Stereo II

CSE 576
Ali Farhadi

Several slides from Larry Zitnick and Steve Seitz
Camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principle point (x'_c, y'_c), pixel size (s_x, s_y)
- blue parameters are called “extrinsics,” red are “intrinsics”

Projection equation

$$x = \begin{bmatrix} wx \\ wy \\ w \end{bmatrix} = \begin{bmatrix} * & * & * & * \\ * & * & * & * \\ * & * & * & * \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} = \Pi X \quad y'$$

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations

$$\Pi = \begin{bmatrix} -fs_x & 0 & x'_c \\ 0 & -fs_y & y'_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R_{3x3} & 0_{3x1} \\ 0_{1x3} & 1 \end{bmatrix} \begin{bmatrix} I_{3x3} \\ T_{3x1} \end{bmatrix}$$

- The definitions of these parameters are not completely standardized
 - especially intrinsics—varies from one book to another
Extrinsics

How do we get the camera to “canonical form”?
• (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by $-c$
Extrinsics

How do we get the camera to “canonical form”?

- (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by \(-c\)

How do we represent translation as a matrix multiplication?

\[
T = \begin{bmatrix}
I_{3 \times 3} & -c \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Extrinsics

How do we get the camera to “canonical form”?

- (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

\[
\begin{align*}
\text{Step 1: Translate by } -c \\
\text{Step 2: Rotate by } R
\end{align*}
\]

3x3 rotation matrix
Extrinsics

How do we get the camera to “canonical form”?

- (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by \(-c\)

Step 2: Rotate by \(R\)

\[
R = \begin{bmatrix}
 u^T \\
 v^T \\
 w^T
\end{bmatrix}
\]
Perspective projection

\[
K = \begin{bmatrix}
-f & 0 & 0 \\
0 & -f & 0 \\
0 & 0 & 1
\end{bmatrix}
\quad (\text{intrinsics})
\]

(upper triangular matrix)

in general, \(K = \begin{bmatrix}
-f & s & c_x \\
0 & -\alpha f & c_y \\
0 & 0 & 1
\end{bmatrix} \quad (\text{converts from 3D rays in camera coordinate system to pixel coordinates})

\(\alpha\) : aspect ratio (1 unless pixels are not square)

\(s\) : skew (0 unless pixels are shaped like rhombi/parallelograms)

\((c_x, c_y)\) : principal point ((0,0) unless optical axis doesn’t intersect projection plane at origin)
Projection matrix

\[\Pi = K \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} I_{3\times3} & -c \\ 0 & 1 \end{bmatrix} \]

- **K**: intrinsics
- **R**: rotation
- **I_{3\times3}**: translation
- **-c**: translation
Projection matrix

\[
\Pi q = (x, y, z, 1)
\]

(in homogeneous image coordinates)
Epipolar constraint: Calibrated case

- Assume that the intrinsic and extrinsic parameters of the cameras are known
- We can multiply the projection matrix of each camera (and the image points) by the inverse of the calibration matrix to get *normalized* image coordinates
- We can also set the global coordinate system to the coordinate system of the first camera. Then the projection matrices of the two cameras can be written as \([I \mid 0]\) and \([R \mid t]\)
Epipolar constraint: Calibrated case

The vectors Rx, t, and x' are coplanar
Epipolar constraint: Calibrated case

The vectors Rx, t, and x' are coplanar

$\mathbf{x}' \cdot [t \times (R \mathbf{x})] = 0 \quad \Rightarrow \quad \mathbf{x}'^T \mathbf{E} \mathbf{x} = 0 \quad \text{with} \quad \mathbf{E} = [t_x] R$

Essential Matrix
(Longuet-Higgins, 1981)
Epipolar constraint: Calibrated case

- $E x$ is the epipolar line associated with x ($l' = E x$)
- $E^T x'$ is the epipolar line associated with x' ($l = E^T x'$)
- $E e = 0$ and $E^T e' = 0$
- E is singular (rank two)
- E has five degrees of freedom
The calibration matrices K and K' of the two cameras are unknown.

