
Recognition
Part I

CSE 576

What we have seen so far:
Vision as Measurement Device

Real-time stereo on Mars

Structure from Motion

Physics-based Vision

Virtualized Reality
Slide Credit: Alyosha
Efros

Visual Recognition

•  What does it mean to “see”?

•  “What” is “where”, Marr 1982

•  Get computers to “see”

Visual Recognition

Verification

Is this a car?

Visual Recognition

Classification:

Is there a car in this picture?

Visual Recognition

Detection:

Where is the car in this picture?

Visual Recognition

Pose Estimation:

Visual Recognition

Activity Recognition:

What is he doing? What is he doing?

Visual Recognition

Object Categorization:

Sky

Tree

Car

Person
Bicycle

Horse

Person

Road

Visual Recognition

Person

Segmentation

Sky

Tree

Car

Object recognition
Is it really so hard?

This is a chair

Find the chair in this image Output of normalized correlation

Object recognition
Is it really so hard?

Find the chair in this image

Pretty much garbage
Simple template matching is not going to make it

Challenges 1: view point variation

Michelangelo 1475-1564 slide by Fei Fei, Fergus & Torralba

Challenges 2: illumination

slide credit: S. Ullman

Challenges 3: occlusion

Magritte, 1957 slide by Fei Fei, Fergus & Torralba

Challenges 4: scale

slide by Fei Fei, Fergus & Torralba

Challenges 5: deformation

Xu, Beihong 1943 slide by Fei Fei, Fergus & Torralba

Challenges 6: background clutter

Klimt, 1913 slide by Fei Fei, Fergus & Torralba

Challenges 7: object intra-class variation

slide by Fei-Fei, Fergus & Torralba

Let’s start with finding Faces

How to tell if a face is present?

One simple method: skin detection

Skin pixels have a distinctive range of colors
•  Corresponds to region(s) in RGB color space

–  for visualization, only R and G components are shown above

skin

Skin classifier
•  A pixel X = (R,G,B) is skin if it is in the skin region
•  But how to find this region?

Skin detection

Learn the skin region from examples
•  Manually label pixels in one or more “training images” as skin or not skin
•  Plot the training data in RGB space

–  skin pixels shown in orange, non-skin pixels shown in blue
–  some skin pixels may be outside the region, non-skin pixels inside. Why?

Skin classifier
•  Given X = (R,G,B): how to determine if it is skin or not?

Skin classification techniques

Skin classifier
•  Given X = (R,G,B): how to determine if it is skin or not?
•  Nearest neighbor

•  find labeled pixel closest to X
•  choose the label for that pixel

•  Data modeling
•  Model the distribution that generates the data (Generative)
•  Model the boundary (Discriminative)

Skin

Skin

Classification

•  Probabilistic
•  Supervised Learning
•  Discriminative vs. Generative
•  Ensemble methods
•  Linear models
•  Non-linear models

Let’s play with probability for a bit

Remembering simple stuff

Probability
Basic probability

•  X is a random variable
•  P(X) is the probability that X achieves a certain value

• 

•  or

•  Conditional probability: P(X | Y)
–  probability of X given that we already know Y

continuous X discrete X

P(Heads) = ϴ P(Tails) = 1- ϴ

Flips are i.i.d.:
•  Independent events
•  Identically distributed according to Binomial distribution

Sequence D of 𝝰H Heads and 𝝰 T Tails

…

D={xi | i=1…n}, P(D | θ) = ΠiP(xi | θ)

Thumbtack & Probabilities

Maximum Likelihood Estimation

Data: Observed set D of 𝝰 H Heads and 𝝰 T Tails
Hypothesis: Binomial distribution
Learning: finding ϴis an optimization problem

•  What’s the objective function?

MLE: Choose ϴ to maximize probability of D

Parameter learning

Set derivative to zero, and solve!

Brief Article

The Author

January 11, 2012

ˆ⇥ = argmax

⇥
lnP (D | ⇥)

ln ⇥�H

d

d⇥
lnP (D | ⇥) =

d

d⇥
[

ln ⇥�H
(1� ⇥)�T

]

=

d

d⇥
[

�H ln ⇥ + �T ln(1� ⇥)
]

1

Brief Article

The Author

January 11, 2012

ˆ⇥ = argmax

⇥
lnP (D | ⇥)

ln ⇥�H

d

d⇥
lnP (D | ⇥) =

d

d⇥
[

ln ⇥�H
(1� ⇥)�T

]

=

d

d⇥
[

�H ln ⇥ + �T ln(1� ⇥)
]

1

Brief Article

The Author

January 11, 2012

ˆ⇥ = argmax

⇥
lnP (D | ⇥)

ln ⇥�H

d

d⇥
lnP (D | ⇥) =

d

d⇥
[

ln ⇥�H
(1� ⇥)�T

]

=

d

d⇥
[

�H ln ⇥ + �T ln(1� ⇥)
]

= �H
d

d⇥
ln ⇥ + �T

d

d⇥
ln(1� ⇥) =

�H

⇥
� �T

1� ⇥
= 0

1

Brief Article

The Author

January 11, 2012

ˆ⇥ = argmax

⇥
lnP (D | ⇥)

ln ⇥�H

d

d⇥
lnP (D | ⇥) =

d

d⇥
[

ln ⇥�H
(1� ⇥)�T

]

=

d

d⇥
[

�H ln ⇥ + �T ln(1� ⇥)
]

= �H
d

d⇥
ln ⇥ + �T

d

d⇥
ln(1� ⇥) =

�H

⇥
� �T

1� ⇥
= 0

1

Brief Article

The Author

January 11, 2012

ˆ� = argmax

✓
lnP (D | �)

ln �↵H

d

d�
lnP (D | �) =

d

d�
ln �↵H

(1� �)↵T

1

Brief Article

The Author

January 11, 2012

ˆ⇥ = argmax

⇥
lnP (D | ⇥)

ln ⇥�H

d

d⇥
lnP (D | ⇥) =

d

d⇥
[

ln ⇥�H
(1� ⇥)�T

]

=

d

d⇥
[

�H ln ⇥ + �T ln(1� ⇥)
]

= �H
d

d⇥
ln ⇥ + �T

d

d⇥
ln(1� ⇥) =

�H

⇥
� �T

1� ⇥
= 0

1

But, how many flips do I need?

3 heads and 2 tails.
ϴ = 3/5, I can prove it!
What if I flipped 30 heads and 20 tails?
Same answer, I can prove it!
What’s better?
Umm… The more the merrier???

N

 P

ro
b.

 o
f M

is
ta

ke

Exponential
Decay!

A bound
(from Hoeffding’s inequality)

For N = 𝝰 H+ 𝝰 T, and

Let ϴ* be the true parameter, for any e>0:

What if I have prior beliefs?

Wait, I know that the thumbtack is “close” to
50-50. What can you do for me now?

Rather than estimating a single ϴ we obtain a

distribution over possible values of ϴ

In the beginning After observations
Observe flips

e.g.: {tails, tails}

How to use Prior

Use Bayes rule:

•  Or equivalently:
•  Also, for uniform priors:

Prior

Normalization

Data Likelihood

Posterior

Brief Article

The Author

January 11, 2012

ˆ⌅ = argmax

⇤
lnP (D | ⌅)

ln ⌅�H

d

d⌅
lnP (D | ⌅) =

d

d⌅
[

ln ⌅�H
(1� ⌅)�T

]

=

d

d⌅
[

�H ln ⌅ + �T ln(1� ⌅)
]

= �H
d

d⌅
ln ⌅ + �T

d

d⌅
ln(1� ⌅) =

�H

⌅
� �T

1� ⌅
= 0

⇥ ⇤ 2e�2N⇥2 ⇤ P (mistake)

ln ⇥ ⇤ ln 2� 2N⇤2

N ⇤ ln(2/⇥)

2⇤2

N ⇤ ln(2/0.05)
2⇥ 0.12 ⌅ 3.8

0.02
= 190

P (⌅) ⇧ 1

1

Brief Article

The Author

January 11, 2012

ˆ⌅ = argmax

⇤
lnP (D | ⌅)

ln ⌅�H

d

d⌅
lnP (D | ⌅) =

d

d⌅
[

ln ⌅�H
(1� ⌅)�T

]

=

d

d⌅
[

�H ln ⌅ + �T ln(1� ⌅)
]

