Object Detection

Ali Farhadi CSE 576

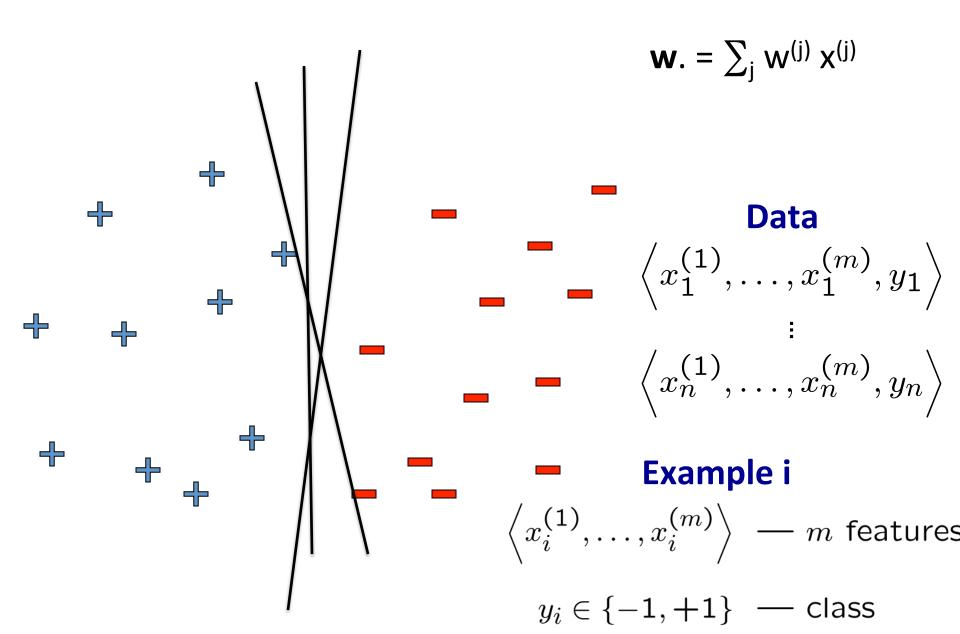
We have talked about

- Nearest Neighbor
- Naïve Bayes
- Logistic Regression
- Boosting

We saw face detection

Support Vector Machines

Linear classifiers – Which line is better?



Pick the one with the largest margin!



Margin: measures height of w.x+b plane at each point, increases with distance

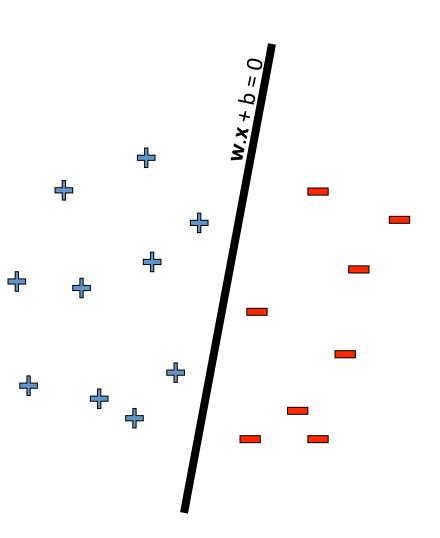
$$\gamma_j = (w.x_j + b)y_j$$

Max Margin: two equivalent forms

(1)
$$\max_{w,b} \min_{j} \gamma_{j}$$

(2)
$$\max_{\gamma,w,b} \gamma \ \forall j \ (w.x_j+b)y_j > \gamma$$

How many possible solutions?



