find: A good approximation to  f  : X à Y 
 
 
What is x? 
What is y? 
 



Simple Example: Digit Recognition 

Input: images / pixel grids 
Output: a digit 0-9 
Setup: 

•  Get a large collection of example 
images, each labeled with a digit 

•  Note: someone has to hand label all 
this data! 

•  Want to learn to predict labels of new, 
future digit images 

Features: ? 
 

0 

1 

2 

1 

?? Screw You, I want to use Pixels :D 



Lets take a probabilistic approach!!! 

Can we directly estimate the data 
distribution P(X,Y)? 

How do we represent these? 
How many parameters? 
•  Prior, P(Y): 

–  Suppose Y is composed of k 
classes 

•  Likelihood, P(X|Y): 
–  Suppose X is composed of n 

binary features 

 



Conditional Independence   
X is conditionally independent of Y  given Z, if the 

probability distribution for X is independent of the value of 
Y, given the value of Z 
 
 

e.g., 
 
Equivalent to: 
 



Naïve Bayes 

Naïve Bayes assumption: 
•  Features are independent given class: 

 
•  More generally: 



The Naïve Bayes Classifier 
Given: 

•  Prior P(Y) 
•  n conditionally independent 

features X given the class Y 
•  For each Xi, we have likelihood 

P(Xi|Y) 

Decision rule: 
 
 
 
 

Y 

X1 Xn X2 



A Digit Recognizer 

Input: pixel grids 
 
 
 
 
 
 
 
 
 
Output: a digit 0-9 



Naïve Bayes for Digits (Binary Inputs) 
Simple version: 

•  One feature Fij for each grid position <i,j> 
•  Possible feature values are on / off, based on whether intensity 

is more or less than 0.5 in underlying image 
•  Each input maps to a feature vector, e.g. 

•  Here: lots of features, each is binary valued 

Naïve Bayes model: 
 
 
Are the features independent given class? 
What do we need to learn? 



Example Distributions 

1 0.1 
2 0.1 
3 0.1 
4 0.1 
5 0.1 
6 0.1 
7 0.1 
8 0.1 
9 0.1 
0 0.1 

1 0.01 
2 0.05 
3 0.05 
4 0.30 
5 0.80 
6 0.90 
7 0.05 
8 0.60 
9 0.50 
0 0.80 

1 0.05 
2 0.01 
3 0.90 
4 0.80 
5 0.90 
6 0.90 
7 0.25 
8 0.85 
9 0.60 
0 0.80 



MLE for the parameters of NB 

Given dataset 
•  Count(A=a,B=b)  number of examples 

where A=a and B=b 

MLE for discrete NB, simply: 
•  Prior: 
 

•  Likelihood:  
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Violating the NB assumption 

Usually, features are not conditionally independent: 
 
 
 

•  NB often performs well, even when assumption is 
violated 

•  [Domingos & Pazzani ’96] discuss some conditions for 
good performance 



Smoothing 

2 wins!! 

Does this happen in vision? 



NB & Bag of words model 



What about real Features? 
What if we have continuous Xi ? 

Eg., character recognition: Xi is ith pixel 
 
 
 
 
 
Gaussian Naïve Bayes (GNB): 
 
 
 
Sometimes assume variance 
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Estimating Parameters 

Maximum likelihood estimates: 
Mean: 
 
 
 
Variance:  
 
 
 
 

jth training 
example 

=1 if x true, else 0



another probabilistic approach!!! 

Naïve Bayes: directly estimate the data distribution 
P(X,Y)! 
•  challenging due to size of distribution! 
•  make Naïve Bayes assumption: only need P(Xi|Y)! 

But wait, we classify according to: 
•  maxY P(Y|X) 

Why not learn P(Y|X) directly? 
 



(The lousy  
painter) 

Discriminative vs. generative 

0 10 20 30 40 50 60 70 0 
0.05 
0.1 

x = data 

•  Generative model  

0 10 20 30 40 50 60 70 0 
0.5 
1 

x = data 

•  Discriminative model  

0 10 20 30 40 50 60 70 80 
-1 

1 

x = data 

•  Classification function 

(The artist) 



Logistic Regression 

Logistic function (Sigmoid): 

•  Learn P(Y|X) directly! 
•  Assume a particular 

functional form 
•  Sigmoid applied to a 

linear function of the 
data: 

Z 
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where the superscript j refers to the jth training example, and where �(Y = yk) is
1 if Y = yk and 0 otherwise. Note the role of � here is to select only those training
examples for which Y = yk.