= �H
d

d⌅
ln ⌅ + �T

d

d⌅
ln(1� ⌅) =

�H

⌅
� �T

1� ⌅
= 0

⇥ ⇤ 2e�2N⇥2 ⇤ P (mistake)

ln ⇥ ⇤ ln 2� 2N⇤2

N ⇤ ln(2/⇥)

2⇤2

N ⇤ ln(2/0.05)
2⇥ 0.12 ⌅ 3.8

0.02
= 190

P (⌅) ⇧ 1

P (⌅ | D) ⇧ P (D | ⌅)

1

 à reduces to MLE objective

Beta prior distribution – P()

Likelihood function:
Posterior:

Brief Article

The Author

January 11, 2012

ˆ⌅ = argmax

⌅
lnP (D | ⌅)

ln ⌅�H

d

d⌅
lnP (D | ⌅) =

d

d⌅
[

ln ⌅�H
(1� ⌅)�T

]

=

d

d⌅
[

�H ln ⌅ + �T ln(1� ⌅)
]

= �H
d

d⌅
ln ⌅ + �T

d

d⌅
ln(1� ⌅) =

�H

⌅
� �T

1� ⌅
= 0

⇥ ⇤ 2e�2N⇤2 ⇤ P (mistake)

ln ⇥ ⇤ ln 2� 2N⇤2

N ⇤ ln(2/⇥)

2⇤2

N ⇤ ln(2/0.05)
2⇥ 0.12 ⌅ 3.8

0.02
= 190

P (⌅) ⇧ 1

P (⌅ | D) ⇧ P (D | ⌅)

P (⌅ | D) ⇧ ⌅�H
(1� ⌅)�T ⌅⇥H�1

(1� ⌅)⇥T�1

1

Brief Article

The Author

January 11, 2012

ˆ⌅ = argmax

⌅
lnP (D | ⌅)

ln ⌅�H

d

d⌅
lnP (D | ⌅) =

d

d⌅
[

ln ⌅�H
(1� ⌅)�T

]

=

d

d⌅
[

�H ln ⌅ + �T ln(1� ⌅)
]

= �H
d

d⌅
ln ⌅ + �T

d

d⌅
ln(1� ⌅) =

�H

⌅
� �T

1� ⌅
= 0

⇥ ⇤ 2e�2N⇤2 ⇤ P (mistake)

ln ⇥ ⇤ ln 2� 2N⇤2

N ⇤ ln(2/⇥)

2⇤2

N ⇤ ln(2/0.05)
2⇥ 0.12 ⌅ 3.8

0.02
= 190

P (⌅) ⇧ 1

P (⌅ | D) ⇧ P (D | ⌅)

P (⌅ | D) ⇧ ⌅�H
(1� ⌅)�T ⌅⇥H�1

(1� ⌅)⇥T�1

1

Brief Article

The Author

January 11, 2012

ˆ⌅ = argmax

⌅
lnP (D | ⌅)

ln ⌅�H

d

d⌅
lnP (D | ⌅) =

d

d⌅
[

ln ⌅�H
(1� ⌅)�T

]

=

d

d⌅
[

�H ln ⌅ + �T ln(1� ⌅)
]

= �H
d

d⌅
ln ⌅ + �T

d

d⌅
ln(1� ⌅) =

�H

⌅
� �T

1� ⌅
= 0

⇥ ⇤ 2e�2N⇤2 ⇤ P (mistake)

ln ⇥ ⇤ ln 2� 2N⇤2

N ⇤ ln(2/⇥)

2⇤2

N ⇤ ln(2/0.05)
2⇥ 0.12 ⌅ 3.8

0.02
= 190

P (⌅) ⇧ 1

P (⌅ | D) ⇧ P (D | ⌅)

P (⌅ | D) ⇧ ⌅�H
(1� ⌅)�T ⌅⇥H�1

(1� ⌅)⇥T�1
= ⌅�H+⇥H�1

(1� ⌅)�T+⇥t+1

1

Brief Article

The Author

January 11, 2012

ˆ⇧ = argmax

⌅
lnP (D | ⇧)

ln ⇧�H

d

d⇧
lnP (D | ⇧) =

d

d⇧
[

ln ⇧�H
(1� ⇧)�T

]

=

d

d⇧
[

�H ln ⇧ + �T ln(1� ⇧)
]

= �H
d

d⇧
ln ⇧ + �T

d

d⇧
ln(1� ⇧) =

�H

⇧
� �T

1� ⇧
= 0

⇤ ⇤ 2e�2N⇤2 ⇤ P (mistake)

ln ⇤ ⇤ ln 2� 2N⌅2

N ⇤ ln(2/⇤)

2⌅2

N ⇤ ln(2/0.05)
2⇥ 0.12 ⌅ 3.8

0.02
= 190

P (⇧) ⇧ 1

P (⇧ | D) ⇧ P (D | ⇧)

P (⇧ | D) ⇧ ⇧�H
(1�⇧)�T ⇧⇥H�1

(1�⇧)⇥T�1
= ⇧�H+⇥H�1

(1�⇧)�T+⇥t+1
= Beta(�H+⇥H , �T+⇥T)

1

MAP for Beta distribution

MAP: use most likely parameter:

Brief Article

The Author

January 11, 2012

ˆ⇧ = argmax

⌅
lnP (D | ⇧)

ln ⇧�H

d

d⇧
lnP (D | ⇧) =

d

d⇧
[

ln ⇧�H
(1� ⇧)�T

]

=

d

d⇧
[

�H ln ⇧ + �T ln(1� ⇧)
]

= �H
d

d⇧
ln ⇧ + �T

d

d⇧
ln(1� ⇧) =

�H

⇧
� �T

1� ⇧
= 0

⇤ ⇤ 2e�2N⇤2 ⇤ P (mistake)

ln ⇤ ⇤ ln 2� 2N⌅2

N ⇤ ln(2/⇤)

2⌅2

N ⇤ ln(2/0.05)
2⇥ 0.12 ⌅ 3.8

0.02
= 190

P (⇧) ⇧ 1

P (⇧ | D) ⇧ P (D | ⇧)

P (⇧ | D) ⇧ ⇧�H
(1�⇧)�T ⇧⇥H�1

(1�⇧)⇥T�1
= ⇧�H+⇥H�1

(1�⇧)�T+⇥t+1
= Beta(�H+⇥H , �T+⇥T)

�H + ⇥H � 1
�H + ⇥H + �T + ⇥T � 2

1

What about continuous variables?

We like Gaussians because

Affine transformation (multiplying by scalar
and adding a constant) are Gaussian

Sum of Gaussians is Gaussian

Easy to differentiate

Learning	
 a	
 Gaussian	

•  Collect	
 a	
 bunch	
 of	
 data	

– Hopefully,	
 i.i.d.	
 samples	

– e.g.,	
 exam	
 scores	

•  Learn	
 parameters	

– Mean:	
 µ
– Variance:	
 σ

xi
i =

Exam	

Score	

0	
 85	

1	
 95	

2	
 100	

3	
 12	

…	
 …	

99	
 89	

MLE for Gaussian:

Prob. of i.i.d. samples D={x1,…,xN}:

•  Log-likelihood of data:

µMLE , �MLE = argmax
µ,�

P (D | µ,�)

2

MLE for mean of a Gaussian

What’s MLE for mean?

µMLE , �MLE = argmax
µ,�

P (D | µ,�)

= �
NX

i=1

(xi � µ)

�2
= 0

2

µMLE , �MLE = argmax
µ,�

P (D | µ,�)

= �
NX

i=1

(xi � µ)

�2
= 0

2

µMLE , �MLE = argmax
µ,�

P (D | µ,�)

= �
NX

i=1

(xi � µ)

�2
= 0

= �
NX

i=1

xi +Nµ = 0

= �N

�
+

NX

i=1

(xi � µ)2

�3
= 0

2

MLE for variance
Again, set derivative to zero:

µMLE , �MLE = argmax
µ,�

P (D | µ,�)

= �
NX

i=1

(xi � µ)

�2
= 0

2

µMLE , �MLE = argmax
µ,�

P (D | µ,�)

= �
NX

i=1

(xi � µ)

�2
= 0

= �N

�
+

NX

i=1

(xi � µ)2

�3
= 0

2

Learning Gaussian parameters

MLE:

Fitting a Gaussian to Skin samples

Skin detection results

Supervised Learning: find f

Given: Training set {(xi, yi) | i = 1 … n}
Find: A good approximation to f : X à Y

What is x?
What is y?

