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We have talked about

Nearest Neighbor
Naive Bayes
Logistic Regression
Boosting

We saw face detection



Support Vector Machines



Linear classifiers — Which line is better?
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Pick the one with the largest margin!
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How many possible solutions?

MaXy w,b Y
\V/j (w.mj + b)yj >y

Any other ways of writing the
= same dividing line?

e WwX+b=0

e 2w.Xx+2b=0

e 1000w.x + 1000b =0

* Any constant scaling has the
same intersection with z=0
plane, so same dividing line!

Do we really want to max , ,, ,?




Review: Normal to a plane
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Key Terms

X 4 -- projection of x; onto w
m W

| |W| | -- unit vector normal tow
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Final result: can maximize constrained margin by minimizing | |w| |,!!!



Max margin using canonical hyperplanes

maximize, wp 7
(w.x; +b)y; >, Vj € Dataset

minimizey;, w.w
(w.xj + b) y; > 1, Vj € Dataset

The assumption of canonical hyperplanes
(at +1 and -1) changes the objective and
the constraints!




Support vector machines (SVMs)
minimizey , wW.w

(W.Xj + b) y; > 1, Vg
Solve efficiently by quadratic
programming (QP)
— Well-studied solution algorithms
— Not simple gradient ascent, but close

Hyperplane defined by support
vectors

— Could use them as a lower-dimension
basis to write down line, although we
haven’t seen how yet

argin ZY
— More on this later

Non-support Vectors:
« everything else Support Vectors:

* moving them will not || ° data points on the
change w canonical lines




What if the data is not linearly separable?
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Add More Features!!!
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What about overfitting? a0




What if the data is still not linearly separable?

minimizew,b W.W + C #(mistakes)
(W.Xj b) Y; > 1 ,\V/j

.,.' = e First Idea: Jointly minimize w.w
¥ + - - and number of training mistakes
4 T = L = = — How to tradeoff two criteria?
_ = _ — Pick Con development / cross validation
t o, oy -_ * Tradeoff #(mistakes) and w.w
= = — 0/1loss
+ — Not QP anymore

— Also doesn’t distinguish near misses and
really bad mistakes

— NP hard to find optimal solution!!!



Slack variables — Hinge loss

miniMmizey , W.W+CZ g
(W.Xj -+ b) Y > 1] - ﬁj , V9 &0

= Slack Penalty C > 0:
= e (C=ow =2 have to separate the data!

(=0 - ignore data entirely!
* Select on dev. set, etc.

For each data point:

 [fmargin>1, don’t care

* If margin < 1, pay linear penalty



Side Note: Different Losses
Logistic regression: Boosting :
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SVM:
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Hinge loss:
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All our new losses approximate 0/1 loss!



What about multiple classes?




One against All

Learn 3 classifiers:
* +vs{0,-}, weights w,
e -vs{0,+}, weights w_
* 0vs{+,-}, weights w,
Output for x:

y = argmax; w..X

Any other way?

Any problems?



Learn 1 classifier: Multiclass SVM

Simultaneously learn 3

sets of weights:

e How do we
guarantee the
correct labels?

* Need new
constraints!

For j possible classes:
W(yj).Xj + p¥) > W(y’)_Xj + b6 1, vy £ yi, V7



Learn 1 classifier: Multiclass SVM

Also, can introduce slack variables, as before:

minimizey, >, w®) wv) C>i&;
W(yj).xj + pl¥i) > W(y’).Xj ) 11— i, VY # yj, Vi



What if the data is not linearly separable?

<a:(1), L ’ngm)> — m features
y; € {—1,4+1} — class

Add More Features!!!
~ [ 2D
2 (n)
= (1) .(2)

Xz £z
@) =1 _(1),.06)

)



SVM with a polynomial
Kernel visualization

Created by:
Udi Aharoni




Comparison

Learning Objective

assuming x in {0 1}

Inference /

Training
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Image Categorization
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Example: Dalal-Triggs pedestrian
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1. Extract fixed-sized (64x128 pixel) window at
each position and scale

2. Compute HOG (histogram of gradient)
features within each window

3. Score the window with a linear SVM classifier

4. Perform non-maxima suppression to remove
overlapping detections with lower scores
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Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPRO5



Iput | o &
Image colour

Compute
gradients

Weighted vote
into spatial &

orientation cells

Contrast normalize
over overlapping
spatial blocks

—>

Collect HOG’s
over detection
window

Linear
SVM

Person /
—3» non-person
classification

Slides by Pete Barnum

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR0O5



Normalize
—»| gamma &
colour

Input
image

-

Compute
gradients

Weighted vote
into spatial &
orientation cells

—

Contrast normalize
over overlapping
spatial blocks

Collect HOG's
over detection
window

Y

Linear
SVM

Person /
—3» non-person
classification

1

e Tested with

— RGB
— LAB

—

— Grayscale

Slightly better performance vs. grayscale




Normalize Weighted vote Contrast normalize Collect HOG's
Input Compute Linear
. gamma & | » into spatial &  |—>| over overlapping  |—| over detection >
Image colour R orientation cells spatial blocks window SYM
Outperforms
-110 0|1
centered 10
diagonal
-1 (1
uncentered
-1 10
210
L8081 110
cubic-corrected Sobel

Slides by Pete Barnum
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Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR0O5



Normalize Weighted vote Contrast normalize Collect HOG’s . Person /
il:,l,l.),u:. > > gr:al(li‘l‘:\l:ti —> | into spatial & >| over overlapping »| over detection |—» é‘{nﬁ"—» non-person
a8 colour orientation cells spatial blocks window classification

1

* Histogram of gradient
orientations

Orientation: 9 bins (for

Histograms in 8x8
unsigned angles)

pixel cells
90
135 45
180 0
225 315
270

— Votes weighted by magnitude

— Bilinear interpolation between
cells

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPRO5




Normalize Weighted vote Contrast normalize Collect HOG's . Person/
illlllll;me L g&l:i‘i‘:e:ttes > | into spatial &  |—»| over overlapping  [—| over detection —> g‘{?ﬁ;’r —> non-person
& colour orientation cells spatial blocks window classification

1
R-HOG

_’|C ellk_

Normalize with respect to
surrounding cells

~— Block —

L2 — norm :v — v/\/||v]|3 + €2

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPRO5



Person /
—3» non-person

classification

# orientations

Normalize Weighted vote Contrast normalize Collect HOG’s .
i‘::}'":“(_—» gamma & [ g:;lgg l:é into spatial &  [—| over overlapping »| over detection —» é‘{";;‘r
a8 colour ' orientation cells spatial blocks window
# features=15x7x9x4 =3780
X=

Slides by Pete Barnum
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# cells
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# normalizations by
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boring cells

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPRO5



Training set




Input Normalize
image | £AMMma &
ag colour

>

Compute
gradients

Weighted vote
into spatial &
orientation cells

—

Contrast normalize
over overlapping
spatial blocks

Collect HOG’s
over detection
window

Y

Linear
SVM

Person /
—» non-person
classification
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Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR0O5



Normalize Weighted vote Contrast normalize Collect HOG's Person /
Input —»| gamma & | > g&lggﬂz —>| into spatial &  |—>| over overlapping  |—| over detection > g?l:? I non-person

A colour orientation cells spatial blocks window classification

1

C 016 =wTz —b
sign(0.16) = 1

— > pedestrian

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPRO5



Detection examples







Each window is separately classified
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