$$\max_{\gamma,w,b} \gamma$$

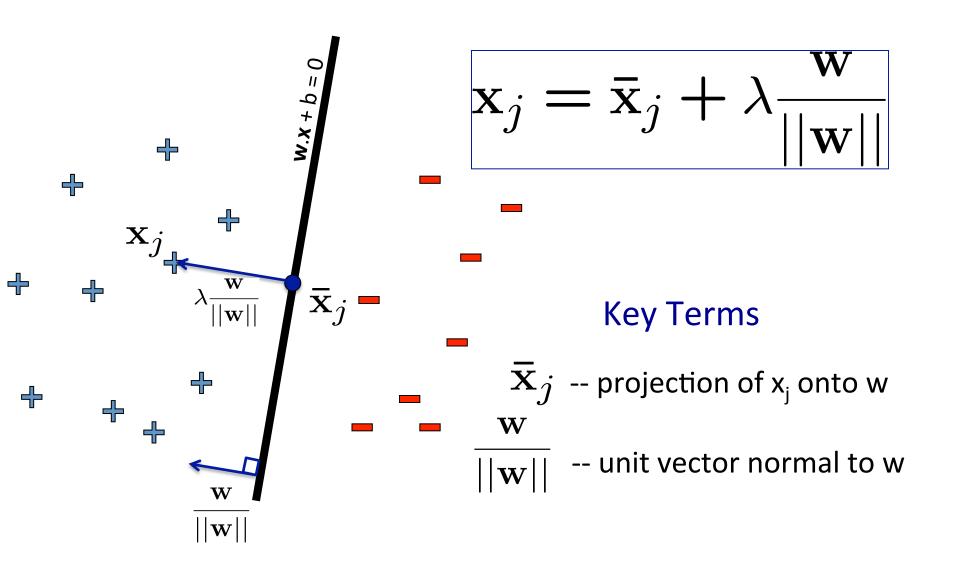
$$\forall j \ (w.x_j + b)y_j > \gamma$$

Any other ways of writing the same dividing line?

- $\mathbf{w.x} + \mathbf{b} = 0$
- 2w.x + 2b = 0
- 1000**w.x** + 1000b = 0
-
- Any constant scaling has the same intersection with z=0 plane, so same dividing line!

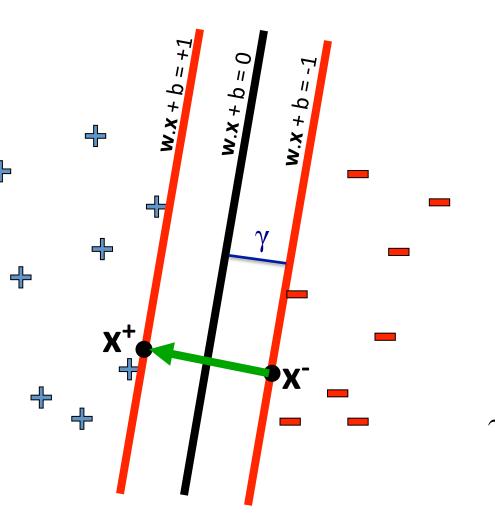
Do we really want to max $_{v,w,b}$?

Review: Normal to a plane



Idea: constrained margin

$$\mathbf{x}_j = \bar{\mathbf{x}}_j + \lambda \frac{\mathbf{w}}{||\mathbf{w}||}$$



Generally:

$$x^{+} = x^{-} + 2\gamma \frac{w}{||w||}$$

Assume: x⁺ on positive line, x⁻ on negative

$$w.x^{+} + b = 1$$

$$w.\left(x^{-} + 2\gamma \frac{w}{||w||}\right) + b = 1$$

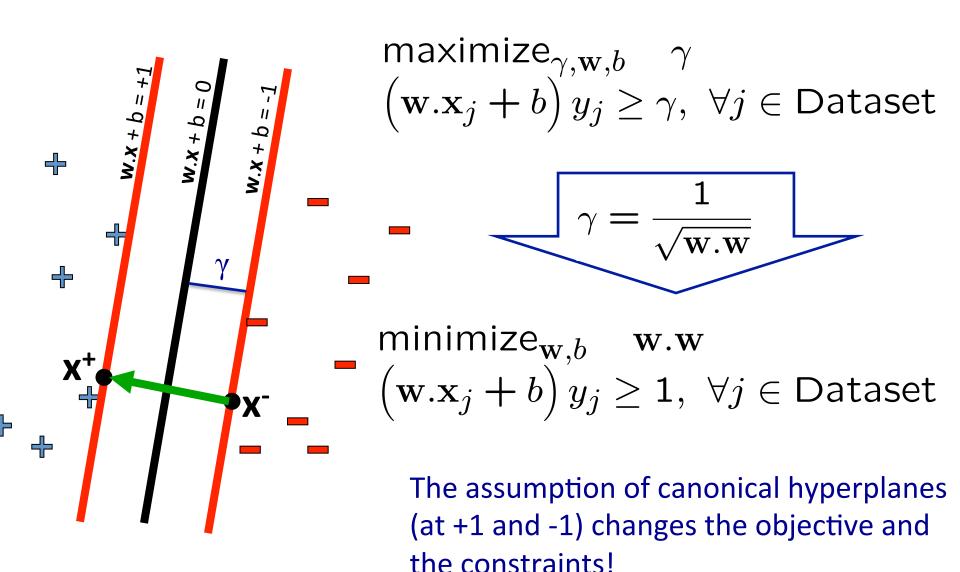
$$w.x^{-} + b + 2\gamma \frac{w.w}{||w||} = 1$$