Simple Example: Digit Recognition

Input: images / pixel grids
Output: a digit 0-9
Setup:

•  Get a large collection of example
images, each labeled with a digit

•  Note: someone has to hand label all
this data!

•  Want to learn to predict labels of new,
future digit images

Features: ?

0

1

2

1

?? Screw You, I want to use Pixels :D

Lets take a probabilistic approach!!!

Can we directly estimate the data
distribution P(X,Y)?

How do we represent these?
How many parameters?
•  Prior, P(Y):

–  Suppose Y is composed of k
classes

•  Likelihood, P(X|Y):
–  Suppose X is composed of n

binary features

Conditional Independence
X is conditionally independent of Y given Z, if the

probability distribution for X is independent of the value of
Y, given the value of Z

e.g.,

Equivalent to:

Naïve Bayes

Naïve Bayes assumption:
•  Features are independent given class:

•  More generally:

The Naïve Bayes Classifier
Given:

•  Prior P(Y)
•  n conditionally independent

features X given the class Y
•  For each Xi, we have likelihood

P(Xi|Y)

Decision rule:

Y

X1 Xn X2

A Digit Recognizer

Input: pixel grids

Output: a digit 0-9

Naïve Bayes for Digits (Binary Inputs)
Simple version:

•  One feature Fij for each grid position <i,j>
•  Possible feature values are on / off, based on whether intensity

is more or less than 0.5 in underlying image
•  Each input maps to a feature vector, e.g.

•  Here: lots of features, each is binary valued

Naïve Bayes model:

Are the features independent given class?
What do we need to learn?

Example Distributions

1 0.1
2 0.1
3 0.1
4 0.1
5 0.1
6 0.1
7 0.1
8 0.1
9 0.1
0 0.1

1 0.01
2 0.05
3 0.05
4 0.30
5 0.80
6 0.90
7 0.05
8 0.60
9 0.50
0 0.80

1 0.05
2 0.01
3 0.90
4 0.80
5 0.90
6 0.90
7 0.25
8 0.85
9 0.60
0 0.80

MLE for the parameters of NB

Given dataset
•  Count(A=a,B=b) number of examples

where A=a and B=b

MLE for discrete NB, simply:
•  Prior:

•  Likelihood:

µMLE ,⇥MLE = argmax
µ,�

P (D | µ,⇥)

= �
NX

i=1

(xi � µ)

⇥2
= 0

= �
NX

i=1

xi +Nµ = 0

= �N

⇥
+

NX

i=1

(xi � µ)2

⇥3
= 0

argmax
w
ln

✓
1

⇥
⇥
2�

◆N

+
NX

j=1

�[tj �
P

iwihi(xj)]2

2⇥2

= argmax
w

NX

j=1

�[tj �
P

iwihi(xj)]2

2⇥2

= argmin
w

NX

j=1

[tj �
X

i

wihi(xj)]
2

P (Y = y) =
Count(Y = y)P
y0 Count(Y = y�)

2

µMLE ,⇥MLE = argmax
µ,�

P (D | µ,⇥)

= �
NX

i=1

(xi � µ)

⇥2
= 0

= �
NX

i=1

xi +Nµ = 0

= �N

⇥
+

NX

i=1

(xi � µ)2

⇥3
= 0

argmax
w
ln

✓
1

⇥
⇥
2�

◆N

+
NX

j=1

�[tj �
P

iwihi(xj)]2

2⇥2

= argmax
w

NX

j=1

�[tj �
P

iwihi(xj)]2

2⇥2

= argmin
w

NX

j=1

[tj �
X

i

wihi(xj)]
2

P (Y = y) =
Count(Y = y)P
y0 Count(Y = y�)

2

µMLE ,⇥MLE = argmax
µ,�

P (D | µ,⇥)

= �
NX

i=1

(xi � µ)

⇥2
= 0

= �
NX

i=1

xi +Nµ = 0

= �N

⇥
+

NX

i=1

(xi � µ)2

⇥3
= 0

argmax
w
ln

✓
1

⇥
⇥
2�

◆N

+
NX

j=1

�[tj �
P

iwihi(xj)]2

2⇥2

= argmax
w

NX

j=1

�[tj �
P

iwihi(xj)]2

2⇥2

= argmin
w

NX

j=1

[tj �
X

i

wihi(xj)]
2

P (Y = y) =
Count(Y = y)P
y0 Count(Y = y�)

P (Xi = x|Y = y) =
Count(Xi = x, Y = y)P
x0 Count(Xi = x�, Y = y)

2

µMLE ,⇥MLE = argmax
µ,�

P (D | µ,⇥)

= �
NX

i=1

(xi � µ)

⇥2
= 0

= �
NX

i=1

xi +Nµ = 0

= �N

⇥
+

NX

i=1

(xi � µ)2

⇥3
= 0

argmax
w
ln

✓
1

⇥
⇥
2�

◆N

+
NX

j=1

�[tj �
P

iwihi(xj)]2

2⇥2

= argmax
w

NX

j=1

�[tj �
P

iwihi(xj)]2

2⇥2

= argmin
w

NX

j=1

[tj �
X

i

wihi(xj)]
2

P (Y = y) =
Count(Y = y)P
y0 Count(Y = y�)

P (Xi = x|Y = y) =
Count(Xi = x, Y = y)P
x0 Count(Xi = x�, Y = y)

2

Violating the NB assumption

Usually, features are not conditionally independent:

•  NB often performs well, even when assumption is
violated

•  [Domingos & Pazzani ’96] discuss some conditions for
good performance

Smoothing

2 wins!!

Does this happen in vision?

NB & Bag of words model

What about real Features?
What if we have continuous Xi ?

Eg., character recognition: Xi is ith pixel

Gaussian Naïve Bayes (GNB):

Sometimes assume variance
is independent of Y (i.e., i),
or independent of Xi (i.e., k)
or both (i.e., )

Estimating Parameters

Maximum likelihood estimates:
Mean:

Variance:

jth training
example

=1 if x true, else 0

another probabilistic approach!!!

Naïve Bayes: directly estimate the data distribution
P(X,Y)!
•  challenging due to size of distribution!
•  make Naïve Bayes assumption: only need P(Xi|Y)!

But wait, we classify according to:
•  maxY P(Y|X)

Why not learn P(Y|X) directly?

(The lousy
painter)

Discriminative vs. generative

0 10 20 30 40 50 60 70 0
0.05
0.1

x = data

•  Generative model

0 10 20 30 40 50 60 70 0
0.5
1

x = data

•  Discriminative model

0 10 20 30 40 50 60 70 80
-1

1

x = data

•  Classification function

(The artist)

Logistic Regression

Logistic function (Sigmoid):

•  Learn P(Y|X) directly!
•  Assume a particular

functional form
•  Sigmoid applied to a

linear function of the
data:

Z

Copyright

c⇥ 2010, Tom M. Mitchell. 7

where the superscript j refers to the jth training example, and where �(Y = yk) is
1 if Y = yk and 0 otherwise. Note the role of � here is to select only those training
examples for which Y = yk.

The maximum likelihood estimator for ⇥2
ik is

⇥̂2
ik =

1
⇤ j �(Y j = yk) ⇤

j
(X j

i � µ̂ik)2�(Y j = yk) (14)

This maximum likelihood estimator is biased, so the minimum variance unbi-
ased estimator (MVUE) is sometimes used instead. It is

⇥̂2
ik =

1
(⇤ j �(Y j = yk))�1 ⇤

j
(X j

i � µ̂ik)2�(Y j = yk) (15)

3 Logistic Regression
Logistic Regression is an approach to learning functions of the form f : X ⇤Y , or
P(Y |X) in the case where Y is discrete-valued, and X = ⌅X1 . . .Xn⇧ is any vector
containing discrete or continuous variables. In this section we will primarily con-
sider the case where Y is a boolean variable, in order to simplify notation. In the
final subsection we extend our treatment to the case where Y takes on any finite
number of discrete values.

Logistic Regression assumes a parametric form for the distribution P(Y |X),
then directly estimates its parameters from the training data. The parametric
model assumed by Logistic Regression in the case where Y is boolean is:

P(Y = 1|X) =
1

1+ exp(w0 +⇤n
i=1 wiXi)

(16)

and
P(Y = 0|X) =

exp(w0 +⇤n
i=1 wiXi)

1+ exp(w0 +⇤n
i=1 wiXi)

(17)

Notice that equation (17) follows directly from equation (16), because the sum of
these two probabilities must equal 1.

