Recognition
Part |

CSE 576

What we have seen so far:
Vision as Measurement Device

¥ 4

Real-time stereo on Mars

-

| pomts graph
-100.00 — —
120,00 — -
-140.00 — =
16000 — e.t =
18000 — -° —
20000 — : -
2000— . . ® v
25000 — s, ‘!i & -
26000~ e, e -
28000 — Yy L. i 4% -
300,00 — &7 -
32000 — —
-340.00 — Sy e =
36000 — I -
380,00 — R g —

-400.00 — L - i ¥
I I | I X et
200,00 300.00 400.00 500.00 x

Structure from Motion " Virtualized Reality

Visual Recognition

« What does it mean to “see”?
o« “What” is “where”, Marr 1982

« Get computers to “see”

Visual Recognition

—_ Verification

\\\\

Visual Recognition

- Classification:
\\~

— u

Is there a car in this picture?

—
e
\~‘

Visual Recognition

- Detection:
\\

— u

Where is the car in this picture?

B
S~

S

Visual Recognition

-~ Pose Estimation:

\~
\\

Visual Recognition

~ Activity Recognition:
\

St o]

What is he doing?

&

.
......

Visual Recognition

- Object Categorization:
\

Visual Recognition

Segmentation

Object recognition
Is it really so hard?

Find the chair in this image Output of normalized correlation
E

Object recognition
Is it really so hard?

Find the chair in this image

Pretty much garbage
Simple template matching is not going to make it

Challenges 1: view point variation

Michelangelo 1475-1564 L0 e slideby F

Challenges 3: occ

Magritte, 1957 slide by Fei Fei, Fergus & Torralba

Challenges 4: scale

slide by ™&i Fei, Fergus & Torralba

Challenges 5: deformation

Xu, Beihong 1943

Challenges 6: background clutter

Klimt, 1913

Challenges 7: object intra-class variation

slide by Fei-Fei, Fergus & Torralba

Let’s start with finding Faces

How to tell if a face is present?

One simple method: skin detection

A

G

R

Skin pixels have a distinctive range of colors

« Corresponds to region(s) in RGB color space
— for visualization, only R and G components are shown above

Skin classifier
« Apixel X =(R,G,B) is skin if it is in the skin region
« But how to find this region?

Skin detection

A
°
° o ®
°
e %o e
- R
° o 0L = X
1
e o o %o °
@O -~~~ ___-- -
® (@] o (]
oo % °
° °
o ©
® ¢ o ° e o

vl

Learn the skin region from examples
* Manually label pixels in one or more “training images” as skin or not skin
* Plot the training data in RGB space
— skin pixels shown in orange, non-skin pixels shown in blue
— some skin pixels may be outside the region, non-skin pixels inside. Why?
Skin classifier

« Given X = (R,G,B): how to determine if it is skin or not?

Skin classification techniques

A

G

o o 1 o .
o _ L2 \g | Skln

5D >==220 b Skin

Skin classifier
« Given X = (R,G,B): how to determine if it is skin or not?

» Nearest neighbor
find labeled pixel closest to X
« choose the label for that pixel

« Data modeling
» Model the distribution that generates the data (Generative)

* Model the boundary (Discriminative)

Classification

Probabilistic

Supervised Learning
Discriminative vs. Generative
Ensemble methods

Linear models

Non-linear models

Let’'s play with probability for a bit

Remembering simple stuff

Probabillity
Basic probability

« Xis arandom variable
P(X) is the probability that X achieves a certain value

A

P(X)

0< P(X)<1

/OO P(X)dX =1 or Y P(X)=1

— 0
continuous X discrete X

Conditional probability: P(X|Y)
— probability of X given that we already know Y

Thumbtack & Probabilities

P(Heads) = 6, P(Tails) =1-0

o
2 1

. . N
"‘1’} | A \ ("1’77 % > . 28
: :

Flips are i.i.d.:
- Independent events D={x;|i=1...n}, P(D|0)=1LP(x;|0)

 Identically distributed according to Binomial distribution
Sequence D of o, Heads and o Tails

P(D|0) =0%(1—0)T

Maximum Likelihood Estimation

Data: Observed set D of o, Heads and o Tails
Hypothesis: Binomial distribution

Learning: finding 6 is an optimization problem
« What's the objective function?