The maximum likelihood estimator for ⇥2
ik is

⇥̂2
ik =

1
⇤ j �(Y j = yk) ⇤

j
(X j

i � µ̂ik)2�(Y j = yk) (14)

This maximum likelihood estimator is biased, so the minimum variance unbi-
ased estimator (MVUE) is sometimes used instead. It is

⇥̂2
ik =

1
(⇤ j �(Y j = yk))�1 ⇤

j
(X j

i � µ̂ik)2�(Y j = yk) (15)

3 Logistic Regression
Logistic Regression is an approach to learning functions of the form f : X ⇤Y , or
P(Y |X) in the case where Y is discrete-valued, and X = ⌅X1 . . .Xn⇧ is any vector
containing discrete or continuous variables. In this section we will primarily con-
sider the case where Y is a boolean variable, in order to simplify notation. In the
final subsection we extend our treatment to the case where Y takes on any finite
number of discrete values.

Logistic Regression assumes a parametric form for the distribution P(Y |X),
then directly estimates its parameters from the training data. The parametric
model assumed by Logistic Regression in the case where Y is boolean is:

P(Y = 1|X) =
1

1+ exp(w0 +⇤n
i=1 wiXi)

(16)

and
P(Y = 0|X) =

exp(w0 +⇤n
i=1 wiXi)

1+ exp(w0 +⇤n
i=1 wiXi)

(17)

Notice that equation (17) follows directly from equation (16), because the sum of
these two probabilities must equal 1.

One highly convenient property of this form for P(Y |X) is that it leads to a
simple linear expression for classification. To classify any given X we generally
want to assign the value yk that maximizes P(Y = yk|X). Put another way, we
assign the label Y = 0 if the following condition holds:

1 <
P(Y = 0|X)
P(Y = 1|X)

substituting from equations (16) and (17), this becomes

1 < exp(w0 +
n

⇤
i=1

wiXi)
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Logistic Regression: decision boundary  

A Linear Classifier! 

•  Prediction: Output the Y with 
highest P(Y|X) 
–  For binary Y, output Y=0 if 
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Y = 1/(1 + exp(−X))

Figure 1: Form of the logistic function. In Logistic Regression, P(Y |X) is as-
sumed to follow this form.

and taking the natural log of both sides we have a linear classification rule that
assigns label Y = 0 if X satisfies

0 < w0 +
n

⇥
i=1

wiXi (18)

and assigns Y = 1 otherwise.
Interestingly, the parametric form of P(Y |X) used by Logistic Regression is

precisely the form implied by the assumptions of a Gaussian Naive Bayes classi-
fier. Therefore, we can view Logistic Regression as a closely related alternative to
GNB, though the two can produce different results in many cases.

3.1 Form of P(Y |X) for Gaussian Naive Bayes Classifier
Here we derive the form of P(Y |X) entailed by the assumptions of a Gaussian
Naive Bayes (GNB) classifier, showing that it is precisely the form used by Logis-
tic Regression and summarized in equations (16) and (17). In particular, consider
a GNB based on the following modeling assumptions:

• Y is boolean, governed by a Bernoulli distribution, with parameter � =
P(Y = 1)

• X = ⇤X1 . . .Xn⌅, where each Xi is a continuous random variable

w
.X

+w
0 

= 
0 
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Logistic Regression assumes a parametric form for the distribution P(Y |X),
then directly estimates its parameters from the training data. The parametric
model assumed by Logistic Regression in the case where Y is boolean is:

P(Y = 1|X) =
1

1+ exp(w0 +⇤n
i=1 wiXi)

(16)

and
P(Y = 0|X) =

exp(w0 +⇤n
i=1 wiXi)

1+ exp(w0 +⇤n
i=1 wiXi)

(17)

Notice that equation (17) follows directly from equation (16), because the sum of
these two probabilities must equal 1.