$$\gamma \frac{w.w}{||w||} = 1$$

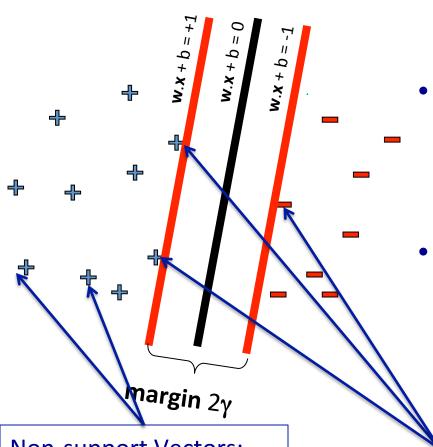
$$\gamma = \frac{||w||}{w.w} = \frac{1}{\sqrt{w.w}}$$

Final result: can maximize constrained margin by minimizing $||w||_2!!!$

Max margin using canonical hyperplanes



Support vector machines (SVMs)



minimize_{w,b} w.w
$$(\mathbf{w}.\mathbf{x}_j + b) y_j \ge 1, \ \forall j$$

- Solve efficiently by quadratic programming (QP)
 - Well-studied solution algorithms
 - Not simple gradient ascent, but close
- Hyperplane defined by support vectors
 - Could use them as a lower-dimension basis to write down line, although we haven't seen how yet
 - More on this later

Non-support Vectors:

- everything else
- moving them will not change w

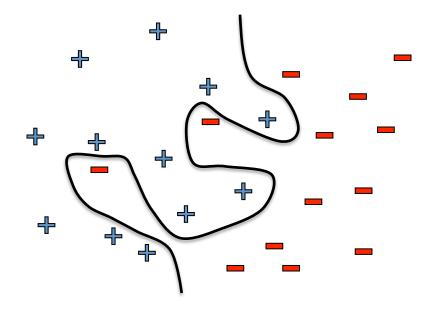
Support Vectors:

 data points on the canonical lines

What if the data is not linearly separable?

$$\left\langle x_i^{(1)}, \dots, x_i^{(m)} \right\rangle$$
 — m features

$$y_i \in \{-1, +1\}$$
 — class



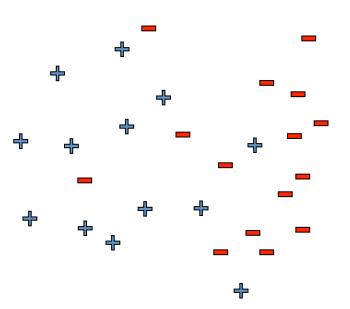
Add More Features!!!

$$\phi(x) = \begin{pmatrix} x^{(1)} \\ x^{(n)} \\ x^{(1)}x^{(2)} \\ x^{(1)}x^{(3)} \end{pmatrix}$$
?

What about overfitting?

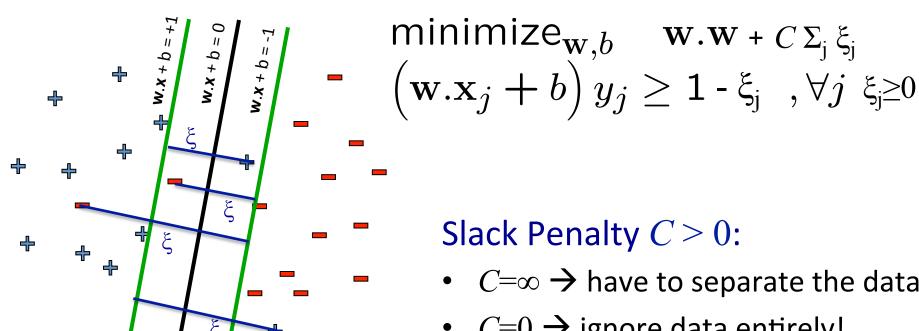
What if the data is still not linearly separable?

$$\min_{\mathbf{w},b} \mathbf{w} \cdot \mathbf{w} + \mathsf{c} \text{ \#(mistakes)}$$
 $\left(\mathbf{w}.\mathbf{x}_j + b\right)y_j \geq 1 \qquad , \forall j$



- First Idea: Jointly minimize w.w
 and number of training mistakes
 - How to tradeoff two criteria?
 - Pick C on development / cross validation
- Tradeoff #(mistakes) and w.w
 - 0/1 loss
 - Not QP anymore
 - Also doesn't distinguish near misses and really bad mistakes
 - NP hard to find optimal solution!!!