MLE: Choose 6 to maximize probability of D
P(D|60) =0%H(1 — 0)°T

)

arg m@ax P(D | 0)
arg m@ax In P(D | 6)

Parameter learning

H = argm@ax In P(D | 0)
= argm@ax INO“H(1 —)T

Set derivative to zero, and solve!

a
do ;
== [agInf + arin(l —0)]

d d

InP(D | 6) = d% [In6=# (1 — 0)*7]

g T ~
= — — — 9 —
o 10 0 MLE

CH

ap + ar

But, how many flips do | need?

o
apg + ar

OvLE =

3 heads and 2 tails.
0 = 3/5, | can prove it!
What if | flipped 30 heads and 20 tails?

Same answer, | can prove it!
What'’s better?

Umm... The more the merrier???

A bound
(from Hoeffding’'s inequality)

CH

For N =a,+a;, and QMLE —
ap + ar

Let 6 be the true parameter, for any £>0:

2
|>e) < De—2Ve

je
~
N

|
D
x

Exponential :
Decay!

) AProb. Qflg\/ligtagke 4

What if | have prior beliefs?

Wait, | know that the thumbtack is “close” to
50-50. What can you do for me now?

Rather than estimating a single 6, we obtain a
distribution over possible values of 6

In the beginning After observations

14/ | Observe flips
by | e.g.: {tails, tails}

E , >

[}]
@ o6

1_

Beta pdf
.o —
)] [¢,]

0.4+

0.2+

0 ' ' ' " 0 0.2 04 0.6 0 ‘8
0 0.2 04 0.6 0.8 1 parameter value
parameter value

How to use Prior

Prior

Use Bayes rule: Data Likelihood :
| P §§Em
P D 9 P 9 li“ 2 oo 0
o pe|p) = PPIOPG
osterior / D (D)
gn; ' \ Normalization

02 0.4 0.6
parameter value

* Orequivalently: P(0 | D) o« P(D|0)P(6H)

* Also, for uniform priors:
-> reduces to MLE objective

P() x1 P(6|D)xP(D|06)

Beta prior distribution — P(0)

pPn—1(1 — 9)fr—1

P(0) = ~ Beta(By, Br)
B(Bm, Br) ’
Beta(1,1) | 16 | Beta(2,2) | | Beta(3,2) | . | Beta(30,20) |
g ""é] g
LIkGlIh?Od function: P(D ‘ 9) — HO‘H(l . H)CXT
Posterior:

P(O|D) x P(D|0)P(6)
P(0 | D) o 61 (1 — 9)°T gon—1(1 — g)ir—T1
= gortBu—1(1 _ gyor+fi+l

— Bet(l(OzH—l-ﬁH, OzT—|—ﬁT)

Beta(30,20)

MAP for Beta distribution

Beta pdf

atar valia

pPutan—1(1 — g)fr+ar—1 i
~ Beta(Bg+amy, Br+ar)

B(By + ap, Br + ar)
MAP: use most likely parameter:

PO | D) =

R ag + B —1
0 =argmax P(0 | D) = 5, Tar 1 5r 2

What about continuous variables?

(;0" P (x)o

We like Gaussians because

Affine transformation (multiplying by scalar
and adding a constant) are Gaussian
* X~ N(u,0?%)
« Y=aX+b=>Y ~ N(autb,a?0?)

10

., 2202, w—

. 0= 1.0,

. 0%=50,—"]
,0%=05, =

03

05

Py g:(X)

Sum of Gaussians is Gaussian
y X ~ N(MX’OZX) 02
* Y ~ N(uy,0%) — /

00

o Z=X+Y > Z~ N(ug+uy, 0%¢+0?%) STk

04

Easy to differentiate

Learning a Gaussian

e Collect a bunch of data

—Hopefully, i.i.d. samples 1 95
—e.8., eXam SCcores 2 100

3 12

* Learn parameters
— Mean:
| - Iu 99 &9
—\Variance: o
1 —@—p?
P(m ‘ I, J) — & D2

MLE for Gaussian: p(z|u,0) =

Prob. of i.i.d. samples D={x,,...,X\}:

1 \NV N @2
0'\/27'(')

UMLE,OMLE — afg m%XP(D | W, o)

Y

P(D!u,0)=<

* Log-likelihood of data:

InP(D | p,0) = In

MLE for mean of a Gaussian
What’s MLE for mean?
%m P(D|p,0) = % _—Nlna\/%—g:l (%205)2}
= e L [

(i —)
_; — =20

N
—Za:7;+N,u:O
i=1

MLE for variance

Again, set derivative to zero:

d
—INP(D | p,0)
do

d

do

d

do

N (. N2
. —Nlna\/%— Z (%2 éu) }
i=1 o
N N2
—Ninov2r| - 3 dd [(%2 2“)]
N =199 g
(ZEz'—M)Q _
o3 0
1=1
D 1 R
OMLE — N.Z (@ — [

Learning Gaussian parameters

MLE: . é\;:
UMLE = —) %
N/
> 1 & >
OMLE = NZ(%‘—M)-_
i=1

Fitting a Gaussian to Skin samples

|
2| -
M=

5

)
N
|
Zlm
M= 1
) .
|
7\;/)
N
/ Q;
([
o
@
o
([

LNMLE =

OMLE —

~
|
[

Skin detection results

! ¥

»
\
.