One highly convenient property of this form for P(Y |X) is that it leads to a
simple linear expression for classification. To classify any given X we generally
want to assign the value yk that maximizes P(Y = yk|X). Put another way, we
assign the label Y = 0 if the following condition holds:

1 <
P(Y = 0|X)
P(Y = 1|X)

substituting from equations (16) and (17), this becomes

1 < exp(w0 +
n

⇤
i=1

wiXi)



Loss functions / Learning Objectives: 
Likelihood v. Conditional Likelihood 

Generative (Naïve Bayes) Loss function:  
 Data likelihood 

 
 
 
 
 
But, discriminative (logistic regression) loss function: 

 Conditional Data Likelihood 
 
 
 
 

•  Doesn’t waste effort learning P(X) – focuses on P(Y|X) all that 
matters for classification 

•  Discriminative models cannot compute P(xj|w)! 
 



Conditional Log Likelihood 
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equal because yj is in {0,1} 

remaining steps: substitute definitions, expand logs, and simplify 



Logistic Regression Parameter Estimation:  
Maximize Conditional Log Likelihood 

Good news: l(w) is concave function of w 

→ no locally optimal solutions! 

Bad news: no closed-form solution to maximize l(w) 

Good news: concave functions “easy” to optimize 



Optimizing concave function – 
Gradient ascent  

Conditional likelihood for Logistic Regression is concave !  
 
 
 
 
 
 
 
Gradient ascent is simplest of optimization approaches 

•  e.g., Conjugate gradient ascent much better 

Gradient: 

Update rule: 



Maximize Conditional Log Likelihood: Gradient 
ascent 
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Gradient ascent for LR 

Gradient ascent algorithm: (learning rate η > 0)  

do:

  

 

 For i=1…n: (iterate over weights)

 

 

until “change” < e

 
Loop over training examples! 



Large parameters… 

Maximum likelihood solution: prefers higher 
weights 
•  higher likelihood of (properly classified) examples 

close to decision boundary  
•  larger influence of corresponding features on decision 
•  can cause overfitting!!! 

Regularization: penalize high weights 
•  again, more on this later in the quarter 
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How about MAP? 

One common approach is to define priors 
on w 
•  Normal distribution, zero mean, identity 

covariance 
Often called Regularization 

•  Helps avoid very large weights and 
overfitting 

MAP estimate: 



M(C)AP as Regularization 

 
Add log p(w) to objective: 

•  Quadratic penalty: drives weights towards zero 
•  Adds a negative linear term to the gradients 
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MLE vs. MAP  
Maximum conditional likelihood estimate 
 
 
 
 

Maximum conditional a posteriori estimate 



Logistic regression v. Naïve Bayes 
Consider learning f: X à Y, where 

•   X is a vector of real-valued features, < X1 … Xn > 
•   Y is boolean 

Could use a Gaussian Naïve Bayes classifier 
•   assume all Xi are conditionally independent given Y 
•   model P(Xi | Y = yk) as Gaussian 
•   model P(Y) as Bernoulli(q,1-q) 

 What does that imply about the form of P(Y|X)? 
 



Derive form for P(Y|X) for continuous Xi  

only for Naïve Bayes models 

up to now, all arithmetic 

Can we solve for wi ? 
•  Yes, but only in Gaussian case  Looks like a setting for w0? 
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Linear function! 
Coefficients 
expressed with 
original Gaussian 
parameters! 



Derive form for P(Y|X) for continuous Xi  
= ln
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Gaussian Naïve Bayes vs. Logistic 
Regression 

Representation equivalence 
•  But only in a special case!!! (GNB with class-independent 

variances) 
But what’s the difference??? 
LR makes no assumptions about P(X|Y) in learning!!! 
Loss function!!! 