Slack variables – Hinge loss



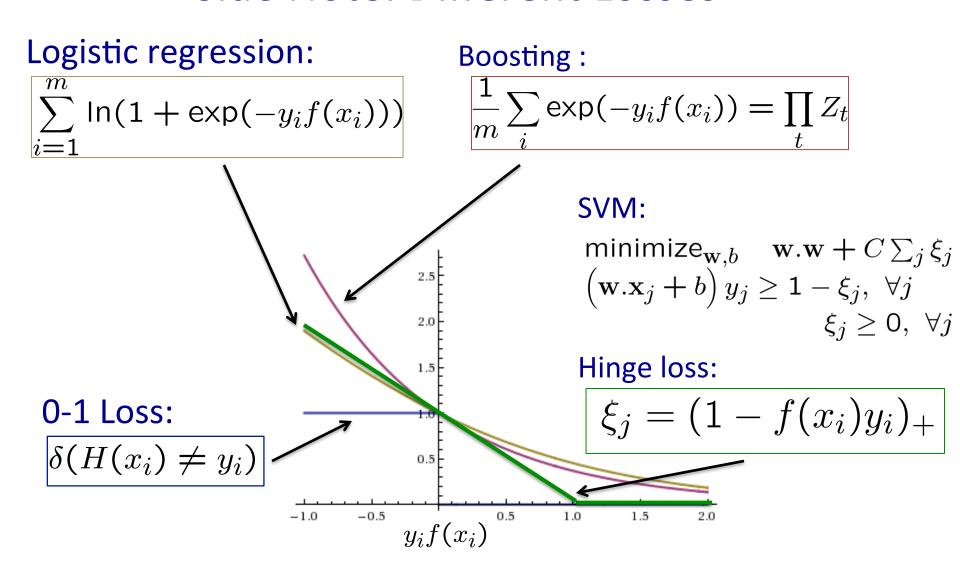
Slack Penalty C > 0:

- $C=\infty \rightarrow$ have to separate the data!
- $C=0 \rightarrow$ ignore data entirely!
- Select on dev. set, etc.

For each data point:

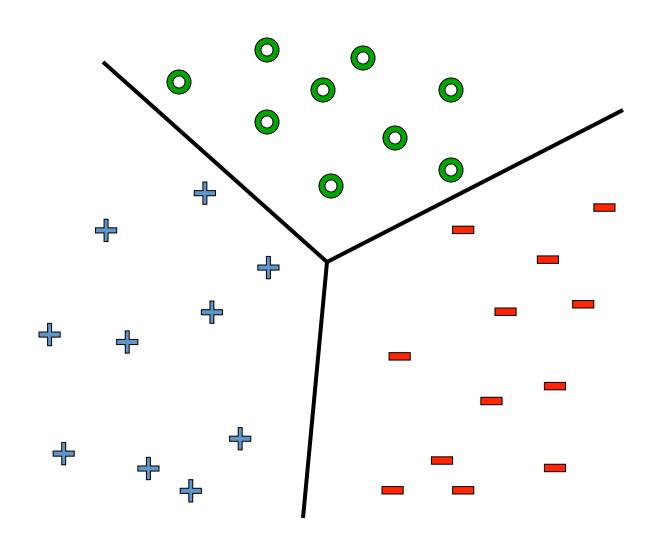
- If margin ≥ 1, don't care
- If margin < 1, pay linear penalty

Side Note: Different Losses

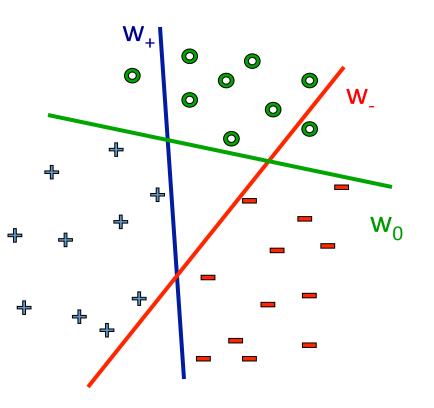


All our new losses approximate 0/1 loss!

What about multiple classes?