¥

w

<

Figure 25.3. The figure shows a variety of images together with the output of the skin

detector of Jones and Rehg applied to the image. Pixels marked black are skin pixels, and

white are background. Notice that this process is relatively effective, and could certainly
be used to focus attention on, say, faoes and hands. Figure from “Stafistioal coler models
with applicalion to skin defection,” M.J. Jones and J. Rehg, Proc. Compuler Vision and
attern Recognition, 1999 (€ 1899, IEEE

Supervised Learning: find f

Given: Training set {(x,,y) |i=1 ... n}
Find: A good approximationto f : X =2 Y

What 1s x?
What 1s y?

Simple Example: Digit Recognition

Input: images / pixel grids
Output: a digit 0-9
Setup:

» Get a large collection of example
images, each labeled with a digit

* Note: someone has to hand label all
this data!

« Want to learn to predict labels of new,
future digit images

Features: ?

Screw You, | want to use Pixels :D

D

>

/
9

??

Lets take a probabilistic approach!!!

Can we directly estimate the data
distribution P(X,Y)?
How do we represent these?
How many parameters?
* Prior, P(Y):

— Suppose Y is composed of k
classes

» Likelihood, P(X]Y):
— Suppose X is composed of n
binary features

Conditional Independence

X is conditionally independent of Y given Z, if the
probability distribution for X is independent of the value of
Y, given the value of Z

e.g.,
Vi, j,)P(X =ilY =4, Z =k) = P(X =i|Z = k)

Equivalent to:
P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

P(X,Y |2)=P(X | Z2)P(Y | 2)

Nailve Bayes

Nailve Bayes assumption:
* Features are independent given class:

P(X1,X2lY) = P(X1]|X2,Y)P(X2]Y)
= P(X1|Y)P(X5|Y)

* More generally:

P(X1..Xn|Y) = HP(Xi\Y)

The Naive Bayes Classifier

Given:
* Prior P(Y) °

* n conditionally independent
features X given the class Y

* For each X, we have likelihood

PXi[Y) ° @ Q

Decision rule:

y* — hNB(X) — darfg manP(y)P(iE]_, RPN 1) | y)
= arg myaxP(y)HP(:vi\y)
1

A Digit Recognizer

Input: pixel grids

Output: a digit 0-9

Naive Bayes for Digits (Binary Inputs)

Simple version:
* One feature F; for each grid position <i,j>

» Possible feature values are on / off, based on whether intensity
Is more or less than 0.5 in underlying image

« Each input maps to a feature vector, e.g.
A~ (Foo=0Fo1=0 Fop=1Foa=1 Foa=0 ... Fis;5=0)

» Here: lots of features, each is binary valued
Nalve Bayes model:

P(Y|Fo0-..-Fi515) x P(Y) || P(F;,;|Y)
]
Are the features independent given class?
What do we need to learn?

Example Distributions

P(Y)

P(F31 =on|lY) P(Fs55=onlY)
1]0.1 1 |0.01 v 1 |0.05
2 101 2 1 0.05 2 1 0.01
3 |01 3 |0.05 3 | 0.90
4 101 / 4 10.30 4 10.80
5 |0.1 v 5 | 0.80 5 | 0.90
6 |01 6 | 0.90 6 | 0.90
7 | 0.1 7 | 0.05 7 1025
8 |0.1 8 | 0.60 8 | 0.85
9 |01 9 | 0.50 9 | 0.60
0 |01 0 | 0.80 0 | 0.80

MLE for the parameters of NB

Given dataset

« Count(A=a,B=b) number of examples
where A=a and B=b

MLE for discrete NB, simply:

 Prior:

Count(Y =y)
Dy Count(Y =y')

PY =y) =

 Likelihood:
Count(X; =x,Y =vy)

P(X;, =z|Y =y) =
(‘ 2 > Count(X; =2/,Y =vy)

Violating the NB assumption

Usually, features are not conditionally independent:

P(X1..Xn|Y) # HP(Xi\Y)

* NB often performs well, even when assumption is
violated

« [Domingos & Pazzani '96] discuss some conditions for
good performance

Smoothing

P(features, C = 2) P(features, C = 3)

P(C=2)=0.1 P(C=3)=0.1

P(on|C =2) =0.8 P(on|C =3)=0.8

P(on|C =2)=0.1 P(on|C =3) =0.9

P(off|Cc =2) =0.1 P(off|C =3) = 0.7

P(on|C =2) =0.01 P(on|C =3) =0.0
2 wins!!