One highly convenient property of this form for P(Y |X) is that it leads to a
simple linear expression for classification. To classify any given X we generally
want to assign the value yk that maximizes P(Y = yk|X). Put another way, we
assign the label Y = 0 if the following condition holds:

1 <
P(Y = 0|X)
P(Y = 1|X)

substituting from equations (16) and (17), this becomes

1 < exp(w0 +
n

⇤
i=1

wiXi)

Copyright

c⇥ 2010, Tom M. Mitchell. 7

where the superscript j refers to the jth training example, and where �(Y = yk) is
1 if Y = yk and 0 otherwise. Note the role of � here is to select only those training
examples for which Y = yk.

The maximum likelihood estimator for ⇥2
ik is

⇥̂2
ik =

1
⇤ j �(Y j = yk) ⇤

j
(X j

i � µ̂ik)2�(Y j = yk) (14)

This maximum likelihood estimator is biased, so the minimum variance unbi-
ased estimator (MVUE) is sometimes used instead. It is

⇥̂2
ik =

1
(⇤ j �(Y j = yk))�1 ⇤

j
(X j

i � µ̂ik)2�(Y j = yk) (15)

3 Logistic Regression
Logistic Regression is an approach to learning functions of the form f : X ⇤Y , or
P(Y |X) in the case where Y is discrete-valued, and X = ⌅X1 . . .Xn⇧ is any vector
containing discrete or continuous variables. In this section we will primarily con-
sider the case where Y is a boolean variable, in order to simplify notation. In the
final subsection we extend our treatment to the case where Y takes on any finite
number of discrete values.

Logistic Regression assumes a parametric form for the distribution P(Y |X),
then directly estimates its parameters from the training data. The parametric
model assumed by Logistic Regression in the case where Y is boolean is:

P(Y = 1|X) =
1

1+ exp(w0 +⇤n
i=1 wiXi)

(16)

and
P(Y = 0|X) =

exp(w0 +⇤n
i=1 wiXi)

1+ exp(w0 +⇤n
i=1 wiXi)

(17)

Notice that equation (17) follows directly from equation (16), because the sum of
these two probabilities must equal 1.

One highly convenient property of this form for P(Y |X) is that it leads to a
simple linear expression for classification. To classify any given X we generally
want to assign the value yk that maximizes P(Y = yk|X). Put another way, we
assign the label Y = 0 if the following condition holds:

1 <
P(Y = 0|X)
P(Y = 1|X)

substituting from equations (16) and (17), this becomes

1 < exp(w0 +
n

⇤
i=1

wiXi)

Logistic Regression: decision boundary

A Linear Classifier!

•  Prediction: Output the Y with
highest P(Y|X)
–  For binary Y, output Y=0 if

Copyright

c⇥ 2010, Tom M. Mitchell. 7

where the superscript j refers to the jth training example, and where �(Y = yk) is
1 if Y = yk and 0 otherwise. Note the role of � here is to select only those training
examples for which Y = yk.

The maximum likelihood estimator for ⇥2
ik is

⇥̂2
ik =

1
⇤ j �(Y j = yk) ⇤

j
(X j

i � µ̂ik)2�(Y j = yk) (14)

This maximum likelihood estimator is biased, so the minimum variance unbi-
ased estimator (MVUE) is sometimes used instead. It is

⇥̂2
ik =

1
(⇤ j �(Y j = yk))�1 ⇤

j
(X j

i � µ̂ik)2�(Y j = yk) (15)

3 Logistic Regression
Logistic Regression is an approach to learning functions of the form f : X ⇤Y , or
P(Y |X) in the case where Y is discrete-valued, and X = ⌅X1 . . .Xn⇧ is any vector
containing discrete or continuous variables. In this section we will primarily con-
sider the case where Y is a boolean variable, in order to simplify notation. In the
final subsection we extend our treatment to the case where Y takes on any finite
number of discrete values.

Logistic Regression assumes a parametric form for the distribution P(Y |X),
then directly estimates its parameters from the training data. The parametric
model assumed by Logistic Regression in the case where Y is boolean is:

P(Y = 1|X) =
1

1+ exp(w0 +⇤n
i=1 wiXi)

(16)

and
P(Y = 0|X) =

exp(w0 +⇤n
i=1 wiXi)

1+ exp(w0 +⇤n
i=1 wiXi)

(17)

Notice that equation (17) follows directly from equation (16), because the sum of
these two probabilities must equal 1.

One highly convenient property of this form for P(Y |X) is that it leads to a
simple linear expression for classification. To classify any given X we generally
want to assign the value yk that maximizes P(Y = yk|X). Put another way, we
assign the label Y = 0 if the following condition holds:

1 <
P(Y = 0|X)
P(Y = 1|X)

substituting from equations (16) and (17), this becomes

1 < exp(w0 +
n

⇤
i=1

wiXi)

Copyright

c⇥ 2010, Tom M. Mitchell. 7

where the superscript j refers to the jth training example, and where �(Y = yk) is
1 if Y = yk and 0 otherwise. Note the role of � here is to select only those training
examples for which Y = yk.

The maximum likelihood estimator for ⇥2
ik is

⇥̂2
ik =

1
⇤ j �(Y j = yk) ⇤

j
(X j

i � µ̂ik)2�(Y j = yk) (14)

This maximum likelihood estimator is biased, so the minimum variance unbi-
ased estimator (MVUE) is sometimes used instead. It is

⇥̂2
ik =

1
(⇤ j �(Y j = yk))�1 ⇤

j
(X j

i � µ̂ik)2�(Y j = yk) (15)

3 Logistic Regression
Logistic Regression is an approach to learning functions of the form f : X ⇤Y , or
P(Y |X) in the case where Y is discrete-valued, and X = ⌅X1 . . .Xn⇧ is any vector
containing discrete or continuous variables. In this section we will primarily con-
sider the case where Y is a boolean variable, in order to simplify notation. In the
final subsection we extend our treatment to the case where Y takes on any finite
number of discrete values.

Logistic Regression assumes a parametric form for the distribution P(Y |X),
then directly estimates its parameters from the training data. The parametric
model assumed by Logistic Regression in the case where Y is boolean is:

P(Y = 1|X) =
1

1+ exp(w0 +⇤n
i=1 wiXi)

(16)

and
P(Y = 0|X) =

exp(w0 +⇤n
i=1 wiXi)

1+ exp(w0 +⇤n
i=1 wiXi)

(17)

Notice that equation (17) follows directly from equation (16), because the sum of
these two probabilities must equal 1.

One highly convenient property of this form for P(Y |X) is that it leads to a
simple linear expression for classification. To classify any given X we generally
want to assign the value yk that maximizes P(Y = yk|X). Put another way, we
assign the label Y = 0 if the following condition holds:

1 <
P(Y = 0|X)
P(Y = 1|X)

substituting from equations (16) and (17), this becomes

1 < exp(w0 +
n

⇤
i=1

wiXi)

Copyright

c� 2010, Tom M. Mitchell. 8

−5 0 5
0

0.2

0.4

0.6

0.8

1

Y

X

Y = 1/(1 + exp(−X))

Figure 1: Form of the logistic function. In Logistic Regression, P(Y |X) is as-
sumed to follow this form.

and taking the natural log of both sides we have a linear classification rule that
assigns label Y = 0 if X satisfies

0 < w0 +
n

⇥
i=1

wiXi (18)

and assigns Y = 1 otherwise.
Interestingly, the parametric form of P(Y |X) used by Logistic Regression is

precisely the form implied by the assumptions of a Gaussian Naive Bayes classi-
fier. Therefore, we can view Logistic Regression as a closely related alternative to
GNB, though the two can produce different results in many cases.

3.1 Form of P(Y |X) for Gaussian Naive Bayes Classifier
Here we derive the form of P(Y |X) entailed by the assumptions of a Gaussian
Naive Bayes (GNB) classifier, showing that it is precisely the form used by Logis-
tic Regression and summarized in equations (16) and (17). In particular, consider
a GNB based on the following modeling assumptions:

• Y is boolean, governed by a Bernoulli distribution, with parameter � =
P(Y = 1)

• X = ⇤X1 . . .Xn⌅, where each Xi is a continuous random variable

w
.X

+w
0

=
0

Copyright

c⇥ 2010, Tom M. Mitchell. 7

where the superscript j refers to the jth training example, and where �(Y = yk) is
1 if Y = yk and 0 otherwise. Note the role of � here is to select only those training
examples for which Y = yk.