One against All



Learn 3 classifiers:

- + vs {0,-}, weights w₊
- - vs {0,+}, weights w_
- 0 vs {+,-}, weights w₀

Output for x:

$$y = argmax_i w_i.x$$

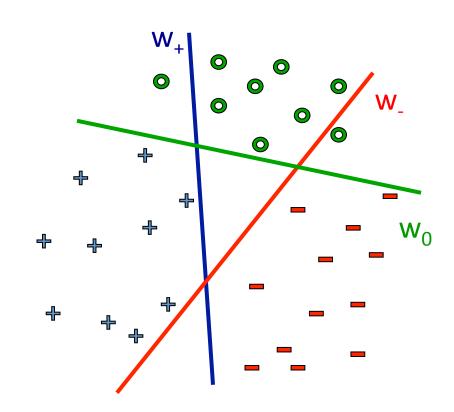
Any other way?

Any problems?

Learn 1 classifier: Multiclass SVM

Simultaneously learn 3 sets of weights:

- How do we guarantee the correct labels?
- Need new constraints!



For j possible classes:

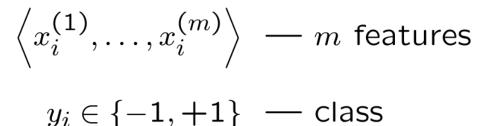
$$\mathbf{w}^{(y_j)}.\mathbf{x}_j + b^{(y_j)} \ge \mathbf{w}^{(y')}.\mathbf{x}_j + b^{(y')} + 1, \ \forall y' \ne y_j, \ \forall j$$

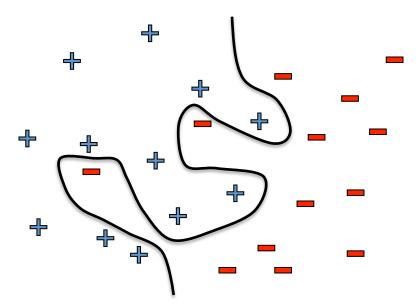
Learn 1 classifier: Multiclass SVM

Also, can introduce slack variables, as before:

minimize_{w,b}
$$\sum_{y} \mathbf{w}^{(y)} \cdot \mathbf{w}^{(y)} + C \sum_{j} \xi_{j}$$
 $\mathbf{w}^{(y_{j})} \cdot \mathbf{x}_{j} + b^{(y_{j})} \geq \mathbf{w}^{(y')} \cdot \mathbf{x}_{j} + b^{(y')} + 1 - \xi_{j}, \ \forall y' \neq y_{j}, \ \forall j \in \mathbb{N}$ $\xi_{j} \geq 0, \ \forall j$

What if the data is not linearly separable?





Add More Features!!!

$$\phi(x) = \begin{pmatrix} x^{(1)} \\ \vdots \\ x^{(n)} \\ x^{(1)}x^{(2)} \\ x^{(1)}x^{(3)} \\ \vdots \\ e^{x^{(1)}} \end{pmatrix}$$

SVM with a polynomial Kernel visualization

Created by: Udi Aharoni

Comparison

assuming x in {0 1}

Learning	Objective
----------	-----------

Training

Inference

$$\operatorname{maximize} \sum_{i} \left[\sum_{j=1}^{i} \log P(x_{ij} \mid y_{i}; \theta_{j}) \right] \qquad \theta_{kj} = \frac{\sum_{i} \delta(x_{ij} = 1 \land y_{i} = k) + r}{\sum_{i} \delta(y_{i} = k) + Kr}$$

$$\theta_{kj} = \frac{\sum_{i} \delta(x_{ij} = 1 \land y_{i} = k) + r}{\sum_{i} \delta(y_{i} = k) + Kr}$$

$$\theta_{1}^{T} \mathbf{x} + \theta_{0}^{T} (1 - \mathbf{x}) > 0$$
where $\theta_{1j} = \log \frac{P(x_{j} = 1 | y = 1)}{P(x_{j} = 1 | y = 0)}$,
$$\theta_{0j} = \log \frac{P(x_{j} = 0 | y = 1)}{P(x_{j} = 0 | y = 0)}$$

maximize
$$\sum_{i} \log(P(y_i \mid \mathbf{x}, \mathbf{\theta})) + \lambda \|\mathbf{\theta}\|$$

where $P(y_i \mid \mathbf{x}, \mathbf{\theta}) = 1/(1 + \exp(-y_i \mathbf{\theta}^T \mathbf{x}))$

Gradient ascent

 $\mathbf{\theta}^T \mathbf{x} > t$

minimize
$$\lambda \sum_{i} \xi_{i} + \frac{1}{2} \| \mathbf{\theta} \|$$

such that $y_{i} \mathbf{\theta}^{T} \mathbf{x} \ge 1 - \xi_{i} \quad \forall i, \ \xi_{i} \ge 0$

Quadratic programming or subgradient opt.