Does this happen in vision?

NB & Bag of words model

L}

NEEROEXN

P(z;|y)

11

P(y)

1

1

What about real Features?
What if we have continuous X7

Eg., character recognition: X: is it pixel I I

Gaussian Naive Bayes (GNB):

P(X;,=z|Y =y) = e ik

Sometimes assume variance
is independent of Y (i.e., o)),
or independent of X (i.e., o)
or both (i.e., o)

Estimating Parameters

Maximum likelihood estimates:

Mean:
jth training
example
1 . .
i, = - X/6(Y7) = y)
o Zjd(yjzyk)zj: Z '
Variance:
O(x)=1 if x true,
else 0
1 . .
G = S (X —fi)20 (Y7 = y)

Yjo(YI =yp) — 15

another probabilistic approach!!!

Nailve Bayes: directly estimate the data distribution
P(X,Y)!
 challenging due to size of distribution!
* make Nailve Bayes assumption: only need P(X|Y)!

But wait, we classify according to:
* maxy P(Y|X)

Why not learn P(Y|X) directly?

Discriminative vs. generative

» Generative model

p(Data, No Zebra)

sl ’. \,b
. f
Yy

o1t p(Data, Zebra)

(The artist)

* Discriminative model p(Zebra|Data)
(The lousy !
painter) ol p(No Zebra|Data)

% 10 20 30 40 50 0 70

X = data
» Classification function T node-Tn
assification functio l1c_Lbel = Fyopra(Data)
-1
6 1‘0 éO 3‘0 4‘0 5‘0 éO 7‘0 86

x = data

Logistic Regression

Logistic function (Sigmoid):

Learn P(Y|X) directly!

. Assume a particular iy
functional form 2 os| .
Sigmoid applied to a M
Iin%ar function of the ol L+ ezp(—2)
data: ol

0= Z
P(Y = 1]X) = :

1 +exp(wo+ Y wiXi)

exp(wo + iz wiXi)

P(Y =0|X) =
(%) 1 +exp(wo+ Y7 wiX;)

Logistic Regression: decision boundary

P(Y =1|X) = : exp(wo + X1 wiXi)

1 +exp(wo+ Y1 | wiXi) (X) 1 +exp(wo+ Y1 wiX;)

* Prediction: Output the Y with
highest P(Y|X)

— For binary Y, output Y=0 if o
d I
[- P(Y =0|X) % F

,:Illl:, =]

P(Y =1|X) . : -
n Tk =
1 < €Xp(W() -+ Z W,‘Xi) =
O<W0—|—ZWiXi i _ =

i=1

A Linear Classifier!

Loss functions / Learning Objectives:
Likelihood v. Conditional Likelihood

Generative (Naive Bayes) Loss function:
Data likelihood

INnP(D|w) = Z In P(x?,y | w)

Z

N
= Y InP(y? | x7,w) + Z In P(x7 | w)

1=1 1=1

But, discriminative (logistic regression) loss function:
Conditional Data Likelihood

N B .
In P(Dy | Dx,w) = > InP(y | x/),w)
Jj=1
» Doesn’t waste effort learning P(X) — focuses on P(Y|X) all that
matters for classification
« Discriminative models cannot compute P(x/|w)!

Conditional Log Likelihood

P(Y = 0X,w) = !
1+ exp(wo + >; wiX;)
I(w)=) In P(y’|x7, w) P(Y = 1[X,w) = exp(wo + 3; wiX;)
j 1+ exp(wo + 32; wiX;)

g equal because yiis in {0,1}

(w) = Y ¢/ InP(y/ =1]x7,w) + (1 —¢)) In P(y/ = 0|x7, w)
J
g remaining steps: substitute definitions, expand logs, and simplify

wot+)_; wi X : 1

Logistic Regression Parameter Estimation:
Maximize Conditional Log Likelihood

I(w) = In H P(y’|x7, w)
J

— Zyj(wo + Zwi:pg) —In(1 + exp(wp + Zwﬂg))
j i @'