The maximum likelihood estimator for ⇥2
ik is

⇥̂2
ik =

1
⇤ j �(Y j = yk) ⇤

j
(X j

i � µ̂ik)2�(Y j = yk) (14)

This maximum likelihood estimator is biased, so the minimum variance unbi-
ased estimator (MVUE) is sometimes used instead. It is

⇥̂2
ik =

1
(⇤ j �(Y j = yk))�1 ⇤

j
(X j

i � µ̂ik)2�(Y j = yk) (15)

3 Logistic Regression
Logistic Regression is an approach to learning functions of the form f : X ⇤Y , or
P(Y |X) in the case where Y is discrete-valued, and X = ⌅X1 . . .Xn⇧ is any vector
containing discrete or continuous variables. In this section we will primarily con-
sider the case where Y is a boolean variable, in order to simplify notation. In the
final subsection we extend our treatment to the case where Y takes on any finite
number of discrete values.

Logistic Regression assumes a parametric form for the distribution P(Y |X),
then directly estimates its parameters from the training data. The parametric
model assumed by Logistic Regression in the case where Y is boolean is:

P(Y = 1|X) =
1

1+ exp(w0 +⇤n
i=1 wiXi)

(16)

and
P(Y = 0|X) =

exp(w0 +⇤n
i=1 wiXi)

1+ exp(w0 +⇤n
i=1 wiXi)

(17)

Notice that equation (17) follows directly from equation (16), because the sum of
these two probabilities must equal 1.

One highly convenient property of this form for P(Y |X) is that it leads to a
simple linear expression for classification. To classify any given X we generally
want to assign the value yk that maximizes P(Y = yk|X). Put another way, we
assign the label Y = 0 if the following condition holds:

1 <
P(Y = 0|X)
P(Y = 1|X)

substituting from equations (16) and (17), this becomes

1 < exp(w0 +
n

⇤
i=1

wiXi)

Copyright

c⇥ 2010, Tom M. Mitchell. 7

where the superscript j refers to the jth training example, and where �(Y = yk) is
1 if Y = yk and 0 otherwise. Note the role of � here is to select only those training
examples for which Y = yk.

The maximum likelihood estimator for ⇥2
ik is

⇥̂2
ik =

1
⇤ j �(Y j = yk) ⇤

j
(X j

i � µ̂ik)2�(Y j = yk) (14)

This maximum likelihood estimator is biased, so the minimum variance unbi-
ased estimator (MVUE) is sometimes used instead. It is

⇥̂2
ik =

1
(⇤ j �(Y j = yk))�1 ⇤

j
(X j

i � µ̂ik)2�(Y j = yk) (15)

3 Logistic Regression
Logistic Regression is an approach to learning functions of the form f : X ⇤Y , or
P(Y |X) in the case where Y is discrete-valued, and X = ⌅X1 . . .Xn⇧ is any vector
containing discrete or continuous variables. In this section we will primarily con-
sider the case where Y is a boolean variable, in order to simplify notation. In the
final subsection we extend our treatment to the case where Y takes on any finite
number of discrete values.

Logistic Regression assumes a parametric form for the distribution P(Y |X),
then directly estimates its parameters from the training data. The parametric
model assumed by Logistic Regression in the case where Y is boolean is:

P(Y = 1|X) =
1

1+ exp(w0 +⇤n
i=1 wiXi)

(16)

and
P(Y = 0|X) =

exp(w0 +⇤n
i=1 wiXi)

1+ exp(w0 +⇤n
i=1 wiXi)

(17)

Notice that equation (17) follows directly from equation (16), because the sum of
these two probabilities must equal 1.

One highly convenient property of this form for P(Y |X) is that it leads to a
simple linear expression for classification. To classify any given X we generally
want to assign the value yk that maximizes P(Y = yk|X). Put another way, we
assign the label Y = 0 if the following condition holds:

1 <
P(Y = 0|X)
P(Y = 1|X)

substituting from equations (16) and (17), this becomes

1 < exp(w0 +
n

⇤
i=1

wiXi)

Loss functions / Learning Objectives:
Likelihood v. Conditional Likelihood

Generative (Naïve Bayes) Loss function:
 Data likelihood

But, discriminative (logistic regression) loss function:

 Conditional Data Likelihood

•  Doesn’t waste effort learning P(X) – focuses on P(Y|X) all that
matters for classification

•  Discriminative models cannot compute P(xj|w)!

Conditional Log Likelihood

error =
⇤

i

(ti � t̂i)
2 =

⇤

i

�
ti �

⇤

k

wkhk(xi)

⇥2

P (Y = 1|X) ⇥ exp(w10 +
⇤

i

w1iXi)

P (Y = 2|X) ⇥ exp(w20 +
⇤

i

w2iXi)

P (Y = r|X) = 1�
r�1⇤

j=1

P (Y = j|X)

=
⇤

j

yj ln
ew0+

P
i wiXi

1 + ew0+
P

i wiXi
+ (1� yj) ln

1

1 + ew0+
P

i wiXi

3

equal because yj is in {0,1}

remaining steps: substitute definitions, expand logs, and simplify

Logistic Regression Parameter Estimation:
Maximize Conditional Log Likelihood

Good news: l(w) is concave function of w

→ no locally optimal solutions!

Bad news: no closed-form solution to maximize l(w)

Good news: concave functions “easy” to optimize

Optimizing concave function –
Gradient ascent

Conditional likelihood for Logistic Regression is concave !

Gradient ascent is simplest of optimization approaches

•  e.g., Conjugate gradient ascent much better

Gradient:

Update rule:

Maximize Conditional Log Likelihood: Gradient
ascent

error =
⌥

i

(ti � t̂i)
2 =

⌥

i

⇤
ti �

⌥

k

wkhk(xi)

⌅2

P (Y = 1|X) ⇥ exp(w10 +
⌥

i

w1iXi)

P (Y = 2|X) ⇥ exp(w20 +
⌥

i

w2iXi)

P (Y = r|X) = 1�
r�1⌥

j=1

P (Y = j|X)

=
⌥

j

yj ln
ew0+

P
i wiXi

1 + ew0+
P

i wiXi
+ (1� yj) ln

1

1 + ew0+
P

i wiXi

�l(w)

�w
=

⌥

j

xj
i

�
yj � P (Y j = 1|xj , w)

⇥

�l(w)

�w
=

⌥

j

⇧
�

�w
yj(w0 +

⌥

i

wix
j
i)�

�

�w
ln

⇤
1 + exp(w0 +

⌥

i

wix
j
i)

⌅⌃

=
⌥

j

yjxj
i

3

error =
�

i

(ti � t̂i)
2 =

�

i

⇤
ti �

�

k

wkhk(xi)

⌅2

P (Y = 1|X) ⇥ exp(w10 +
�

i

w1iXi)

P (Y = 2|X) ⇥ exp(w20 +
�

i

w2iXi)

P (Y = r|X) = 1�
r�1�

j=1

P (Y = j|X)

=
�

j

yj ln
ew0+

P
i wiXi

1 + ew0+
P

i wiXi
+ (1� yj) ln

1

1 + ew0+
P

i wiXi

�l(w)

�w
=

�

j

xj
i

�
yj � P (Y j = 1|xj , w)

⇥

�l(w)

�w
=

�

j

⇧
�

�w
yj(w0 +

�

i

wix
j
i)�

�

�w
ln

⇤
1 + exp(w0 +

�

i

wix
j
i)

⌅⌃

=
�

j

⇧
yjxj

i �
xj

i exp(w0 +
⌥

i wix
j
i)

1 + exp(w0 +
⌥

i wix
j
i)

⌃

=
�

j

xj
i

⇧
yj �

exp(w0 +
⌥

i wix
j
i)

1 + exp(w0 +
⌥

i wix
j
i)

⌃

3

error =
�

i

(ti � t̂i)
2 =

�

i

⇤
ti �

�

k

wkhk(xi)

⌅2

P (Y = 1|X) ⇥ exp(w10 +
�

i

w1iXi)

P (Y = 2|X) ⇥ exp(w20 +
�

i

w2iXi)

P (Y = r|X) = 1�
r�1�

j=1

P (Y = j|X)