 $\mathbf{\theta}^T \mathbf{x} > t$

complicated to write

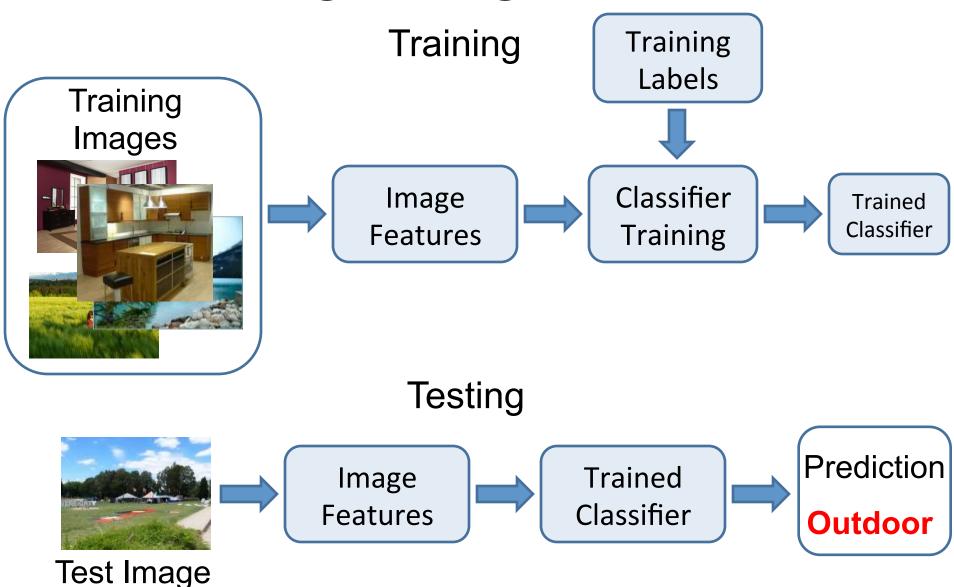
Quadratic programming $\sum y_i \alpha_i K(\hat{\mathbf{x}}_i, \mathbf{x}) > 0$

most similar features → same label

Record data

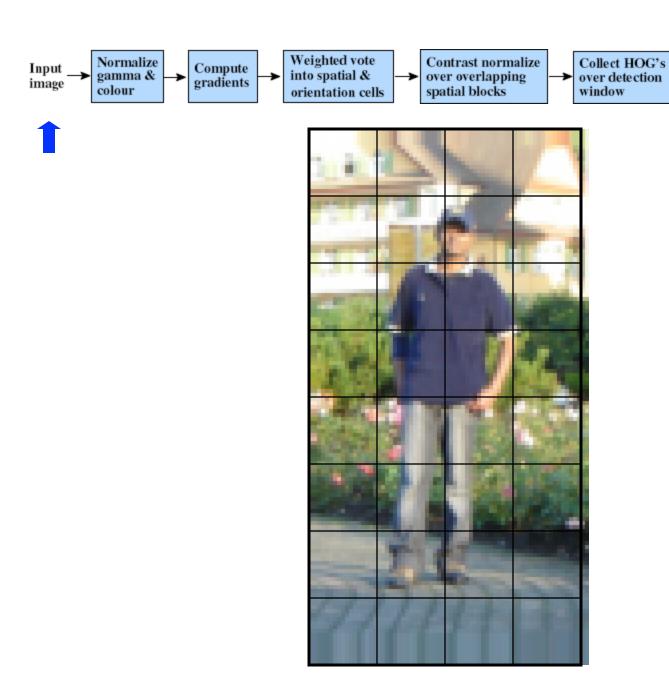
where $i = \operatorname{argmin} K(\hat{\mathbf{x}}_i, \mathbf{x})$

Image Categorization



Example: Dalal-Triggs pedestrian

- 1. Extract fixed-sized (64x128 pixel) window at each position and scale
- 2. Compute HOG (histogram of gradient) features within each window
- 3. Score the window with a linear SVM classifier
- 4. Perform non-maxima suppression to remove overlapping detections with lower scores