We can write the epipolar constraint in terms of unknown normalized coordinates:

$$\hat{x}'^T E \hat{x} = 0 \quad \hat{x} = K^{-1} x, \quad \hat{x}' = K'^{-1} \hat{x}'$$
Epipolar constraint: Uncalibrated case

\[\hat{x}'^T E \hat{x} = 0 \quad \rightarrow \quad x'^T F x = 0 \quad \text{with} \quad F = K'^{-T} E K^{-1} \]

\[\hat{x} = K^{-1} x \]

\[\hat{x}' = K'^{-1} x' \]

Fundamental Matrix
(Faugeras and Luong, 1992)
Epipolar constraint: Uncalibrated case

\[\hat{x}'^T E \hat{x} = 0 \quad \Rightarrow \quad x'^T F x = 0 \quad \text{with} \quad F = K'^{-T} E K^{-1} \]

- \(F x \) is the epipolar line associated with \(x \) \((l' = F x) \)
- \(F^T x' \) is the epipolar line associated with \(x' \) \((l' = F^T x') \)
- \(F e = 0 \) and \(F^T e' = 0 \)
- \(F \) is singular (rank two)
- \(F \) has \textit{seven} degrees of freedom
The eight-point algorithm

\[x = (u, v, 1)^T, \quad x' = (u', v', 1) \]

\[
\begin{bmatrix}
u' & v' & 1
\end{bmatrix}
\begin{bmatrix}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{bmatrix}
\begin{bmatrix}
u\
v\end{bmatrix} = 0
\rightarrow
\begin{bmatrix}
u' & u'v & u' & v'u & v'v & v' & u & v & 1
\end{bmatrix}
\begin{bmatrix}
f_{11} \\
f_{12} \\
f_{13} \\
f_{21} \\
f_{22} \\
f_{23} \\
f_{31} \\
f_{32} \\
f_{33}
\end{bmatrix} = 0
\]

Minimize:

\[
\sum_{i=1}^{N} (x_i'^T F x_i)^2
\]

under the constraint

\[||F||^2 = 1 \]
The eight-point algorithm

- **Meaning of error**
 \[\sum_{i=1}^{N} (x_i'^T F x_i)^2 : \]
 sum of squared *algebraic* distances between points \(x'_i \) and epipolar lines \(F x_i \) (or points \(x_i \) and epipolar lines \(F^T x'_i \))

- **Nonlinear approach:** minimize sum of squared *geometric* distances

\[
\sum_{i=1}^{N} \left[d^2(x'_i, F x_i) + d^2(x_i, F^T x'_i) \right]
\]
Problem with eight-point algorithm

\[
\begin{bmatrix}
 u' u & u' v & u' & v' u & v' v & v' & u & v
\end{bmatrix}
\begin{bmatrix}
 f_{11} \\
 f_{12} \\
 f_{13} \\
 f_{21} \\
 f_{22} \\
 f_{23} \\
 f_{31} \\
 f_{32}
\end{bmatrix} = 0
\]
Problem with eight-point algorithm

250906.36	183269.57	921.81	200931.10	146766.13	738.21	272.19	198.81
2692.28	131633.03	176.27	6196.73	302005.59	405.71	15.27	746.79
416374.23	871684.30	935.47	408110.89	854384.92	916.90	445.10	931.81
191183.60	171759.40	410.27	416435.62	374125.90	893.65	465.99	418.65
48988.86	30401.76	57.89	298604.57	185309.58	352.87	846.22	525.15
164786.04	546595.67	813.17	1998.37	6628.15	9.86	202.65	672.14
116407.01	2727.75	138.89	169941.27	3982.21	202.77	838.12	19.64
135384.58	75411.13	198.72	411350.03	229127.78	603.79	681.28	379.48

Poor numerical conditioning
Can be fixed by rescaling the data

\[
\begin{bmatrix}
 f_{11} \\
 f_{12} \\
 f_{13} \\
 f_{21} \\
 f_{22} \\
 f_{23} \\
 f_{31} \\
 f_{32}
\end{bmatrix} = -1
\]
The normalized eight-point algorithm

(Hartley, 1995)

- Center the image data at the origin, and scale it so the mean squared distance between the origin and the data points is 2 pixels
- Use the eight-point algorithm to compute F from the normalized points
- Enforce the rank-2 constraint (for example, take SVD of F and throw out the smallest singular value)
- Transform fundamental matrix back to original units: if T and T' are the normalizing transformations in the two images, then the fundamental matrix in original coordinates is $T'T F T$
Comparison of estimation algorithms

<table>
<thead>
<tr>
<th></th>
<th>8-point</th>
<th>Normalized 8-point</th>
<th>Nonlinear least squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Av. Dist. 1</td>
<td>2.33 pixels</td>
<td>0.92 pixel</td>
<td>0.86 pixel</td>
</tr>
<tr>
<td>Av. Dist. 2</td>
<td>2.18 pixels</td>
<td>0.85 pixel</td>
<td>0.80 pixel</td>
</tr>
</tbody>
</table>
Moving on to stereo...