=
�

j

yj ln
ew0+

P
i wiXi

1 + ew0+
P

i wiXi
+ (1� yj) ln

1

1 + ew0+
P

i wiXi

�l(w)

�w
=

�

j

xj
i

�
yj � P (Y j = 1|xj , w)

⇥

�l(w)

�w
=

�

j

⇧
�

�w
yj(w0 +

�

i

wix
j
i)�

�

�w
ln

⇤
1 + exp(w0 +

�

i

wix
j
i)

⌅⌃

=
�

j

⇧
yjxj

i �
xj

i exp(w0 +
⌥

i wix
j
i)

1 + exp(w0 +
⌥

i wix
j
i)

⌃

=
�

j

xj
i

⇧
yj �

exp(w0 +
⌥

i wix
j
i)

1 + exp(w0 +
⌥

i wix
j
i)

⌃

3

error =
�

i

(ti � t̂i)
2 =

�

i

⇤
ti �

�

k

wkhk(xi)

⌅2

P (Y = 1|X) ⇥ exp(w10 +
�

i

w1iXi)

P (Y = 2|X) ⇥ exp(w20 +
�

i

w2iXi)

P (Y = r|X) = 1�
r�1�

j=1

P (Y = j|X)

=
�

j

yj ln
ew0+

P
i wiXi

1 + ew0+
P

i wiXi
+ (1� yj) ln

1

1 + ew0+
P

i wiXi

⌅l(w)

⌅wi
=

�

j

xj
i

�
yj � P (Y j = 1|xj , w)

⇥

⌅l(w)

⌅wi
=

�

j

⇧
⌅

⌅w
yj(w0 +

�

i

wix
j
i)�

⌅

⌅w
ln

⇤
1 + exp(w0 +

�

i

wix
j
i)

⌅⌃

=
�

j

⇧
yjxj

i �
xj

i exp(w0 +
⌥

i wix
j
i)

1 + exp(w0 +
⌥

i wix
j
i)

⌃

=
�

j

xj
i

⇧
yj �

exp(w0 +
⌥

i wix
j
i)

1 + exp(w0 +
⌥

i wix
j
i)

⌃

1

1 + e�ax

ln p(w) ⇥ ��

2

�

i

w2i

⌅ ln p(w)

⌅wi
= ��wi

1

⇤i

⇤
2⇥

e
� (x�µik)

2

2�2i

3

error =
�

i

(ti � t̂i)
2 =

�

i

⇤
ti �

�

k

wkhk(xi)

⌅2

P (Y = 1|X) ⇥ exp(w10 +
�

i

w1iXi)

P (Y = 2|X) ⇥ exp(w20 +
�

i

w2iXi)

P (Y = r|X) = 1�
r�1�

j=1

P (Y = j|X)

=
�

j

yj ln
ew0+

P
i wiXi

1 + ew0+
P

i wiXi
+ (1� yj) ln

1

1 + ew0+
P

i wiXi

⌅l(w)

⌅wi
=

�

j

xj
i

�
yj � P (Y j = 1|xj , w)

⇥

⌅l(w)

⌅wi
=

�

j

⇧
⌅

⌅w
yj(w0 +

�

i

wix
j
i)�

⌅

⌅w
ln

⇤
1 + exp(w0 +

�

i

wix
j
i)

⌅⌃

=
�

j

⇧
yjxj

i �
xj

i exp(w0 +
⌥

i wix
j
i)

1 + exp(w0 +
⌥

i wix
j
i)

⌃

=
�

j

xj
i

⇧
yj �

exp(w0 +
⌥

i wix
j
i)

1 + exp(w0 +
⌥

i wix
j
i)

⌃

1

1 + e�ax

ln p(w) ⇥ ��

2

�

i

w2i

⌅ ln p(w)

⌅wi
= ��wi

1

⇤i

⇤
2⇥

e
� (x�µik)

2

2�2i

3

Gradient ascent for LR

Gradient ascent algorithm: (learning rate η > 0)

do:

 For i=1…n: (iterate over weights)

until “change” < e

Loop over training examples!

Large parameters…

Maximum likelihood solution: prefers higher
weights
•  higher likelihood of (properly classified) examples

close to decision boundary
•  larger influence of corresponding features on decision
•  can cause overfitting!!!

Regularization: penalize high weights
•  again, more on this later in the quarter

p lo t 1⇧⇤1�e^ ⇥x⌅ from ⇥5 to 5 th ick

Input in terpre ta tion :

Show� p lot
1

⇤⇥x � 1
x � ⇥ 5 to 5 ⇥

Resu lt :

⇥ 4 ⇥2 2 4

0.2

0.4

0.6

0.8

1.0

Genera ted by Wolfram |Alpha (www.wolfram alpha.com) on January 30, 2012 from Cham paign, IL.

© Wolfram Alpha LLC—A Wol fram Research Com pany
1

p lo t 1⇧⇤1�e^ ⇤⇥2x⌅⌅ from ⇥5 to 5 th ick

Input in terpre ta tion :

Show� p lot
1

⇤⇥2x � 1
x � ⇥ 5 to 5 ⇥

Resu lt :

⇥ 4 ⇥2 2 4

0.2

0.4

0.6

0.8

1.0

Genera ted by Wolfram |Alpha (www.wolfram alpha.com) on January 30, 2012 from Cham paign, IL.

© Wolfram Alpha LLC—A Wol fram Research Com pany
1

p lo t 1⇧⇤1�e^ ⇤⇥10x⌅⌅ from ⇥5 to 5 th ick

Input in terpre ta tion :

Show� p lot
1

⇤⇥10x � 1
x � ⇥ 5 to 5 ⇥

Resu lt :

⇥ 4 ⇥2 2 4

0.2

0.4

0.6

0.8

1.0

Genera ted by Wolfram |Alpha (www.wolfram alpha.com) on January 30, 2012 from Cham paign, IL.

© Wolfram Alpha LLC—A Wol fram Research Com pany
1

error =
�

i

(ti � t̂i)
2 =

�

i

⇤
ti �

�

k

wkhk(xi)

⌅2

P (Y = 1|X) ⇥ exp(w10 +
�

i

w1iXi)

P (Y = 2|X) ⇥ exp(w20 +
�

i

w2iXi)

P (Y = r|X) = 1�
r�1�

j=1

P (Y = j|X)

=
�

j

yj ln
ew0+

P
i wiXi

1 + ew0+
P

i wiXi
+ (1� yj) ln

1

1 + ew0+
P

i wiXi

�l(w)

�w
=

�

j

xj
i

�
yj � P (Y j = 1|xj , w)

⇥

�l(w)

�w
=

�

j

⇧
�

�w
yj(w0 +

�

i

wix
j
i)�

�

�w
ln

⇤
1 + exp(w0 +

�

i

wix
j
i)

⌅⌃

=
�

j

⇧
yjxj

i �
xj

i exp(w0 +
⌥

i wix
j
i)

1 + exp(w0 +
⌥

i wix
j
i)

⌃

=
�

j

xj
i

⇧
yj �

exp(w0 +
⌥

i wix
j
i)

1 + exp(w0 +
⌥

i wix
j
i)

⌃

1

1 + e�ax

3

a=1 a=5 a=10

How about MAP?

One common approach is to define priors
on w
•  Normal distribution, zero mean, identity

covariance
Often called Regularization

•  Helps avoid very large weights and
overfitting

MAP estimate:

M(C)AP as Regularization

Add log p(w) to objective:

•  Quadratic penalty: drives weights towards zero
•  Adds a negative linear term to the gradients

error =
�

i

(ti � t̂i)
2 =

�

i

⇤
ti �

�

k

wkhk(xi)

⌅2

P (Y = 1|X) ⇥ exp(w10 +
�

i

w1iXi)

P (Y = 2|X) ⇥ exp(w20 +
�

i

w2iXi)

P (Y = r|X) = 1�
r�1�

j=1

P (Y = j|X)

=
�

j

yj ln
ew0+

P
i wiXi

1 + ew0+
P

i wiXi
+ (1� yj) ln

1

1 + ew0+
P

i wiXi

⇥l(w)

⇥w
=

�

j

xj
i

�
yj � P (Y j = 1|xj , w)

⇥

⇥l(w)

⇥w
=

�

j

⇧
⇥

⇥w
yj(w0 +

�

i

wix
j
i)�

⇥

⇥w
ln

⇤
1 + exp(w0 +

�

i

wix
j
i)

