Structure From Motion

Ali Farhadi CSE 576

Structure from motion

• aka "bundle adjustment" (texts: Zisserman; Faugeras)

SfM objective function

Given point x and rotation and translation R, t

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \mathbf{R}\mathbf{x} + \mathbf{t} \qquad u' = \frac{fx'}{z'} \\ v' = \frac{fy'}{z'} \qquad \begin{bmatrix} u' \\ v' \end{bmatrix} = \mathbf{P}(\mathbf{x}, \mathbf{R}, \mathbf{t})$$

Minimize sum of squared reprojection errors:

$$g(\mathbf{X}, \mathbf{R}, \mathbf{T}) = \sum_{i=1}^{m} \sum_{j=1}^{n} w_{ij} \cdot \left\| \mathbf{P}(\mathbf{x}_i, \mathbf{R}_j, \mathbf{t}_j) - \begin{bmatrix} u_{i,j} \\ v_{i,j} \end{bmatrix} \right\|^2$$
predicted image location image location

Solving structure from motion

- Minimizing g is difficult:
 - g is non-linear due to rotations, perspective division
 - lots of parameters: 3 for each 3D point, 6 for each camera
 - difficult to initialize
 - gauge ambiguity: error is invariant to a similarity transform (translation, rotation, uniform scale)
- Many techniques use non-linear least-squares optimization (bundle adjustment)
 - Levenberg-Marquardt is a popular algorithm
 - http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm
- Good code online
 - Bundler: http://phototour.cs.washington.edu/bundler/
 - Multicore: http://grail.cs.washington.edu/projects/mcba/

Suppose we know 3D points and affine camera parameters ...

then, we can compute the observed 2d positions of each point

Camera Parameters (2mx3)

2D Image Points (2mxn)

What if we instead observe corresponding 2d image points?

Can we recover the camera parameters and 3d

Can we recover the camera parameters and 3d points?
$$\mathbf{D} = \begin{bmatrix} \hat{\mathbf{x}}_{11} & \hat{\mathbf{x}}_{12} & \cdots & \hat{\mathbf{x}}_{1n} \\ \hat{\mathbf{x}}_{21} & \hat{\mathbf{x}}_{22} & \cdots & \hat{\mathbf{x}}_{2n} \\ \vdots & \vdots & \vdots \\ \hat{\mathbf{x}}_{m1} & \hat{\mathbf{x}}_{m2} & \cdots & \hat{\mathbf{x}}_{mn} \end{bmatrix} \overset{?}{\Rightarrow} \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_m \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix}$$
points (n)

What rank is the matrix of 2D points?

Source: M. Hebert

• Singular value decomposition of D:

Source: M. Hebert

Obtaining a factorization from SVD:

Source: M. Hebert

Algorithm summary

- Given: m images and n features \mathbf{x}_{ij}
- For each image i, center the feature coordinates
- Construct a $2m \times n$ measurement matrix **D**:
 - Column j contains the projection of point j in all views
 - Row i contains one coordinate of the projections of all the n points in image i
- Factorize **D**:
 - Compute SVD: $\mathbf{D} = \mathbf{U} \mathbf{W} \mathbf{V}^{\mathsf{T}}$
 - Create U₃ by taking the first 3 columns of U
 - Create V₃ by taking the first 3 columns of V
 - Create W_3 by taking the upper left 3 × 3 block of W
- Create the motion and shape matrices:
 - $M = U_3 W_3^{1/2}$ and $S = W_3^{1/2} V_3^{T}$ (or $M = U_3$ and $S = W_3 V_3^{T}$)

Structure from motion

• aka "bundle adjustment" (texts: Zisserman; Faugeras)

Structure from motion

Images on the Internet

Computed 3D structure

Photo Tourism

Exploring photo collections in 3D

- Photo tourism video: http://www.youtube.com/watch?v=5Ji84zb2r8s
- Photosynth: http://photosynth.net/

The Tour Home

Sign Up

Explore -

Search everyone's photostream

SEARCH

Search -

Search

Photos

Groups

People

rome

Slideshow 🚊

We found 1,281,363 results matching rome.

View: Most relevant • Most recent • Most interesting

Show: Details . Thumbnails

From Dmitry...

From Lisa...

From Lisa...

From jerkhead29

From Lisa...

From Lisa...

From Lisa...

From Dmitry...

From Lisa...

From formicheit

From Lisa...

From Rick's Picks

Sponsored Results

Advanced Search

Search by Camera

\$387 Italy Flights

Fly one-way to Italy from \$387. Book your flight before April 24. www.AirFrance.us

What to Do Rome

55+ Things to do in Rome on Viator. See the Vatican, Colosseum & more. www.viator.com/Rome

Rome with Kids

Get Extra Savings on a Family Vacation to Rome, Limited Time Only.

www.AdventuresByDisney.com

Fly to Italy from \$499 Round Trip

Travel to Italy between May 1 - 31 from \$499 per Person. www.EuroFlyusa.com

Rome Italy Day Tours

Private tours of Rome A variety of tours available....

Scene reconstruction

- Automatically estimate
 - position, orientation, and focal length of cameras
 - 3D positions of feature points

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Correspondence estimation

 Link up pairwise matches to form connected components of matches across several images

Feature matching

Match features between each pair of images

Feature matching

Refine matching using RANSAC [Fischler & Bolles 1987]

Incremental structure from motion

Incremental structure from motion

Photo Explorer

Navigation: Prague Old Town Square

Hierarchical annotations

Locking the camera (stabilization)

Applications

Community photo collections

- "Wikipedia for photos" visual record of world through community of photographers
 - Geograph British Isles http://www.geograph.org.uk/

- Users can tag and comment on photos, link to other content
 - World-wide telescope

 "Where should I take a photo?" http://photocitygame.com/

Community photo collections

- Leveraging large databases of photos, large number of users
 - Annotations / augmented reality

Virtual tour guide scenario

Rephotography

Topographic data courtesy USGS