Fuse a calibrated binocular stereo pair to produce a depth image.

image 1

image 2

Dense depth map

Many of these slides adapted from Steve Seitz and Lana Lazebnik.
Disparity is inversely proportional to depth.

\[
\frac{x - x'}{O - O'} = \frac{f}{z}
\]

Disparity = \(x - x' = \frac{B \cdot f}{z}\)
Basic stereo matching algorithm

- If necessary, rectify the two stereo images to transform epipolar lines into scanlines.
- For each pixel x in the first image
 - Find corresponding epipolar scanline in the right image.
 - Search the scanline and pick the best match x'.
 - Compute disparity $x - x'$ and set $\text{depth}(x) = \frac{f_B}{(x-x')}$.

![Diagram showing stereo matching](image)
Basic stereo matching algorithm

- For each pixel in the first image
 - Find corresponding epipolar line in the right image
 - Search along epipolar line and pick the best match
 - Triangulate the matches to get depth information

- Simplest case: epipolar lines are scanlines
 - When does this happen?
Simplest Case: Parallel images

Epipolar constraint:
\[x^T E x' = 0, \quad E = t \times R \]

\[R = I \quad t = (T, 0, 0) \]

\[E = t \times R = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0 \end{bmatrix} \]

\[
\begin{pmatrix} u \\ v \\ 1 \end{pmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0 \end{bmatrix} \begin{pmatrix} u' \\ v' \\ 1 \end{pmatrix} = 0 \quad \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ -T \\ Tv' \end{pmatrix} = 0 \quad Tv = Tv'
\]

The y-coordinates of corresponding points are the same
Stereo image rectification
Stereo image rectification

- Reproject image planes onto a common plane parallel to the line between camera centers

- Pixel motion is horizontal after this transformation

- Two homographies (3x3 transform), one for each input image reprojection

Correspondence search

- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation
Correspondence search

Left

Right

scanline

SSD
Correspondence search

Left

Right

scanline

Norm. corr
Effect of window size

• Smaller window
 + More detail
 – More noise

• Larger window
 + Smoother disparity maps
 – Less detail
 – Fails near boundaries
Failures of correspondence search

- Textureless surfaces
- Occlusions, repetition
- Non-Lambertian surfaces, specularities
Results with window search

Window-based matching

Ground truth

Data
How can we improve window-based matching?

So far, matches are independent for each point.

What constraints or priors can we add?
Stereo constraints/priors

- **Uniqueness**
 - For any point in one image, there should be at most one matching point in the other image.

![Diagram](image.png)
Stereo constraints/priors

• Uniqueness
 • For any point in one image, there should be at most one matching point in the other image

• Ordering
 • Corresponding points should be in the same order in both views
Stereo constraints/priors

- **Uniqueness**
 - For any point in one image, there should be at most one matching point in the other image

- **Ordering**
 - Corresponding points should be in the same order in both views

Ordering constraint doesn’t hold
Priors and constraints

• Uniqueness
 • For any point in one image, there should be at most one matching point in the other image

• Ordering
 • Corresponding points should be in the same order in both views

• Smoothness
 • We expect disparity values to change slowly (for the most part)
Stereo as energy minimization

What defines a good stereo correspondence?

1. Match quality
 - Want each pixel to find a good match in the other image

2. Smoothness
 - If two pixels are adjacent, they should (usually) move about the same amount
Stereo as energy minimization

Better objective function

\[E(d) = E_d(d) + \lambda E_s(d) \]

- **match cost**: Want each pixel to find a good match in the other image.
- **smoothness cost**: Adjacent pixels should (usually) move about the same amount.
Stereo as energy minimization

\[E(d) = E_d(d) + \lambda E_s(d) \]

match cost: \[E_d(d) = \sum_{(x,y) \in I} C(x, y, d(x, y)) \]

smoothness cost: \[C(x, y, d(x, y)) \]

SSD distance between windows \[\prod_{(x, y) \in I} \sum_{(p,q) \in \mathcal{E}} W(d_p, d_q) \]

\[\mathcal{E} : \text{set of neighboring pixels} \]