•  Optimize different functions ! Obtain different solutions 

Set of Gaussian  
Naïve Bayes parameters 

(feature variance  
independent of class label) 

Set of Logistic  
Regression parameters 



Naïve Bayes vs. Logistic Regression 

Consider Y boolean, Xi continuous, X=<X1 ... Xn> 
 
Number of parameters: 
Naïve Bayes: 4n +1 
Logistic Regression: n+1 
 
Estimation method: 
Naïve Bayes parameter estimates are uncoupled 
Logistic Regression parameter estimates are 

coupled 
 



 Naïve Bayes vs. Logistic Regression 

Generative vs. Discriminative classifiers 
 Asymptotic comparison  

(# training examples à infinity) 
•   when model correct 

–   GNB (with class independent variances) and  
LR produce identical classifiers 

•   when model incorrect 
–   LR is less biased – does not assume conditional independence 

»  therefore LR expected to outperform GNB 

[Ng & Jordan, 2002] 



Naïve Bayes vs. Logistic Regression 

Generative vs. Discriminative classifiers 
Non-asymptotic analysis 

•   convergence rate of parameter estimates,  
   (n = # of attributes in X) 
–  Size of training data to get close to infinite data solution 
–  Naïve Bayes needs O(log n) samples 
–  Logistic Regression needs O(n) samples 

 
•  GNB converges more quickly to its (perhaps less helpful) asymptotic 

estimates 
 

[Ng & Jordan, 2002] 



What you should know about 
Logistic Regression (LR) 

Gaussian Naïve Bayes with class-independent variances 
representationally equivalent to LR 
•  Solution differs because of objective (loss) function 

In general, NB and LR make different assumptions 
•  NB: Features independent given class ! assumption on P(X|Y) 
•  LR: Functional form of P(Y|X), no assumption on P(X|Y) 

LR is a linear classifier 
•  decision rule is a hyperplane 

LR optimized by conditional likelihood 
•  no closed-form solution 
•  concave ! global optimum with gradient ascent 
•  Maximum conditional a posteriori corresponds to regularization 

Convergence rates 
•  GNB (usually) needs less data 
•  LR (usually) gets to better solutions in the limit 
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Decision Boundary 



Voting  (Ensemble Methods) 

Instead of learning a single classifier, learn many 
weak classifiers that are good at different 
parts of the data 

Output class: (Weighted) vote of each classifier 
•  Classifiers that are most “sure” will vote with more 

conviction 
•  Classifiers will be most “sure” about a particular part 

of the space 
•  On average, do better than single classifier! 

But how???  
•  force classifiers to learn about different parts of the 

input space? different subsets of the data? 
•  weigh the votes of different classifiers? 

 



BAGGing = Bootstrap AGGregation 

(Breiman, 1996) 

•  for i = 1, 2, …, K: 
– Ti ß randomly select M training instances 

  with replacement 
– hi ß learn(Ti)     [ID3, NB, kNN, neural net, …] 

•  Now combine the Ti together with 
uniform voting (wi=1/K for all i) 
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Decision Boundary 



shades of blue/red indicate strength of vote for particular classification 



Fighting the bias-variance 
tradeoff 

Simple (a.k.a. weak) learners are good 
•  e.g., naïve Bayes, logistic regression, decision stumps (or shallow 

decision trees) 
•  Low variance, don’t usually overfit 

Simple (a.k.a. weak) learners are bad 
•  High bias, can’t solve hard learning problems 

 
Can we make weak learners always good??? 

•  No!!! 
•  But often yes… 



Boosting 
Idea: given a weak learner, run it multiple times on 

(reweighted) training data, then let learned classifiers vote 
 
On each iteration t:  

•  weight each training example by how incorrectly it was 
classified 

•  Learn a hypothesis – ht 
•  A strength for this hypothesis – t  

Final classifier: 

Practically useful 
Theoretically interesting 
 
 

[Schapire, 1989] 
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time = 0 
 
blue/red = class 
 
size of dot = weight 
 
weak learner =  
Decision stub: 
horizontal or vertical line 
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time = 1 

this hypothesis has 15%  
error 

and so does 
this ensemble, since 
the ensemble contains 
just this one hypothesis 
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time = 2 
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time = 3 
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time = 13 
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time = 100 



98 

time = 300 

overfitting!! 



Learning from weighted data 

Consider a weighted dataset 
•  D(i) – weight of i th training example (xi,yi) 
•  Interpretations: 

–  i th training example counts as if it occurred D(i) times 
–  If I were to “resample” data, I would get more samples of 

“heavier” data points 
Now, always do weighted calculations: 

•  e.g., MLE for Naïve Bayes, redefine Count(Y=y) to be weighted 
count: 

•  setting D(j)=1 (or any constant value!), for all j, will recreates 
unweighted case 
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How? Many possibilities. Will 
see one shortly! 