⌅⌃

=
�

j

⇧
yjxj

i �
xj

i exp(w0 +
⌥

i wix
j
i)

1 + exp(w0 +
⌥

i wix
j
i)

⌃

=
�

j

xj
i

⇧
yj �

exp(w0 +
⌥

i wix
j
i)

1 + exp(w0 +
⌥

i wix
j
i)

⌃

1

1 + e�ax

ln p(w) ⇥ ��

2

�

i

w2i

⇥ ln p(w)

⇥wi
= ��wi

3

error =
�

i

(ti � t̂i)
2 =

�

i

⇤
ti �

�

k

wkhk(xi)

⌅2

P (Y = 1|X) ⇥ exp(w10 +
�

i

w1iXi)

P (Y = 2|X) ⇥ exp(w20 +
�

i

w2iXi)

P (Y = r|X) = 1�
r�1�

j=1

P (Y = j|X)

=
�

j

yj ln
ew0+

P
i wiXi

1 + ew0+
P

i wiXi
+ (1� yj) ln

1

1 + ew0+
P

i wiXi

⇥l(w)

⇥w
=

�

j

xj
i

�
yj � P (Y j = 1|xj , w)

⇥

⇥l(w)

⇥w
=

�

j

⇧
⇥

⇥w
yj(w0 +

�

i

wix
j
i)�

⇥

⇥w
ln

⇤
1 + exp(w0 +

�

i

wix
j
i)

⌅⌃

=
�

j

⇧
yjxj

i �
xj

i exp(w0 +
⌥

i wix
j
i)

1 + exp(w0 +
⌥

i wix
j
i)

⌃

=
�

j

xj
i

⇧
yj �

exp(w0 +
⌥

i wix
j
i)

1 + exp(w0 +
⌥

i wix
j
i)

⌃

1

1 + e�ax

ln p(w) ⇥ ��

2

�

i

w2i

⇥ ln p(w)

⇥wi
= ��wi

3

MLE vs. MAP
Maximum conditional likelihood estimate

Maximum conditional a posteriori estimate

Logistic regression v. Naïve Bayes
Consider learning f: X à Y, where

•  X is a vector of real-valued features, < X1 … Xn >
•  Y is boolean

Could use a Gaussian Naïve Bayes classifier
•  assume all Xi are conditionally independent given Y
•  model P(Xi | Y = yk) as Gaussian
•  model P(Y) as Bernoulli(q,1-q)

 What does that imply about the form of P(Y|X)?

Derive form for P(Y|X) for continuous Xi

only for Naïve Bayes models

up to now, all arithmetic

Can we solve for wi ?
•  Yes, but only in Gaussian case Looks like a setting for w0?

Ratio of class-conditional probabilities

= ln

�

⇧⇧⇤

1
⇥i
⇥
2�

e
� (xi�µi0)

2

2�2i

1
⇥i
⇥
2�

e
� (xi�µi1)

2

2�2i

⇥

⌃⌃⌅

4

= ln

�

⇧⇧⇤

1
⇥i
⇥
2�

e
� (xi�µi0)

2

2�2i

1
⇥i
⇥
2�

e
� (xi�µi1)

2

2�2i

⇥

⌃⌃⌅

= �(xi � µi0)2

2�2i
+
(xi � µi1)2

2�2i

4

…

= ln

�

⇧⇧⇤

1
⇥i
⇥
2�

e
� (xi�µi0)

2

2�2i

1
⇥i
⇥
2�

e
� (xi�µi1)

2

2�2i

⇥

⌃⌃⌅

= �(xi � µi0)2

2�2i
+
(xi � µi1)2

2�2i

=
µi0 + µi1

�2i
xi +

µ2i0 + µ2i1
2�2i

4

Linear function!
Coefficients
expressed with
original Gaussian
parameters!

Derive form for P(Y|X) for continuous Xi
= ln

�

⇧⇧⇤

1
⇥i
⇥
2�

e
� (xi�µi0)

2

2�2i

1
⇥i
⇥
2�

e
� (xi�µi1)

2

2�2i

⇥

⌃⌃⌅

= �(xi � µi0)2

2⇥2i
+
(xi � µi1)2

2⇥2i

=
µi0 + µi1

⇥2i
xi +

µ2i0 + µ2i1
2⇥2i

w0 = ln
1� �

�
+

µ2i0 + µ2i1
2⇥2i

wi =
µi0 + µi1

⇥2i

4

= ln

�

⇧⇧⇤

1
⇥i
⇥
2�

e
� (xi�µi0)

2

2�2i

1
⇥i
⇥
2�

e
� (xi�µi1)

2

2�2i

⇥

⌃⌃⌅

= �(xi � µi0)2

2⇥2i
+
(xi � µi1)2

2⇥2i

=
µi0 + µi1

⇥2i
xi +

µ2i0 + µ2i1
2⇥2i

w0 = ln
1� �

�
+

µ2i0 + µ2i1
2⇥2i

4

Gaussian Naïve Bayes vs. Logistic
Regression

Representation equivalence
•  But only in a special case!!! (GNB with class-independent

variances)
But what’s the difference???
LR makes no assumptions about P(X|Y) in learning!!!
Loss function!!!

•  Optimize different functions ! Obtain different solutions

Set of Gaussian
Naïve Bayes parameters

(feature variance
independent of class label)

Set of Logistic
Regression parameters

Naïve Bayes vs. Logistic Regression

Consider Y boolean, Xi continuous, X=<X1 ... Xn>

Number of parameters:
Naïve Bayes: 4n +1
Logistic Regression: n+1

Estimation method:
Naïve Bayes parameter estimates are uncoupled
Logistic Regression parameter estimates are

coupled

 Naïve Bayes vs. Logistic Regression

Generative vs. Discriminative classifiers
 Asymptotic comparison

(# training examples à infinity)
•  when model correct

–  GNB (with class independent variances) and
LR produce identical classifiers

•  when model incorrect
–  LR is less biased – does not assume conditional independence

»  therefore LR expected to outperform GNB

[Ng & Jordan, 2002]

Naïve Bayes vs. Logistic Regression

Generative vs. Discriminative classifiers
Non-asymptotic analysis

•  convergence rate of parameter estimates,
 (n = # of attributes in X)
–  Size of training data to get close to infinite data solution
–  Naïve Bayes needs O(log n) samples
–  Logistic Regression needs O(n) samples

•  GNB converges more quickly to its (perhaps less helpful) asymptotic

estimates

[Ng & Jordan, 2002]

What you should know about
Logistic Regression (LR)

Gaussian Naïve Bayes with class-independent variances
representationally equivalent to LR
•  Solution differs because of objective (loss) function

In general, NB and LR make different assumptions
•  NB: Features independent given class ! assumption on P(X|Y)
•  LR: Functional form of P(Y|X), no assumption on P(X|Y)

LR is a linear classifier
•  decision rule is a hyperplane

LR optimized by conditional likelihood
•  no closed-form solution
•  concave ! global optimum with gradient ascent
•  Maximum conditional a posteriori corresponds to regularization

Convergence rates
•  GNB (usually) needs less data
•  LR (usually) gets to better solutions in the limit

83

84

Decision Boundary

Voting (Ensemble Methods)

Instead of learning a single classifier, learn many
weak classifiers that are good at different
parts of the data

Output class: (Weighted) vote of each classifier
•  Classifiers that are most “sure” will vote with more

conviction
•  Classifiers will be most “sure” about a particular part

of the space
•  On average, do better than single classifier!

But how???
•  force classifiers to learn about different parts of the

input space? different subsets of the data?
•  weigh the votes of different classifiers?

BAGGing = Bootstrap AGGregation

(Breiman, 1996)

•  for i = 1, 2, …, K:
– Ti ß randomly select M training instances

 with replacement
– hi ß learn(Ti) [ID3, NB, kNN, neural net, …]

•  Now combine the Ti together with
uniform voting (wi=1/K for all i)

87

88

Decision Boundary

shades of blue/red indicate strength of vote for particular classification

Fighting the bias-variance
tradeoff

Simple (a.k.a. weak) learners are good
•  e.g., naïve Bayes, logistic regression, decision stumps (or shallow

decision trees)
•  Low variance, don’t usually overfit

Simple (a.k.a. weak) learners are bad
•  High bias, can’t solve hard learning problems

Can we make weak learners always good???