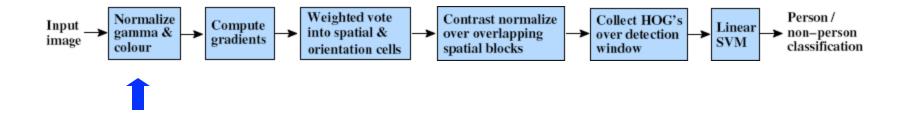


Person/

 non-person classification

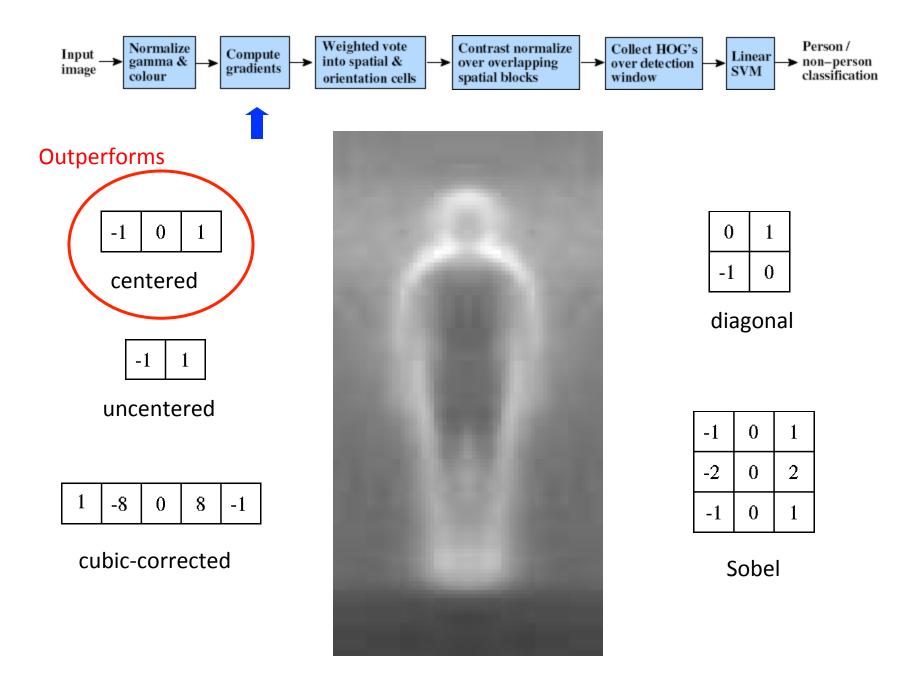
Linear

SVM



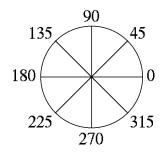
Tested with

- RGBSlightly better performance vs. grayscale
- Grayscale

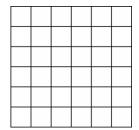


Histogram of gradient orientations

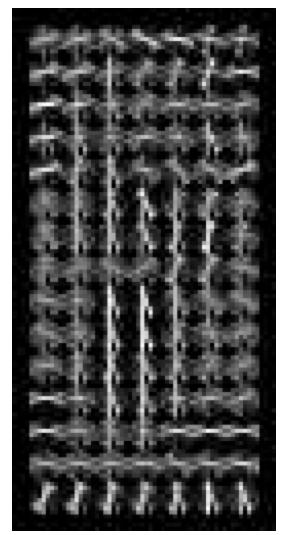
Orientation: 9 bins (for unsigned angles)