4-connected 8-connected neighborhood
Smoothness cost

\[E_s(d) = \sum_{(p,q) \in \mathcal{E}} V(d_p, d_q) \]

\[V(d_p, d_q) = |d_p - d_q| \]

\(L_1 \) distance

\[V(d_p, d_q) = \begin{cases}
0 & \text{if } d_p = d_q \\
1 & \text{if } d_p \neq d_q
\end{cases} \]

"Potts model"
Dynamic programming

\[E(d) = E_d(d) + \lambda E_s(d) \]

Can minimize this independently per scanline using dynamic programming (DP)

\[D(x, y, d) \): minimum cost of solution such that \(d(x,y) = d \)

\[D(x, y, d) = C(x, y, d) + \min_{d'} \left\{ D(x - 1, y, d') + \lambda |d - d'| \right\} \]
Energy minimization via graph cuts

Labels (disparities)

edge weight $C(x, y, d_3)$

edge weight $V(d_p \neq d_q)$
Energy minimization via graph cuts

• **Graph Cut**
 – Delete enough edges so that
 • each pixel is connected to exactly one label node
 – Cost of a cut: sum of deleted edge weights
 – Finding min cost cut equivalent to finding global minimum of energy function
Stereo as energy minimization

\[I(x, y) \quad J(x, y) \]

\[y = 141 \]

\[C(x, y, d); \text{the disparity space image (DSI)} \]
Stereo as energy minimization

Simple pixel / window matching: choose the minimum of each column in the DSI independently:

\[d(x, y) = \arg\min_{d'} C(x, y, d') \]
Matching windows

<table>
<thead>
<tr>
<th>Similarity Measure</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum of Absolute Differences (SAD)</td>
<td>[\sum_{(i,j)\in W}</td>
</tr>
<tr>
<td>Sum of Squared Differences (SSD)</td>
<td>[\sum_{(i,j)\in W} (I_1(i,j) - I_2(x + i, y + j))^2]</td>
</tr>
<tr>
<td>Zero-mean SAD</td>
<td>[\sum_{(i,j)\in W}</td>
</tr>
<tr>
<td>Locally scaled SAD</td>
<td>[\sum_{(i,j)\in W}</td>
</tr>
<tr>
<td>Normalized Cross Correlation (NCC)</td>
<td>[\frac{\sum_{(i,j)\in W} I_1(i,j).I_2(x + i, y + j)}{\sqrt{\sum_{(i,j)\in W} I_1^2(i,j).\sum_{(i,j)\in W} I_2^2(x + i, y + j)}}]</td>
</tr>
</tbody>
</table>

[SAD] [SSD] [NCC] [Ground truth]

http://siddhantahuja.wordpress.com/category/stereo-vision/
Before & After

Before

Graph cuts

Ground truth

Y. Boykov, O. Veksler, and R. Zabih,
Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001

For the latest and greatest: http://www.middlebury.edu/stereo/
Real-time stereo

Nomad robot searches for meteorites in Antartica
http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

Used for robot navigation (and other tasks)

- Several software-based real-time stereo techniques have been developed (most based on simple discrete search)
Why does stereo fail?

Fronto-Parallel Surfaces: Depth is constant within the region of local support
Why does stereo fail?

Monotonic Ordering - Points along an epipolar scanline appear in the same order in both stereo images

Occlusion – All points are visible in each image
Why does stereo fail?

Image Brightness Constancy: Assuming Lambertian surfaces, the brightness of corresponding points in stereo images are the same.
Why does stereo fail?

Match Uniqueness: For every point in one stereo image, there is at most one corresponding point in the other image.
Stereo reconstruction pipeline

Steps

• Calibrate cameras
• Rectify images
• Compute disparity
• Estimate depth

What will cause errors?

• Camera calibration errors
• Poor image resolution
• Occlusions
• Violations of brightness constancy (specular reflections)
• Large motions
• Low-contrast image regions
Choosing the stereo baseline

What’s the optimal baseline?

- Too small: large depth error
- Too large: difficult search problem
Multi-view stereo ?
Beyond two-view stereo

The third view can be used for verification
Using more than two images

Multi-View Stereo for Community Photo Collections
M. Goesele, N. Snavely, B. Curless, H. Hoppe, S. Seitz
Proceedings of ICCV 2007,