Good news: /(w) is concave function of w
— no locally optimal solutions!
Bad news: no closed-form solution to maximize /(w)

Good news: concave functions “easy” to optimize

Optimizing concave function —
Gradient ascent

Conditional likelihood for Logistic Regression is concave !

ol(w) ol(w)

oo’

Gradient:

[= : !
Val(w) =[5,]

Update rule: Aw = 1V ul(w)

(t+1) t) , , Olw)
w, — w, n
¢ v Qw,

Gradient ascent is simplest of optimization approaches
* e.g., Conjugate gradient ascent much better

Maximize Conditional Log Likelihood: Gradient
ascent

exp(wo + >; w; X;)
1 + exp(wg + 3 w; X;)

I(w) = S v/ (wo+ Y wizd) —In(1 + exp(wg + Y wiz)))
7 7 7

—a(‘l)EZ) = Z [;wyj(wo + zz:szUZ) — (9% In (1 + exp(wo + ;wzl’i)”

J

P(Y =1|X,W) =

. ZE‘Z exp(wo + > _, w@x‘z)
- Z [ijg _
J

1+ exp(wo + >, wzxf)

1+ exp(wo +), wzxi)

_ ng [yj exp(wo + D, wizy)]
J

Gradient ascent for LR

Gradient ascent algorithm: (learning rate r > 0)

do:
wi T — w40 Y~ P(YT =1 %, w)]
J

For i1=l..n: (iterate over weights)

wi™ — w4 S al - P(YT = 1| %, w))
j

until “change” < ¢ \

Loop over training examples!

Large parameters... [oz

a=1 a=5 a=10
Maximum likelihood solution: prefers higher

weights

 higher likelihood of (properly classified) examples
close to decision boundary

* larger influence of corresponding features on decision
* can cause overfitting!!!

Regularization: penalize high weights

« again, more on this later in the quarter

How about MAP?
p(w|Y,X) o« PY|X,w)p(w)

One common approach is to define priors
on w

* Normal distribution, zero mean, identity

covariance
N p(w) =[]
Often called Regularization i
* Helps avoid very large weights and
overfitting

MAP estimate:

N
* — J | xJ
w" = arg maxin p(wW) .Hlp(y | x7, w)
]:

KA\ 27

M(C)AP as Regularization

N
w* = arg mvgxln p(wW) jl;[l P(y/ | x7, w) p(w) = H o/ 2m

Add log p(w) to objective:

Inp(w)oc—%z:wi2 dInp(w) —

(9107;

—)\wz

* Quadratic penalty: drives weights towards zero
» Adds a negative linear term to the gradients

MLE vs. MAP

Maximum conditional likelihood estimate

N
* — J | ~J
w* =argmaxin LH1P(y | x ,w)]

wz'(H_l) - wi(t) + nzxg[yj _ p(yj =1| xj,w):
J

Maximum conditional a posteriori estimate

N
* J | ~J
w* = argmaxIn [p(w) 'H1 P(y) | x ,w)]
]:

wi(t+1> - wi(t)_'_,,7 {_sz_(t) + ng[yj — Py =1 Xj,W)]}
J

Logistic regression v. Naive Bayes

Consider learning f: X =2 Y, where
X is a vector of real-valued features, < X, ... X, >
Y is boolean

Could use a Gaussian Naive Bayes classifier
assume all X; are conditionally independent given Y
model P(X. | Y =y,) as Gaussian N(w;,0)
model P(Y) as Bernoulli(6,1-6)

What does that imply about the form of P(Y|X)?

1

P(Y = 11X =< Xq,..Xn>) =
| " 1 4+ exp(wg + >, w; X;)

Derive form for P(Y|X) for continuous X

P(Y =1)P(X|Y =1)

P(Y =1|X) = P(Y =1)P(X|Y =1) 4+ P(Y =0)P(X|Y = 0)

1

1+ P(Y=0)P(X|Y=0)
P(Y=1)P(X|Y=1) _ .
1 g up to now, all arithmetic

1 4 exp(In p%y:l%P%X{Y=1g)

g only for Naive Bayes models
1

1+ exp((In15%) +>;1n ﬁgjﬁjg)

- \

Can we solve for w; ?
* Yes, but only in Gaussian case

Looks like a setting for w,?