Final Result: linear sum of 
“base” or “weak” classifier 
outputs. 





What at to choose for hypothesis ht? 
Idea: choose at to minimize a bound on training 

error! 
 
 
 
Where  
 
 
 
 

[Schapire, 1989] 



What at to choose for hypothesis ht? 

Idea: choose at to minimize a bound on training error! 
 
 
 
Where 
 
 
And  
 
 
 
If we minimize Pt Zt, we minimize our training error!!! 
We can tighten this bound greedily, by choosing at and 

ht on each iteration to minimize Zt. 
ht is estimated as a black box, but can we solve for at? 
 
 
 
 
 

[Schapire, 1989] 

This equality isn’t 
obvious! Can be 
shown with algebra 
(telescoping sums)!  



Summary: choose at to minimize error 
bound  

We can squeeze this bound by choosing at on each 
iteration to minimize Zt. 

 
 
 
For boolean Y: differentiate, set equal to 0, there is a 

closed form solution! [Freund & Schapire ’97]:  
 
 
 
 
 
 

[Schapire, 1989] 



Strong, weak classifiers 

If each classifier is (at least slightly) better than 
random:  e< 0.5 

Another bound on error: 
 
 
 
What does this imply about the training error? 

•  Will get there exponentially fast! 
Is it hard to achieve better than random training 

error? 



Boosting results – Digit recognition 

Boosting: 
•  Seems to be robust to overfitting 
•  Test error can decrease even after training error 

is zero!!! 

[Schapire, 1989] 

Test error 

Training error 



Boosting generalization error bound 

Constants: 
T: number of boosting rounds 

•  Higher T à Looser bound, what does this imply? 
d: VC dimension of weak learner, measures 

complexity of classifier  
•  Higher d à bigger hypothesis space à looser 

bound 

m: number of training examples 
•  more data à tighter bound 

[Freund & Schapire, 1996] 



Boosting generalization error bound 

Constants: 
T: number of boosting rounds: 

•  Higher T à Looser bound, what does this imply? 
d: VC dimension of weak learner, measures 

complexity of classifier  
•  Higher d à bigger hypothesis space à looser 

bound 

m: number of training examples 
•  more data à tighter bound 

[Freund & Schapire, 1996] 

•  Theory does not match practice:  
•  Robust to overfitting 
•  Test set error decreases even after training 

error is zero 
•  Need better analysis tools 

•  we’ll come back to this later in the quarter 



Logistic Regression as Minimizing Loss 
Logistic regression assumes: 
 
 
And tries to maximize data likelihood, for Y={-1,+1}: 
 
 
 
 
Equivalent to minimizing log loss: 
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Maximum Likelihood Estimation

Assume

p(y = 1|x;w) = �(w>x)

p(y = 0|x;w) = 1� �(w>x)

write this more compactly as

p(y|x;w) =
³
�(w>x)

´y ³
1� �(w>x)

´(1�y)

Then the likelihood (assuming data independence) is

p(y|x;w) �
NY

i

³
�(w>xi)

´yi ³
1� �(w>xi)

´(1�yi)

and the negative log likelihood is

L(w) = �
NX

i

yi log�(w
>xi) + (1� yi) log(1� �(w>xi))

Logistic Regression Loss function

Use notation yi � {�1,1}. Then for f(x) = w>x+ b

P (y = 1|x) = �(f(x)) =
1

1+ e�f(x)

P (y = �1|x) = 1� �(f(x)) =
1

1+ e+f(x)

So in both cases

P (yi|xi) =
1

1+ e�yif(xi)

Assuming independence, the likelihood is

NY

i

1

1+ e�yif(xi)

and the negative log likelihood is

=
NX

i

log
³
1+ e�yif(xi)

´

which denes the loss function.
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Boosting and Logistic Regression 
Logistic regression 

equivalent to minimizing 
log loss: 

Boosting minimizes similar 
loss function: 

Both smooth approximations of 0/1 loss! 


