Face detection

Slides adapted Grauman & Liebe's tutorial

http://www.vision.ee.ethz.ch/~bleibe/teaching/tutorial-aaai08/

Also see Paul Viola's talk (video)

http://www.cs.washington.edu/education/courses/577/04sp/contents.html#DN

Limitations of Eigenfaces

Eigenfaces are cool.

But they're not great for face detection.

Chief Limitations

- not very accurate
- not very fast

To make it work on the camera, we need ~30fps, and near-perfect accuracy.

2

Rectangle filters

Viola and M. Jones. Rapid object detection using a boosted cascade of simple features

Answer: very very fast to compute • Trick: integral images (aka summed-area-tables) Value at (x,y) is sum of pixels above and to the left of (x,y) integral image

I

Boosting: training

- · Initially, weight each training example equally
- In each boosting round:
 - find the weak classifier with lowest weighted training error
 - raise weights of training examples misclassified by current weak classifier
- Final classifier is linear combination of all weak classifiers
 - weight of each learner is directly proportional to its accuracy)
- Fxact formulas for re-weighting and combining
- AdaBoost Algorithm • Initialize weights $w_{1,i}=\frac{1}{2m},\frac{1}{2l}$ for $y_i=0,1$ respectively, where m and l are the number of negatives and positives respectively.
 • For $t=1,\ldots,T$: Start with uniform weights on training examples 1. Normalize the weights, $w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{j=1}^{n} w_{t,j}}$ so that w_t is a probability distribution. so that w_t is a probability distribution.
 2. For each feature, jt rain a classifier h_t which is restricted to using a single feature. The error is evaluated with respect to w_t, ε_j = ∑_t w_t |h_j ⟨x_t > y_t|.
 3. Choose the classifier, h_t, with the lowest error ε_t. Evaluate weighted error for each feature, pick best. 4. Update the weights: Re-weight the examples: $w_{t+1,i} = w_{t,i}\beta_t^{1-e_i}$ *Incorrectly classified -> more weight Correctly classified -> less weight where $e_i=0$ if example x_i is classified correctly, $e_i=1$ otherwise, and $\beta_t=\frac{\epsilon_t}{1-\epsilon_t}$. The final strong classifier is: Final classifier is combination of the $h(x) = \left\{ \begin{array}{ll} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \geq \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{array} \right.$ weak ones, weighted according to error they had. Freund & Schapire 1995

- Even if the filters are fast to compute, each new image has a lot of possible windows to search.
- How to make the detection more efficient?

Cascading classifiers for detection

- · Form a cascade with low false negative rates early on
- Apply less accurate but faster classifiers first to immediately discard windows that clearly appear to be negative

Viola-Jones detector: summary

- •Train with 5K positives, 350M negatives
- •Real-time detector using 38 layer cascade
- •6061 features in all layers

•[Implementation available in OpenCV: http://www.intel.com/technology/computing/opencv/]

Kristen Grauman

Consumer application: iPhoto 2009

Things iPhoto thinks are faces

Slide credit: Lana Lazebnik

What other categories are amenable to window-based representation?

Pedestrian detection

 Detecting upright, walking humans also possible using sliding window's appearance/texture; e.g.,

SVM with HoG [Dalal & Triggs, CVPR 2005]

Kristen Grauman

Window-based detection: strengths

- Sliding window detection and global appearance descriptors:
 - Simple detection protocol to implement
 - Good feature choices critical
 - > Past successes for certain classes

Kristen Grauman

Window-based detection: Limitations

- High computational complexity
 - For example: 250,000 locations x 30 orientations x 4 scales = 30,000,000 evaluations!
 - > If training binary detectors independently, means cost increases linearly with number of classes
- With so many windows, false positive rate better be low

Kristen Grauman

Limitations (continued)

• Not all objects are "box" shaped

Kristen Grauman

Limitations (continued)

- Non-rigid, deformable objects not captured well with representations assuming a fixed 2d structure; or must assume fixed viewpoint
- Objects with less-regular textures not captured well with holistic appearance-based descriptions

Kristen Grauman

Limitations (continued)

• If considering windows in isolation, context is lost

Sliding window

Detector's view

Figure credit: Derek Hoiem Kristen Grauman

Limitations (continued)

- In practice, often entails large, cropped training set (expensive)
- Requiring good match to a global appearance description can lead to sensitivity to partial occlusions

Image credit: Adam, Rivlin, & Shimshoni

Kristen Grauman