Ratio of class-conditional probabilities

(o)2
N P(Xz|y = O) P(X | .) 1 (20“2zk:)
. S p—0 1 p— f— e [
P(X;|Y =1) i k)= 2
B B (967;—#7;0)2 i
1 e 2012
— In O-i\/%
B (= p41)?
1 e 20%
Lo,V ?2 i . .
7iv2m Linear function!
Coefficients
. (ﬂfi — Mio)Q (CI?z' — ,uz'l)2)
Y= T H— expressed with
z Z original Gaussian
/ parameters!
o + pit o pi + B
B g2 ' D02
7 7

Derive form for P(Y|X) for continuous X

P(Yy = 1)P(X|Y =1)

P =1X) =55 = 1)P(X|Y = 1)+ P(Y = 0)P(X|Y =0)

1
1+ exp((In159) + % In pRir =)

Z M0 — ,u’zlx +/'l’z1_'ui20
0Z 202

1

Gaussian Naive Bayes vs. Logistic

Regression
Set of Gaussian o
Naive Bayes parameters Set of Logistic
(feature variance . r Regression parameters
Can go both

independent of class label) ways, we only

did one way

Representation equivalence

« But only in a special case!l!l (GNB with class-independent
variances)

But what's the difference???
LR makes no assumptions about P(X|Y) in learning!!!

Loss function!!!
» Optimize different functions ! Obtain different solutions

Nalve Bayes vs. Logistic Regression

Consider Y boolean, X, continuous, X=<X, ... X >

Number of parameters:
Nailve Bayes: 4n +1
Logistic Regression: n+1

Estimation method:
Naive Bayes parameter estimates are uncoupled

Logistic Regression parameter estimates are
coupled

Naive Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

Generative vs. Discriminative classifiers

Asymptotic comparison
(# training examples - infinity)

« when model correct

— GNB (with class independent variances) and
LR produce identical classifiers

« when model incorrect

— LR is less biased — does not assume conditional independence
» therefore LR expected to outperform GNB

Naive Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

Generative vs. Discriminative classifiers
Non-asymptotic analysis
» convergence rate of parameter estimates,
(n = # of attributes in X)
— Size of training data to get close to infinite data solution

— Naive Bayes needs O(log n) samples
— Logistic Regression needs O(n) samples

* GNB converges more quickly to its (perhaps less helpful) asymptotic
estimates

What you should know about
Logistic Regression (LR)

Gaussian Naive Bayes with class-independent variances
representationally equivalent to LR
» Solution differs because of objective (loss) function
In general, NB and LR make different assumptions
* NB: Features independent given class ! assumption on P(X|Y)
* LR: Functional form of P(Y|X), no assumption on P(X]Y)
LR is a linear classifier
« decision rule is a hyperplane

LR optimized by conditional likelihood
* no closed-form solution
« concave ! global optimum with gradient ascent
« Maximum conditional a posteriori corresponds to regularization

Convergence rates
 GNB (usually) needs less data
* LR (usually) gets to better solutions in the limit

1.0

0.5

0.0

-0.5

-1.0

Decision Boundary

-1.0

-0.5 0.0

0.5

1.0

Voting (Ensemble Methods)

Instead of learning a single classifier, learn many
weak classifiers that are good at different
parts of the data

Output class: (Weighted) vote of each classifier

» Classifiers that are most “sure” will vote with more
conviction

» Classifiers will be most “sure” about a particular part
of the space

« On average, do better than single classifier!
But how???
 force classifiers to learn about different parts of the
input space? different subsets of the data?
« weigh the votes of different classifiers?

BAGGing = Bootstrap AGGregation
(Breiman, 1996)

e fori=1,2, ..., K:

— T, € randomly select M training instances
with replacement

—h, & learn(T;) [ID3, NB, kNN, neural net, ...]

* Now combine the T, together with
uniform voting (w;=1/K for all 1)

Bagging Example

1.0

0.5

0.0

-0.5

-1.0

x1

1.0

0.5

0.0

-0.5

-1.0

Decision Boundary

-1.0

-0.5 0.0

0.5

1.0

100 bagged trees

o
-—

-

0.5

0.0
1

-1.0

-1.0 -0.5 0.0 0.5

shades of blue/red indicate strength of vote for particular classification

1.0

Fighting the bias-variance
tradeoff

Simple (a.k.a. weak) learners are good

* e.g., naive Bayes, logistic regression, decision stumps (or shallow
decision trees)

* Low variance, don’t usually overfit

Simple (a.k.a. weak) learners are bad
« High bias, can’t solve hard learning problems

Can we make weak learners always good???
 Nolll
* But often yes...