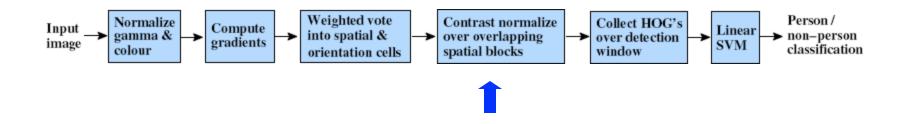


Histograms in 8x8 pixel cells

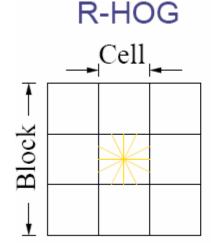


- Votes weighted by magnitude
- Bilinear interpolation between cells

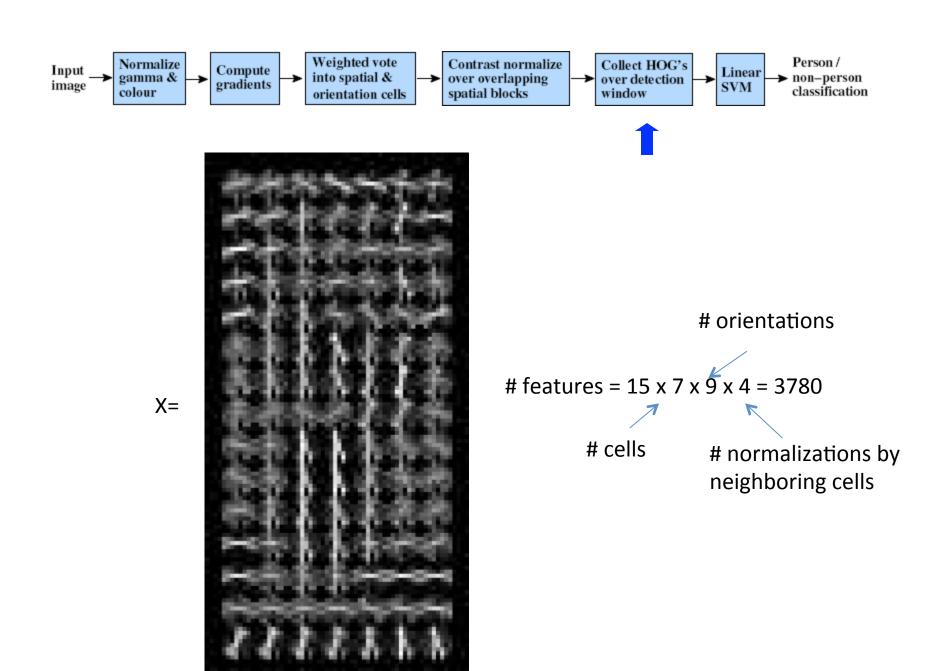




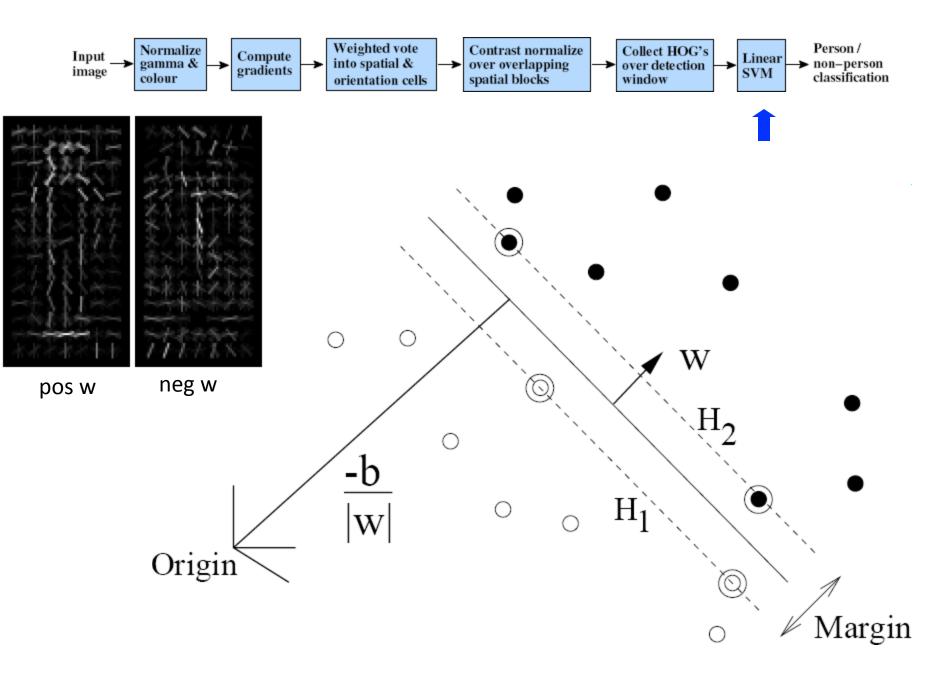
Normalize with respect to surrounding cells

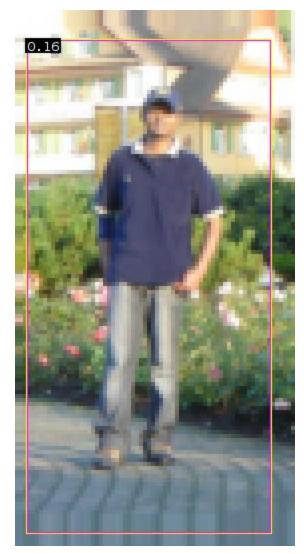


$$L2-norm: v \longrightarrow v/\sqrt{||v||_2^2+\epsilon^2}$$



Training set





$$0.16 = w^T x - b$$

$$sign(0.16) = 1$$

Detection examples

Each window is separately classified