•  No!!!
•  But often yes…

Boosting
Idea: given a weak learner, run it multiple times on

(reweighted) training data, then let learned classifiers vote

On each iteration t:

•  weight each training example by how incorrectly it was
classified

•  Learn a hypothesis – ht
•  A strength for this hypothesis – t

Final classifier:

Practically useful
Theoretically interesting

[Schapire, 1989]

= ln

⇤

⌥⌥⇧

1
⇥i
⇤
2�

e
� (xi�µi0)

2

2�2i

1
⇥i
⇤
2�

e
� (xi�µi1)

2

2�2i

⌅

��⌃

= �(xi � µi0)2

2⌅2i
+
(xi � µi1)2

2⌅2i

=
µi0 + µi1

⌅2i
xi +

µ2i0 + µ2i1
2⌅2i

w0 = ln
1� ⇤

⇤
+

µ2i0 + µ2i1
2⌅2i

wi =
µi0 + µi1

⌅2i

w = w + ⇥

j

[y⇥j � p(y⇥j |xj , w)]f(xj)

w = w + [y⇥ � y(x;w)]f(x)

w = w + y⇥f(x)

h(x) = sign

�

i

�ihi(x)

⇥

4

92

time = 0

blue/red = class

size of dot = weight

weak learner =
Decision stub:
horizontal or vertical line

93

time = 1

this hypothesis has 15%
error

and so does
this ensemble, since
the ensemble contains
just this one hypothesis

94

time = 2

95

time = 3

96

time = 13

97

time = 100

98

time = 300

overfitting!!

Learning from weighted data

Consider a weighted dataset
•  D(i) – weight of i th training example (xi,yi)
•  Interpretations:

–  i th training example counts as if it occurred D(i) times
–  If I were to “resample” data, I would get more samples of

“heavier” data points
Now, always do weighted calculations:

•  e.g., MLE for Naïve Bayes, redefine Count(Y=y) to be weighted
count:

•  setting D(j)=1 (or any constant value!), for all j, will recreates
unweighted case

= ln

⇤

⌥⌥⇧

1
⇥i
⇤
2�

e
� (xi�µi0)

2

2�2i

1
⇥i
⇤
2�

e
� (xi�µi1)

2

2�2i

⌅

��⌃

= �(xi � µi0)2

2⇧2i
+
(xi � µi1)2

2⇧2i

=
µi0 + µi1

⇧2i
xi +

µ2i0 + µ2i1
2⇧2i

w0 = ln
1� ⌅

⌅
+

µ2i0 + µ2i1
2⇧2i

wi =
µi0 + µi1

⇧2i

w = w + ⇤

j

[y⇥j � p(y⇥j |xj , w)]f(xj)

w = w + [y⇥ � y(x;w)]f(x)

w = w + y⇥f(x)

h(x) = sign

�

i

�ihi(x)

⇥

Count(Y = y) =
n

j=1

⇥(Y j = y)

Count(Y = y) =
n

j=1

D(j)⇥(Y j = y)

4

How? Many possibilities. Will
see one shortly!

Final Result: linear sum of
“base” or “weak” classifier
outputs.

What at to choose for hypothesis ht?
Idea: choose at to minimize a bound on training

error!

Where

[Schapire, 1989]

What at to choose for hypothesis ht?

Idea: choose at to minimize a bound on training error!

Where

And

If we minimize Pt Zt, we minimize our training error!!!
We can tighten this bound greedily, by choosing at and

ht on each iteration to minimize Zt.
ht is estimated as a black box, but can we solve for at?

[Schapire, 1989]

This equality isn’t
obvious! Can be
shown with algebra
(telescoping sums)!

Summary: choose at to minimize error
bound

We can squeeze this bound by choosing at on each
iteration to minimize Zt.

For boolean Y: differentiate, set equal to 0, there is a

closed form solution! [Freund & Schapire ’97]:

[Schapire, 1989]

Strong, weak classifiers

If each classifier is (at least slightly) better than
random: e< 0.5

Another bound on error:

What does this imply about the training error?

•  Will get there exponentially fast!
Is it hard to achieve better than random training

error?

Boosting results – Digit recognition

Boosting:
•  Seems to be robust to overfitting
•  Test error can decrease even after training error

is zero!!!

[Schapire, 1989]

Test error

Training error

Boosting generalization error bound

Constants:
T: number of boosting rounds

•  Higher T à Looser bound, what does this imply?
d: VC dimension of weak learner, measures

complexity of classifier
•  Higher d à bigger hypothesis space à looser

bound

m: number of training examples
•  more data à tighter bound

[Freund & Schapire, 1996]

Boosting generalization error bound

Constants:
T: number of boosting rounds:

•  Higher T à Looser bound, what does this imply?
d: VC dimension of weak learner, measures

complexity of classifier
•  Higher d à bigger hypothesis space à looser

bound

m: number of training examples
•  more data à tighter bound

[Freund & Schapire, 1996]

•  Theory does not match practice:
•  Robust to overfitting
•  Test set error decreases even after training

error is zero
•  Need better analysis tools

•  we’ll come back to this later in the quarter

Logistic Regression as Minimizing Loss
Logistic regression assumes:

And tries to maximize data likelihood, for Y={-1,+1}:

Equivalent to minimizing log loss:

= ln

⇤

⌥⌥⇧

1
⇥i
⇤
2�

e
� (xi�µi0)

2

2�2i

1
⇥i
⇤
2�

e
� (xi�µi1)

2

2�2i

⌅

��⌃

= �(xi � µi0)2

2⇧2i
+
(xi � µi1)2

2⇧2i

=
µi0 + µi1

⇧2i
xi +

µ2i0 + µ2i1
2⇧2i

w0 = ln
1� ⌅

⌅
+

µ2i0 + µ2i1
2⇧2i

wi =
µi0 + µi1

⇧2i

w = w + ⇤

j

[y⇥j � p(y⇥j |xj , w)]f(xj)

w = w + [y⇥ � y(x;w)]f(x)

w = w + y⇥f(x)

h(x) = sign

�

i

�ihi(x)

⇥

Count(Y = y) =
n

j=1

⇥(Y j = y)

Count(Y = y) =
n

j=1

D(j)⇥(Y j = y)

f(x) = w0 +

i

wihi(x)

4

Maximum Likelihood Estimation

Assume

p(y = 1|x;w) = �(w>x)

p(y = 0|x;w) = 1� �(w>x)

write this more compactly as

p(y|x;w) =
³
�(w>x)

´y ³
1� �(w>x)

´(1�y)

Then the likelihood (assuming data independence) is

p(y|x;w) �
NY

i

³
�(w>xi)

´yi ³
1� �(w>xi)

´(1�yi)

and the negative log likelihood is

L(w) = �
NX

i

yi log�(w
>xi) + (1� yi) log(1� �(w>xi))

Logistic Regression Loss function

Use notation yi � {�1,1}. Then for f(x) = w>x+ b

P (y = 1|x) = �(f(x)) =
1

1+ e�f(x)

P (y = �1|x) = 1� �(f(x)) =
1

1+ e+f(x)

So in both cases

P (yi|xi) =
1

1+ e�yif(xi)

Assuming independence, the likelihood is

NY

i

1

1+ e�yif(xi)

and the negative log likelihood is

=
NX

i

log
³
1+ e�yif(xi)

´

which denes the loss function.

= ln

⇤

⌥⌥⇧

1
⇥i
⇤
2�

e
� (xi�µi0)

2

2�2i

1
⇥i
⇤
2�

e
� (xi�µi1)

2

2�2i

⌅

��⌃

= �(xi � µi0)2

2⇧2i
+
(xi � µi1)2

2⇧2i

=
µi0 + µi1

⇧2i
xi +

µ2i0 + µ2i1
2⇧2i

w0 = ln
1� ⌅

⌅
+

µ2i0 + µ2i1
2⇧2i

wi =
µi0 + µi1

⇧2i

w = w + ⇤

j

[y⇥j � p(y⇥j |xj , w)]f(xj)

w = w + [y⇥ � y(x;w)]f(x)

w = w + y⇥f(x)

h(x) = sign

�

i

�ihi(x)

⇥

Count(Y = y) =
n

j=1

⇥(Y j = y)

Count(Y = y) =
n

j=1

D(j)⇥(Y j = y)

f(x) = w0 +

i

wihi(x)

p(yi | xi) =

4

Boosting and Logistic Regression
Logistic regression

equivalent to minimizing
log loss:

Boosting minimizes similar
loss function:

Both smooth approximations of 0/1 loss!