Boosting [Schapire, 1989]

|dea: given a weak learner, run it multiple times on
(reweighted) training data, then let learned classifiers vote

On each iteration t:

« weight each training example by how incorrectly it was
classified

* Learn a hypothesis — h,
* A strength for this hypothesis — o,

Final classifier: h(x) = sign (Z aihi(az)>

Practically useful
Theoretically interesting

¥} | L] http://www1.cs.columbia.edu/~freund/adaboost/

time =0

blue/red = class

size of dot = weight

weak learner =
Decision stub:
horizontal or vertice

Hypothesis Error:

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test set:

Bookmarks Tools Help

@ ID http://www1.cs.columbia.edu/~freund/adaboost/ EI © Go I@,

¢ |
O |8
@

@@

¢ prediction sum V¥ Training set
& prediction rule [~ Test set

time =1

this hypothesis has

error
ey Training Error: 0.14935064
Test Emor 0.2
0.14935064
0sl _ _ and so does
- Theoretical bound: 0.7128675€ . .
this ensemble, since
the ensemble contain:
01— s . just this one hypothes
iteration

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test set:
| Applet adaboost started

Bookmarks Tools Help

@ ID http://www1.cs.columbia.edu/~freund/adaboost/ EI © Go I@,

¢ |
O |8
@

@@

¢ prediction sum ¥ Training set
& prediction rule I~ Test set

time = 2

9"01" Training Error: 0.14935064
Test Ermror 02
\\ 0.2049447¢
0a] Theoretical bound: 0.575514
g : :
1 5 10
iteration

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test set:
| Applet adaboost started

Bookmarks Tools Help

@ ID http://www1.cs.columbia.edu/~freund/adaboost/ EI © Go I@,

¢ |
O |8
@

@|g)

¢ prediction sum V¥ Training set
& prediction rule [~ Test set

time =3

9"01" Training Error: 0.0649350€
Test Ermror 0.10967742
\ 0.1930939
0a] Theoretical bound: 0.4543407€
B— "qu_‘__\-h
0 1 |
1 5 10

iteration

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test set:
| Applet adaboost started

Bookmarks Tools Help

@ I[_] http://www1.cs.columbia.edu/~freund/adaboost/ EI © Go |@,

¢ |
O |8
@

© |ig

¢ prediction sum V¥ Training set
& prediction rule [~ Test set

time =13

reset

step

ermoy Training Error: 0.01948051
Test Emor 0.05806451
0.2570794¢
051 Theoretical bound: 0.1472900%
0 :%\wf*;i__
1 10 20
iteration

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test set:
| Applet adaboost started

Bookmarks Tools Help

@ ID http://www1.cs.columbia.edu/~freund/adaboost/ EI © Go |@,

¢ |
O |8
@

© |ig

¢ prediction sum V¥ Training set
& prediction rule [~ Test set

time = 100

reset

step

ermoy Training Error: 0.0
Test Error 0.0451612¢
0.38621867
0.8 Theoretical bound: 0.00725897
o
1 80 160

iteration

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test set:
| Applet adaboost started

Bookmarks Tools Help

@ I[_] http://www1.cs.columbia.edu/~freund/adaboost/ EI © Go |@,

¢ |
O |8
@

© |ig

¢ prediction sum V¥ Training set
& prediction rule [~ Test set

time = 300

reset

step

overfitting

ermoy Training Error: 0.0
Test Emor 0.0451612¢
0.38959894
U-ix Theoretical bound: 4.806434E-
1 160 220

iteration

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test set:
| Applet adaboost started

Learning from weighted data

Consider a weighted dataset
« D(i) — weight of ith training example (xi,y")
 Interpretations:

— Ith training example counts as if it occurred D(i) times

— If | were to “resample” data, | would get more samples of
“heavier” data points

Now, always do weighted calculations:

* e.g., MLE for Naive Bayes, redefine Count(Y=y) to be weighted
count:

Count(Y =y) = ZD(j)5(Yj =y)

j=1

» setting D(j)=1 (or any constant value!), for all j, will recreates
unweighted case

Given: (21,Y1),---, (Tm,Ym) where z; € X, y; € Y = {—1,+1}
Initialize D;(z) = 1/m.

How? Many possibilities. Will
Fort=1,...,T: Y P

see one shortly!

e Train base learner using distri

e Get base classifier hy_2¢€— R.

e Choose a; € R.

e Update:

Dy (i) exp(—ayihi(z:))
4t

D1 (i) =

where Z; is a nonl%zlllization factor

Zy = Y Di(i) exp(—ay;ihi(x;))
i=1
Output the final classifier:

T
H(x) = sign (Z atht(x)) :

- (=1 Final Result: linear sum of
~ “base” or “weak” classifier
outputs.
Figure 1: The boosting algorithm AdaBoost.

Given: (21,91), -+, (ZTms Ym) ‘et — P@'NDt(@') [ht(Xi) # yz]

Initialize Dy (i) = 1/m.
Fort=1,...,T: €t = Z Dy(i)0(he(i) 7 ;)
1=1
e Train base learner using distribution D. 1 —
e Get base classifier h; : X — R. Ol = 1 In €t
t— 2
e Choose oy € R. «— €t
e Update:
D.(s —osttihe(2
Dt+1 (Z) — t(z) eXp(ZatyZ t(m'L))
t
where Z; is a normalization factor (chosen so that D;,; will be a distribu-

tion).

Output the final classifier:

T
H(z) = sign (Z atht($)> :

t=1

Figure 1: The boosting algorithm AdaBoost.

What o, to choose for hypothesis 4,7
[Schapire, 1989]
ldea: choose ¢, to minimize a bound on training
error'

m

Z 6(H(z;) #y;) < — Z exp(—y;f(z;))

Where Z athi(x); H(az) — Szgn(f(:v))

exp(—y;f(z;))

SCH @) =l

What o, to choose for hypothesis 7,7
[Schapire, 1989]
|dea: choose o, to minimize a bound on training error!

=S S(H () #) < D exp(—yif (o) = [[%
i=1 0 t

Where T
f(x) =) athi(x); H(z) = sign(f(x))
t This equality isn’t
And - obvious! Can be
7y = Z D (3) exp(—agy;hi () shown with algebra
=1 (telescoping sums)!

If we minimize []; Z,, we minimize our training
error!!!

We can tighten this bound greedily, by choosing «; and
h, on each iteration to minimize Z,

h, is estimated as a black box, but can we solve for ¢,?

Summary: choose o;to minimize error
bound [Schapire, 1989)]

We can squeeze this bound by choosing o; on
each iteration to minimize Z,

m
Zy = > Dy(i) exp(— Oétyiht(a?z'))
1=1
€ — Z Dy(2)6(he(x;) 7 i)

For boolean Y: differentiate, set equal to 0, there
IS a closed form solution! [Freund & Schapire

971
1 —
o %ln (€t€t>

Strong, weak classifiers

If each classifier is (at least slightly) better than
random: ¢,<0.5

Another bound on error:

m

T
> 6(H(x) #yi) <] Z: <exp (—2 > (/2 6t)2)
/ =1

1
m,—1

What does this imply about the training error?
« Will get there exponentially fast!

Is it hard to achieve better than random training
error?

Boosting results — Digit recognition

[Schapire, 1989]

/ Test error

.

Training error

“1‘0 | 100 o “1.(")00
rounds

Boosting:
« Seems to be robust to overfitting

» Test error can decrease even after training error
is zero!!l

Boosting generalization error bound

[Freund & Schapire, 1996]

- Td
erroryue(H) < errory.qim(H) + O —
m

Constants:

T number of boosting rounds
« Higher T - Looser bound, what does this imply?

d: VC dimension of weak learner, measures
complexity of classifier

« Higher d = bigger hypothesis space - looser
bound

m: number of training examples
« more data - tighter bound

Boosting generalization error bound

[Freund & Schapire, 1996]

~ T'd
GTTOTtTUG(H) < €7°7'07“tra7;n(H) + O (—)

m
__Constants:
Theory does not match practice:
- Robust to overfitting

- Test set error decreases even after training
error is zero

Need better analysis tools
- we’ll come back to this later in the quarter

* more data - tighter bound

Logistic Regression as Minimizing Loss

Logistic regression assumes:
1

And tries to maximize data likelihood, for Y={-1,+1}:

P(Y =1|X) =

N
. o
o InP(Dy | Dx,w) = Y InP(y’ | %/,
P(y;lx;) = =y icy (Dy | Dx, w) j; (y7 | x7, w)
= — > In(1 + exp(—y;f(x;)))

1=1
Equivalent to minimizing log loss:

Y In(1 4 exp(—y;f(z;)))
i=1

Boosting and Logistic Regression

Logistic regression Boosting minimizes similar
equivalent to minimizing 555 function:

log loss:

i IN(1 + exp(—y; f(x;))) %ZGXD(—yif(wz‘)) =] %
- i /

1 =1
2.()5

S(H () £ v« \

—I.OI .—0.5. e .()TS
y; f ()

Both smooth approximations of 0/1 loss!

1.0 1.5 2.0

